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Annotation of complete genomes, community analysis of entire ecosystems (metagenomics),

and comparative analysis of regulatory networks from multiple species, each of these

experiments is emblematic of the high throughput data that is radically altering the

scientific landscape. Moreover, so-called next generation sequencing has significantly

increased the scope of questions being asked through sequencing making it crucial to

understand how to interpret, decode, and integrate sequence data. Although each assay

can provide only snapshots of the genes or proteins, through integration of multiple features

across different conditions, time points, and species, the goal is to extract the dynamics

from these static images and derive their emergent properties. Current integration schemas

are constrained to single dimensional features and do not have the flexibility to integrate

features not centered solely on genes or proteins. Here, we have developed a new type

of integration, cross integration, where the goal is to integrate not to stack gene and

protein features in a single dimension but to build spanning relationships (cross patterns)

across multidimensional ones. We showed that fusing geography and metagenomics could

illuminate microbial adaptations to environmental differences. We identified a number

of metabolic components that co-vary with specific environmental features, which we

term a metabolic footprint. Further, we speculate that analysis of these environmental

dynamics could be used as a sensitive biosensor to detect chemical or other environmental

perturbations. In addition, we developed a new formalism both to express and define

cross integration and apply it to chemogenomics data. In this manner, we were able to



ii

identify cross patterns between properties of drugs and their protein targets. Some of

these were intuitive, such as the mirroring of physicochemical properties between drug

and target, and others were subtler such as sensitivities to both environmental stress

response and particular drug properties. Mining such biological complexity requires a

robust infrastructure and new computational models. We have explored several methods

to uncover subtle, indirect relationships between multidimensional features; many exciting

discoveries remain.
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Chapter 1

Introduction

1.1 Evolution of Computational Biology

1.1.1 A brief etiology of ’ome’

Despite its near ubiquity in referring to collections of large-scale biological data, the

suffix ome has no discrete meaning and has only a loose claim to Greek roots through

the coining of the word chromosome, derived from the Greek words for color and body,

respectively. However, the, in some cases, overenthusiastic adaptation of ome by the

biological community provides an apt example of the recent evolution taking place in the

biological sciences.

1.1.2 Bridging disciplines and really big data

Technological advancements have resulted in a dramatic increase in the scale of biological

data making it infeasible in many cases for a single scientist or even a group of scientists to

interpret it. Thus, from database design to signal processing, machine learning to metadata,

expertise from computer science, applied math, physics, statistics and engineering alike are

being harnessed to decipher meaning from a virtual flood of the data. As a result, biological

and computational vocabularies are undergoing an expansion, and context is often required

to disambiguate words like complexity, a generic description of something with many inter-
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Figure 1.1: Graphical representation of major themes. (A) Identifying determinants
of pathogenicity through integration of multiple genomic features. (B) Regulatory
network evolution. (C) Prediction of phenotype through comparative genomics. (D)
Integrating environmental and metabolic features to identify environmental adaptation
in metagenomics datasets. (E) Spanning across differently indexed datasets in
chemogenomics.

related parts or a more precise term in computer science used to characterize the amount

of time or space required to execute a given algorithm. The increasing computational

and biological complexity of the questions being asked requires a new discipline with the

flexibility to bridge many. This in essence is the goal of computational biology to develop

computational frameworks in the context of specific biological problems (Pevzner, 2004;

Luscombe et al., 2001).
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1.2 Scope of Dissertation: Two gradients of biological and

computational complexity

The remainder of this text will present themes in computational biology along two gradients

of biological and computational complexity: Genomics to Metagenomics (Figure 1.3) and

Single to Multidimensional data integration (Figure 1.1). In chapter 2 Genomics, we

describe our work on the first de novo sequencing of a genome using 454 sequencing and

the identification of potential pathogenicity factors. In chapter 3 Comparative Genomics,

we discuss a method using comparative genomics to associate microbial genotypes with

specific phenotypic traits. In chapter 4 Network Dynamics, we move from comparisons of

single microbial genomes to the comparison of entire microbial communities.

In this chapter, we develop a new algorithm DPM (discriminative partition matching)

and adapt several computational methods including canonical correlation analysis (CCA)

to identify pathways that showed strong co-variation with environmental features. We coin

these environmental footprints. Further, we show that such footprints can be used to infer

environmental adaptation of microbial metabolic pathways.

In chapter 5 Network Evolution, we explore the genetic basis for species variation

by looking at changes in transcription factor binding in close yeast. In chapter 6 Cross

Integration, we present an extension of the DPM algorithm presented in chapter 4 to allow

for integration of data with different types of indices. We call this the ITeR algorithm

(Identifying Transitive Relationships). We both formalize ITeR more generally and apply

the method to search for relationships between sets of drug features and sets of protein

features in chemogenomics datasets. Finally in chapter 7, we present a brief future outlook.

The rest of the introduction is structured as follows. Section 1.3 provides an overview of

next-generation sequencing technologies and the anatomy of a genome sequencing project.

Section 1.4 includes a brief literature survey to introduce metagenomics. Finally, section 1.5

motivates the rationale for cross integration (chapter 6) whose development was a natural

outgrowth of the work presented in chapters 4 and 5.
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1.3 One to Many: Genomics and Comparative Genomics

From the duck-billed platypus (Platypus, 2008) to the geyser-dwelling Thermotoga

maritima (Nelson et al., 1999a), the genomes of 4700 species are currently available in

NCBI’s Entrez Genome Database (as of Sept 2008) including representatives of over 700

microbial species (Benson et al., 2008). Data generated from genome sequencing projects

have proven themselves to be enormously versatile providing a wealth of insight into life

style (e.g. the radiation-resistant bacteria Deinococcus radiodurans R1 )(White et al.,

1999), pathogenicity (Smith et al., 2007), evolutionary history (Dufresne et al., 2003), and

metabolic capabilities (e.g. the cellulose degrading, ethanol producing fungus, Trichoderma

reesei)(Martinez et al., 2008) as just a small sample of the enormous diversity of sequenced

organisms.

1.3.1 Next generation sequencing technologies

Despite the manifold advantages of whole genome sequencing, the costliness of such

endeavors has historically limited the execution of these types of projects to large

sequencing centers and deep-pocketed consortiums. However, the advent of so-called next-

generation sequencing platforms, such as, 454 pyrosequencing, Solexa, and SOLiD, has

led to a more than exponential increase in sequencing capacity and a significant drop

in cost opening the possibility of whole genome sequencing to single investigators and

smaller groups (Mardis, 2008; Morozova and Marra, 2008). Indeed, since the introduction

of such platforms in 2005, approximately 170 genomes including a range of eukaryotes

(e.g. C. remanei, D. mauritiana, etc.) and microbial species (e.g. A. bauamannii, B.

thailandensis, etc.) have been determined using next-generation sequencing platforms and

more specifically (for whole genome sequencing) 454 pyrosequencing (Pop and Salzberg,

2008) and deposited in NCBI. In brief, in 454 pyrosequencing, genomic DNA fragments

are clonally amplified in picotiter plates. The fragments are then ”sequenced by synthesis”

whereby the energy released when a base is incorporated is converted through a series of
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Figure 1.2: General annotation scheme, see text for details

enzymatic reactions to light. The intensity of which corresponds to the number of bases

incorporated (Margulies et al., 2005). This technique, as do the other next generation

technologies, results in massive parallelization and eliminates the need for cloning.

1.3.2 Assembly and Annotation

Genome sequencing projects can be split into two pieces: assembly and annotation. The

raw output from a sequencing project is strings of contiguous letters called reads. As the

genome was randomly sheared, the goal of assembly is to stitch together overlapping reads

into contiguous blocks called contigs. The contigs can similarly be stitched together to

form scaffolds. This process is often aided by using a paired end approach. The goal then

is two-fold: (1) to identify particular features of interest (e.g. genes, non-coding RNAs,

etc.) and (2) to provide a functional assignment for these features.
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1.3.3 Three Levels: Genome composition, genome content, and comparative

genomics

Such analyses can be further divided into three basic categories: genome composition,

genome content, and comparative genomics (Figure 1.2). Genome composition measures

properties such as GC content, codon usage, and amino acid bias across the genome and

searches for deviations from what is expected(Karlin, 2001). Examined on a genome-wide

scale, these features can elucidate genic structure (e.g. changes in GC content can be

used to identify gene as well as exon/intron boundaries, etc.). More local changes can be

used to predict secondary structure elements (e.g. identification of putative transporters)

(Krogh et al., 2001). Genomic content analysis refers to the particular genes, non-coding

RNAs, etc. that are encoded in the genome. Gene finding programs traditionally use

hidden markov models to calculate the probability of a particular region being genic or not

(Majoros et al., 2004). In addition to using genome composition statistics as above, gene

finders are trained using a genome where the genic structure is already known (Salzberg

et al., 1998). Thus, the performance of the gene finder is dependent on the evolutionary

divergence of the training genome with new genome.

Finally, comparative genomics allows one to compare features of the new genome with

other genomes through both synteny mapping (looking at conservation of gene order) and

homology searches. These types of analyses have been shown to be extremely powerful,

and a host of tools and databases have been developed to harness the collective knowledge

derived from these millions of base pairs. Indeed, in the simplest case even the overall

enrichment and depletion of particular functional categories, (e.g. those involved in lipid

metabolism and secondary metabolite production) relative to other species that do not

have the same capabilities or present the same phenotype has previously been informative

in identifying candidates of a function of interest (Smith et al., 2007).
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1.3.4 Unbiased vs. Targeted Search

All of the above approaches are considered unbiased. They either use information derived

from the newly sequenced genome directly (such as composition statistics) or indirectly

by comparison with other species. A complementary approach to unbiased search is to

perform targeted searches. That is, to develop a list of candidates of potential interest

in the process of interest and build models of what those targets look like in a host of

other fungi. By building position weight matrices or hidden Markov models (HMM) from

multiple alignments of these protein families, one can search the predicted ORFs to identify

candidates of the process of interest that may have more distant homologies(Sonnhammer

et al., 1998). Thus, one can leverage what is already known about the domains and other

secondary structure characteristics of the targets of interest to search for candidates that

based purely on amino acid identity maybe overlooked. This complementary analysis allows

among others, the identification of novel metabolic components for in-silico metabolic

pathway reconstruction or pathogenic determinants. By harnessing these three levels

of analyses: genome composition, genome content, and comparative genomics in both

a targeted and unbiased fashion, one can both learn about an organism’s overall metabolic

requirements and more specifically identify candidates for further experimentation that

may explain observed phenotypes, morphologies, or metabolic capabilities. In addition,

the approach described above is general enough for both prokaryotes and eukaryotes. We

used such an approach, as described further in chapter 2, to perform the first De novo

sequencing of a genome using 454 sequencing.
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Figure 1.3: Comparison of Traditional Genomic and Metagenomics Approaches

1.4 Many to Even More: Metagenomics and Comparative

Metagenomics

1.4.1 Introduction to Metagenomics

The approach described above can be considered the traditional genomics approach. A

particular organism of interest is identified (e.g. in our case the bacteria A. bauamannii).

It is cultured, DNA is extracted, and sequencing is performed on the single organism

of interest (Figure 1.3). However, it is estimated that less than 1% of microbial species

can be cultured under standard laboratory conditions (Whitman et al., 1998). Recently

approaches have been developed to sample the genetic content in complex environments

using sequencing (metagenomics). The power of metagenomics is that it is culture-

independent. Almost anything from buckets of sea water (Venter et al., 2004) to spadefulls

of soil (Tringe et al., 2005) to scoops of distal gut (Turnbaugh and Gordon, 2008; Turnbaugh

et al., 2007) even flasks of air (Tringe et al., 2008) can serve as fodder for metagenomics

projects. In this manner, one can begin to look at microbial communities as a whole rather
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than studying them in isolation, which has profound implications particularly for microbial

ecology.

1.4.2 Introduction to microbial ecology and comparative metagenomics

Marine microbes are estimated to account for 90% of the ocean’s biomass (Sogin et al.,

2006). However, the effect of microbial processes on their environment is perhaps even more

staggering. Microbes are the main drivers of nutrient recycling and all geochemical cycles

(Karl, 2002). Furthermore, while most marine habitats are oligotrophic (low in nutrients),

they support a tremendous diversity of life. Traditionally, community function has been

studied through cataloguing the environmental species diversity, typically by analyzing

16S rDNA sequence, or through detailed studies of the molecular processes exerted by only

specific community members. However, unless the species identified have been previously

studied, the overall biochemical functions and activities of both the individual species

and the community as a whole remain unclear. In addition, even in well-studied species,

function cannot always be directly extrapolated from phylogenetic classification (Sogin

et al., 2006). Indeed, the recent advent of direct sequencing of environmental samples

(i.e. metagenomics) has revealed an unprecedented mixture of both inter and intra-species

genetic diversity (DeLong et al., 2006; Liles et al., 2003; Thompson et al., 2005; Tyson

et al., 2004; Rusch et al., 2007) allowing the biochemical activities of the community as

a whole to be inferred through its genetic content. These activities have been found to

vary greatly from one environmental condition to another. However, how this diverse

array of biochemical activities, and particularly metabolic versatility, reflects environmental

differences is only beginning to be understood.

Comparative metagenomics approaches revealed significant variation in sequence

composition (Foerstner et al., 2005), genome size (Raes et al., 2007), evolutionary rates (von

Mering et al., 2007a), and metabolic capabilities (Tringe et al., 2005; DeLong et al., 2006;

Tyson et al., 2004; Dinsdale et al., 2008) among qualitatively dissimilar environments (e.g.

terrestrial vs. marine) providing evidence for genomic adaptations. Despite the wealth of
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information generated by these studies, a quantitative description relating metagenomics

sequences to the myriad of environmental features has generally been lacking. Such

information is vital for relating specific environmental features to genomic sequences and

thereby uncovering complex relationships for how microbes adapt to their environment.

Previously such an analysis was infeasible as in all of the above work (with the

notable exception of (DeLong et al., 2006)), the datasets used provided no quantitative

description of environmental variables. That is, the qualitative label of the environments

(e.g. soil, ocean, etc.) could be used as an implicit means of separating them since no

specific quantitative features of the environment were measured, nor since most of the

environmental variables were changing simultaneously would such a study be relevant.

In order, to understand the contribution of a particular feature, the environments

sampled must differ along a continuum. Venter and colleagues built such a dataset with the

Global Ocean Survey (Rusch et al., 2007; Yooseph et al., 2007). By mining this dataset,

it was shown that the well-known adaptation of microbes to different wavelengths of light

could be explained by looking at specific amino acid changes of rhodopsin and further that

such changes were dependent on the type of environment (Yooseph et al., 2007).

This example was found somewhat serendipitously. The ubiquity of rhodopsin in

the ocean allowed for the high coverage of this particular family that is necessary in

order to build multiple alignments and do this kind of in-depth analysis. The linking of

specific metabolic capabilities to the environment is needed to understand oceanic processes

and in particular human influence on them; however, this will require a methodological

framework, which can systematically and explicitly account for quantitative differences in

environments.

In chapter 4, we developed such a rigorous statistical approach for quantifying

environmental adaptation to metabolic pathways through the integration of quantitative

differences in both metabolism and the environment (Gianoulis et al., 2009b). We then

applied this methodology to marine metagenomics datasets. The aim of this portion of the

work was three-fold: (1) to develop a framework for explicitly integrating environmental
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metadata with sequence data, (2) to use this framework in order to establish whether such

a relationship exists, and (3) to explore (if goal 2 is true) what the major contributing

factors to this relationship are.

1.5 Simple to Complex: Multidimensional data integration

1.5.1 “Stacking vs Spanning”

Each of these projects required a different schema for integration (Figure 1.1), and although

there is a large corpus of work in the literature on mining gene or protein-based datasets,

our questions required the integration of data not always indexable on a gene. Previous

approaches revolve around a “gene or protein centric” view where individual datasets can

be conceived of as data layers (Figure 1.1A), and positions within the layer are determined

by referencing a gene or protein. In other words, the gene or protein (or pairs of genes or

proteins) serves as the index to the individual data level and integration is then merely a

matter of stacking the data levels via their index.

Despite the seeming simplicity of the concept, implementations of “stacking” have

taken many non-trivial forms including functional coupling (Fraser and Marcotte, 2004),

phylogenetic profiling (Marcotte et al., 1999; Pellegrini et al., 1999) and various machine

learning approaches including decision trees (King et al., 2003), Bayesian networks, (Jansen

et al., 2003; Troyanskya et al., 2003), unsupervised approaches (Flaherty et al., 2005;

Bergmann et al., 2003), and many different kinds of kernel methods (Ben-Hur and Noble,

2005; Lanckriet et al., 2004; Tsuda and Noble, 2004). This type of integration has led to

discoveries including general principles to predict gene essentiality (Seringhaus et al., 2006)

to mechanisms involved in arsenic resistance (Kelley and Ideker, 2005) and DNA damage

(Haugen et al., 2004; Begley et al., 2004) among many others. Further, by comparing

these “stacks”, it has been shown that genes or proteins that share similar properties (e.g.

protein interaction partners) tend to share similar functional roles (Kelley and Ideker, 2005;

Tasan et al., 2008; Parsons et al., 2004; Wong et al., 2004).
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The major theme of “stacking” techniques is that the features are “indexable” by a

single class of variables: gene or protein or pairs of genes or proteins (Figure 1.1A-B).

This is an intuitive solution when all the data being stacked are of the same type and can

thus be treated in a similar manner (e.g. stored in the same relational table and queried

directly). The problem lies in capturing connections between associated metadata (e.g.

structural properties of a drug and features of a protein that drugs targets); however,

current data integration schemas lack the the flexibility to accommodate data that are

not all indexed on the same type of variable (e.g. metabolites, tissues, and environmental

conditions). Uncovering these kinds of indirect, complex connections requires the facility

to systematically combine information from multiple tables, allowing one to not only stack

features in a single dimension but also to span across multiple ones.

1.5.2 Illustrative Example

As an example, the data in the previous section can naturally be represented as two matrices

where the rows are geographic locations (sites) and the columns are environmental and

metabolic features, respectively. It is helpful to think of these as two relational tables

where the index for both tables is the site name. In the metagenomics example, we then

developed and adapted different techniques to inter-relate these matrices allowing us to

infer relationships between environmental pressures and metabolic adaptations.

An obvious criticism of this analysis is why not combine both types of information into

a single relational table since they share the same index? Intuitively, this would result in

the simplification of the scheme necessary to answer the question posed above. However,

there is no means of extracting information about sets of environmental features and sets

of metabolic features from such a table (Please note: this example is used for illustrative

purposes the question of data storage is outside the scope of this thesis; please see (Han

and Kamber, 2000) for a review of multidimensional data storage, data warehousing, and

slicing). In other words, there is no direct query that will return a set of environmental

and metabolic features (columns) without first explicitly providing a set of sites (rows).

12



Thus, we experimented with several methods for integrating environment and metabolism

including aggregating over the sites (partitioned by some type of labeling) to abstract

site-set relationships (discriminative partition matching) and defining a change of basis

to effectively create a new unified environmental-metabolic space (canonical correlation

analysis) that would allow us to investigate these relationships further. In both instances,

the only use of the index was to span across the other dimensions.

Many biological problems can be conceived in a similar manner as 2 or more matrices

where the goal is to develop either a partitioning function or to define a change of basis to

allow for integration. In earlier work, we described a simpler correlation method to associate

microbial phenotypes with their corresponding genotypes (chapter 2). We provide a more

general formalism for the case of more than two matrices (which do not share the same

index) in chapter 6.

In this chapter, we present a method Identifying Transitive Relationships (ITeR)

that uses the principle of transitivity to seamlessly integrate datasets with non-gene or

protein centric indices. We apply this method to identify relationships spanning structural

properties of a drug (e.g. molecular weight) and features of the target protein (e.g. target’s

localization). By integrating 1194 drug sensitivity profiles, six types of structural features,

and seven types of target features including physicochemical properties, gene composition

features, network topology statistics, localization, function and process, and environmental

stress response, we identify numerous drug-feature target-feature relationships, which we

term cross-patterns.

Some of these cross-patterns are intuitive (e.g. the charge of a drug and its target

are complementary); however, we also find more subtle, less obvious cross-patterns (e.g.

target’s which were both sensitive to a particular environmental stress and a particular

drug feature). Such connections suggest that there may be a set of physical properties

underlying common stress responses.

Although currently, yeast represents a special case in terms of the depth and breadth

of available system-wide data, this presages the considerable scale-up to humans and other
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model organisms. Mining such complexity represents an exciting challenge, chapter 5

presents a more flexible data integration scheme, ITeR, that can be used to identify such

indirect, complex relationships.
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Chapter 2

Genomics: The first de novo

sequencing of a microbial genome

with

next generation sequencing

2.1 Background on A. baumannii

Acinetobacter baumannii is a gram-negative, non-motile, obligate aerobic coccus that

is commonly found in soil, water, sewage and in healthcare settings (Baumann et al.

1968a; Juni 1978). Difficulties in containing, controlling and eliminating the spread of

A. baumannii have challenged clinicians and healthcare providers (Bergogne-Berezin and

Towner 1996; Bernards et al. 2004; Koulenti and Rello 2006). Recently, drug-resistant

A. baumannii was responsible for an outbreak of bacteremia in over 240 American troops

in Iraq ((CDC) 2004; Abbott 2005), and there is significant concern of a major epidemic

involving this organism. This versatile organism can utilize a variety of carbon sources

and is able to grow in a range of temperatures and pH conditions (Juni 1978). La
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Scola and Raoult (La Scola and Raoult 2004) isolated A. baumannii from human body

lice and speculate that the bacteria may utilize the arthropod host as one means of

transmission. This hardiness, combined with its intrinsic resistance to many antimicrobial

agents, contributes to the organism’s fitness and has enabled it to thrive in hospital settings

worldwide. Mortality in patients suffering A. baumannii infections, can be as high as 75%

(Chastre and Trouillet 2000).

Alarmingly, little is known about the virulence, antibiotic resistance or persistence

strategies of A. baumannii. The pathogenic determinants which have been reported thus

far for A. baumannii include a novel pilus assembly system involved in biofilm formation

(Tomaras et al. 2003), an outer membrane protein (Omp38) which causes apoptosis in

human epithelial cells (Choi et al. 2005) and a polycistronic siderophore-mediated iron-

acquisition system conserved between A. baumannii and Vibrio anguillarum (Dorsey et

al. 2003; Dorsey et al. 2004). This presumably comprises a small fraction of elements

involved in A. baumannii pathogenesis, and thus, novel global approaches are essential

to comprehensively understand the basic features of this organism in order to ultimately

control the spread of A. baumannii infections and to develop effective countermeasures

against this harmful pathogen.

In addition to its pathogenesis, the genus Acinetobacter is particularly interesting for

other reasons. First, acinetobacters are capable of catabolizing a wide range of carbon

sources and metabolites and as such were briefly classified as pseudomonads (Stanier et

al. 1966). In fact, acinetobacters are among the most widely used microbes for petroleum

remediation. Second, several strains of Acinetobacter, most notably A. baylyi, have an

extraordinary ability to acquire foreign DNA(Young et al. 2005). It is currently unknown

how pervasive natural competence is among acinetobacters. This trait is particularly

important for microbial pathogens since it is one important mechanism by which they

achieve genetic diversity. Pathogens which can rapidly acquire drug resistance and

pathogenicity islands have a selective advantage over those with more static genomes.

Recently a new approach for high throughput DNA sequencing has been described using
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pyrophosphate sequencing (Margulies et al. 2005). High-density pyrosequencing involves

the clonal amplification of genomic DNA fragments followed by sequencing coupled to two

enzymatic reactions (Margulies et al. 2005). The first enzyme, sulfurylase, regenerates

ATP from the pyrophosphate released during base incorporation. The second enzyme,

luciferase, converts the energy of the regenerated ATP into light. This procedure allows

the simultaneous sequencing of hundreds of thousands of short DNA sequences (on average

100 bp; see below). However, significant challenges to using high-density pyrosequencing

include the short DNA reads generated and a potential loss of accuracy due to long

homopolymer stretches or low complexity DNA. High-density pyrosequencing has not yet

been used effectively in resequencing efforts but has not been reported in de novo sequencing

projects.

In this study we demonstrate that we can determine the DNA sequence of a microbe

using pyrophosphate sequencing with reasonable accuracy. Analysis of the A. baumannii

ATCC17978 DNA sequence revealed 28 putative alien islands predicted to be involved in

virulence. Insertional mutagenesis of Acinetobacter coupled with a C. elegans virulence

assay that we described previously (Smith et al. 2004) and a new assay using Dictyostelium

discoideum described below, confirmed that at least 6 alien islands are involved in virulence

including four that were not predicted to be involved in pathogenesis by sequence homology.

While many of the genes in these alien islands were of previously unknown function, our

analysis revealed potential functions for these genes and by inference, the entire operon.

Thus, we were able to assign function to these previously uncharacterized operons. The

combined DNA sequence and mutagenesis approach provide rapid and considerable insight

into the pathogenicity of this microbe and is an approach that is generally applicable to

any pathogenic microbe.
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Figure 2.1: Illustrates step by step process for sequence, assembly, and annotation of the
Acinetobacter baumannii genome.
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2.2 Results

2.2.1 High-Density Pyrosequencing of the A. baumannii genome

We devised a strategy to determine the DNA sequence of A. baumannii ATCC 17978 using

high density pyrophosphate DNA sequencing (Figure 2.1). To overcome the limitation of

short DNA reads, we sequenced a large excess of genomic DNA. From five DNA sequencing

runs a total of 824,407 sequencing reads and 83,931,609 total base pairs of sequence were

obtained; this depth of sequencing proved to be 21.1 fold coverage of the genome. The

average read length was 101.8 base pairs and average G+C content 38.8%. The sequence

was assembled into 139 contigs which ranged in length from 1,346 bp to 168,478 bp with

an average length of 28,392 bp. We next performed paired end analysis in which sequence

information was recovered from each end of 90,049 DNA fragments. Paired-end sequencing

joined the 139 contigs into 22 supercontigs, or scaffolds, which ranged in length from 6,199

bp to 1,257,593 bp with an average of 179,384 bp. The predicted size of the A. baumannii

chromosome based on these sequences is 3,946,442 bp. To complete the assembly, two

PCR strategies were employed (Figure 2.1). First, several rounds of vectorette PCR were

performed from the ends of contigs as described in the Materials and Methods (Riley

et al. 1990; Kumar et al. 2002). Over 10,000 PCR and 2200 sequencing reactions

were generated using conventional sequencing methods and capillary electrophoresis. This

methodology was effective in filling in the gaps between contigs within scaffolds, as well

as joining pairs of scaffolds. All remaining gaps were filled by direct PCR using primers

that were designed to the ends of each of the remaining contigs. In this manner, the

entire genome was sequenced and assembled. Gap filling added 30,304 bp to the genome

assembly and indicates that high-density pyrosequencing was effective in returning 99.24%

of the total chromosomal sequence. The final A. baumannii ATCC17978 genome sequence

we determined is comprised of a single 3,976,746 base pair chromosome, not counting

tandem repeats (such as might be expected for rDNA) which cannot be detected using

the pyrosequencing method. In addition to the chromosomal DNA sequence, the shotgun
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Figure 2.2: A Graphical depiction of the gene annotation. Genes products are represented
by COG assignment (single letter code): A: RNA processing and modification; C: Energy
production and conversion; D: Cell division and chromosome partitioning; E: Amino acid
transport and metabolism; F: Nucleotide transport and metabolism; G: Carbohydrate
transport and metabolism; H: Coenzyme metabolism; I: Lipid metabolism; J: Translation,
ribosomal structure and biogenesis; K: Transcription; L: DNA replication, recombination
and repair; M: Cell envelope biogenesis, outer membrane; N: Cell Motility. O: Post-
translational modification, protein turnover, chaperones; P: Inorganic ion transport and
metabolism; Q: Secondary metabolites biosynthesis, transport and catabolism; R: General
function prediction only; S: Function unknown; T: Signal transduction mechanisms; U:
Intracellular trafficking, secretion, and vesicular transport; V: Defense mechanisms.

approach also revealed the DNA sequence of two plasmids pAB1 (13,404 bp) and pAB2

(11,520 bp) from this organism. Interestingly, neither of these is identical to the previously

sequenced A. baumannii plasmid, pMAC, although all three plasmids share the same

replication protein, RepM (Dorsey et al. 2006). pAB1 shares a total of 3 ORFs with pMAC:

RepM, a YPPCP.09C homologue, and a Cro-like protein however whereas pMAC contains

ORFs involved in peroxide resistance, pAB1 bears genes involved in lysine metabolism.

Thus, it is likely that plasmids can readily differ among A. baumannii species.
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2.2.2 Sequence verification and annotation

Potential coding sequences were identified using two programs, GLIMMER and RBSfinder.

GLIMMER identified 3830 open reading frames in the A. baumannii chromosome and an

additional 10 and 9 ORFs on the two plasmids respectively (Delcher et al. 1999). Although

GLIMMER has a high accuracy rate in calling genes, identifying the precise start site is

problematic. Programs, such as, RBSfinder improve this accuracy by identifying potential

ribosomal binding sites and shifting the starting coordinates of predicted open reading

frames. It was shown that RBSfinder improves the accuracy of start site locations predicted

by GLIMMER or Gene Mark from 67-77% to 90%, and these predictions were validated

by N-terminal protein sequencing of representative E. coli proteins (Suzek et al. 2001).

RBSfinder was applied to the A. baumannii sequence, by first computing the consensus

ribosomal binding site which was then used to identify the start codons in the 3830 ORFs.

After the start sites were adjusted by RBSfinder only 76.6% of the genome encodes protein.

While this number is several percent lower than that typically reported for bacteria, we

believe that this is due to the use of RBSfinder which improves start site prediction

accuracy. Indeed applying the GLIMMER and RBS finding method to the A. baylyi genome

revealed a similar protein coding figure and gene homology .

subsubsectionAccuracy of the DNA Sequence One concern with using the high-density

pyrosequencing method is its error rate. It was reported that high-density pyrosequencing is

99.96% accurate when compared to DNA sequenced by conventional sequencing methods

and capillary electrophoresis (Margulies et al. 2005). To assess the accuracy of the A.

baumannii sequence, two methods were used: 1) comparison of the originally assembled

contigs to that of 50 PCR fragments sequenced by traditional methods and 2) determination

of the frequency of split genes. To compare the sequence determined by pyroseqeuncing

with that of traditional Sanger sequencing, we selected PCR products that did not

reside near the ends of the assembled contigs and thus were not likely to contain low

complexity DNA, transposons, rDNA or other repeated sections. These 50 PCR products
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totalled 33,906 bp and had only 26 base pairs differences with the sequences assembled by

pyrosequencing. Thus, we find that the genomic sequence is 99.92% accurate (Accuracy =

100-((26/33906)*100)). In all but one case, the base pair differences were in homopolymer

run length, which is recognized as the most frequent type of error that high-density

pyrosequencing creates (Margulies et al. 2005). In addition, in our efforts to join contigs

over 750,000 bp of PCR products were generated and sequenced using traditional methods.

These sequences corresponded to the lowest complexity, highest repeat-containing and

most problematic sections of the genome. By incorporating the sequences generated by

traditional methods into these problematic regions, the accuracy of the DNA sequence is

likely to be more than 99.92% accurate.

Since the most likely sequencing error is a frameshift as a result of inappropriate base

calling during homopolymer runs, a second measure of the error rate is the frequency of

split genes. We used two criteria to determine the frequency of split genes in our assembly.

First, these types of errors are distinguishable as a pair of tandem genes which return the

same BLAST target. Second, the sum of the length of the tandem genes should closely

approximate the length of the homologous gene. We found 30 instances of split genes in

our assembly of the A. baumannii genome. An error rate calculation based on assumptions

described in Materials and Methods indicates that the error rate is 0.0014%. Regardless

of which accuracy measure is most precise, the sequence obtained from our approach is

at least 99.92% accurate and there are relatively few (less than 1%) split genes obtained

from this sequencing approach. subsubsectionAnnotation of the A. baumannii genome The

annotated genes were assigned functions by a combination of BLAST analysis and KEGG

annotation (Altschul et al. 1990; Altschul et al. 1997; Kanehisa et al. 2006) and then

assigned to clusters of orthologous groups (COG) (Tatusov et al. 1997). Approximately

61% of the genes were assigned to a COG functional category (Figure2.2 and 2.3). The

most represented classes of genes were those involved in translation, amino acid metabolism

and energy production as would be expected from a member of the catabolically versatile

pseudomonad family. We also identified 70 tRNA genes throughout the genome.
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Figure 2.3: Circular Map of A. baumannii genome. The outermost circle shows
genes color-coded by COG assignment: Translation,ribosomal structure and biogenesis
(gold); RNA processing and modification (orange); Transcription (dark orange); DNA
replication, recombination and repair (maroon); Cell division and chromosome partitioning
(yellow); Defense mechanisms (pink); Signal transduction mechanisms (purple); Cell
envelope biogenesis, outer membrane (peach); Cell motility and secretion (medium purple);
Intracellular trafficking, secretion, and vesicular transport (pink); Posttranslational
modification, protein turnover, chaperones (light green); Energy production and conversion
(lavender); Carbohydrate transport and metabolism (blue); Amino acid transport and
metabolism (red); Nucleotide transport and metabolism (green); Coenzyme metabolism
(light blue); Lipid metabolism (cyan); Inorganic ion transport and metabolism (dark
purple); Secondary metabolites biosynthesis, transport and catabolism (sea green); General
function prediction only (light gray); Function unknown (ivory); Not in COGs (dark gray).
The middle circle represents the G+C percentage, colored red for regions above median
GC score (38%) and blue for regions less than or equal to the median. The circles were
drawn with (cite genomeviz).
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2.2.3 Acinetobacter synteny

The A. baumannii genome sequence was compared to that of its closest sequenced relative,

A. baylyi using the Artemis Comparison Tool. This program uses BLAST (either blastn

or tblastx) to compare two or more genomes for the arrangement of homologous genes

(Carver et al. 2005). Although there are large number of local gene insertions, deletions

and rearrangements, synteny mapping using the Web ACT comparison illustrates that a

large amount of synteny exists between the two genomes and that large sections of the two

genomes share similar orientations (Figure 2.4). Significant genomic similarities are also

observed at the protein level in which 2137 of the 3830 (55.79%) predicted A. baumannii

proteins returned their top BLAST scores as an A. baylyi gene product.

One of the most interesting features of the A. baylyi genome is the clustering of catabolic

operons into an ”archipelago of catabolic diversity” (Barbe et al. 2004). Of the genes

found within the five islands described by Barbe et al., we found representatives of only

three islands. Furthermore, these genes were not clustered into islands but were scattered

throughout the chromosome. We also compared the clustering of the catabolic genes in

A. baylyi and A. baumannii with the sequenced genomes of Pseudomonas aeruginosa,

Neisseria meningitidis, Bacillus subtilis and Escherichia coli (Figure 2.4). The clustered

organization of the catabolic archipelago is found only in A. baylyi and thus is likely to have

occurred post-speciation. An interesting feature of the catabolic capacity of A. baumannii

is its inability to catabolize glucose, a deficiency shared by many strains of Acinetobacter

(Baumann et al. 1968b). We have identified the cause of this deficiency in A. baumannii as

the absence of hexokinase, glucokinase or any other comparable enzyme that can transfer

phosphate onto glucose. Thus, the first step of glycolysis cannot be completed.

2.2.4 Nucleic Acid Translocation

Examination of the A. baumannii genome revealed that it lacks two important genes

involved in DNA uptake, comP and comA. However, it does have most others, such as
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Figure 2.4: A) The genomes of A. baylyi (upper) and A. baumannii (lower) were compared
by WebACT and visualized by the Artemis Comparison Tool (ACT) (Carver et al. 2005).
Red indicates similar genomic organization, whereas blue indicates inversions. B) The
genomes of six bacteria were compared for the distribution of key catabolic enzymes (from
the outermost to the innermost ring): A. baumannii , A. baylyi, Pseudomonas aeruginosa,
Neisseria meningitidis, Escherichia coli K12, and Bacillus subtilis. The Island clusters
were defined by Barbe et al (Barbe et al. 2004) based on their location in the A. baylyi
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The endproducts of the pathways encoded within each of the catabolic islands are depicted.
The boxes surrounding the endproducts are colored to match the islands from which they
were derived.
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Figure 2.5: DNA Transport machinery. Adapted from Averhoff and Friedrich (Averhoff and
Friedrich 2003). In A. baylyi and other gram-negative bacteria, foreign DNA is delivered
to and through the outer membrane transporter PilQ. ComE-bound DNA is transported
to the inner membrane transporter ComA (or ComEC) via ComP, PilE and/or the type
IV pilus. ComEA may assist in this delivery.

pilQ, comE, and pilF among a total of over 20 pilus, fimbrial and competence genes. In

addition, homologues of two genes required for DNA uptake, comEA and comEC, are found

in A. baumannii genome but not in that of A. baylyi. Since comEA is a transmembrane

protein whose role is to bind external DNA and deliver it to the comEC transporter, this

suggests that A. baumannii can potentially compensate for the loss of comP with either

comEA and/or its typeIV pilus. Secondly, A. baumannii may be able to compensate for

the loss of comA with its homologue, comEC. In doing so it would build a novel nucleic acid

transport machine. The presence of these genes may explain, in part, the large amount of

foreign DNA found within the A. baumannii chromosome (Figure 2.5).
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2.2.5 Putative Alien Islands (pAs)

Of particular interest are the potential virulence genes in A. baumannii. Sequence

similarities with known virulence genes can reveal the identity of homologs, but contribute

little new information. We used two approaches to identify A. baumannii virulence genes.

Using comparative genomics, our first step was to directly compare the A. baumannii

sequence with the non-pathogenic A. baylyi in order to identify A. baumannii specific

genes. One of the benefits of the high degree of similarity between these two organisms

is that their genomic differences are likely to contribute to their phenotypic differences.

We defined our regions of interest as those regions greater than 10kB that had little

homology with A. baylyi. The second approach we utilized was to examine the genome for

sequence composition anomalies indicative of putative alien islands (pAs, (Karlin 2001)).

Differences in G+C content, amino acid usage, dinucleotide frequency, and codon usage

have successfully been used to identify microbial alien islands (Karlin 2001). While pAs

may possess genes encoding any number of functions, those determined to be involved in

virulence are termed pathogenicity islands (PAIs). There were twenty-eight clusters of

genes that fit the criteria as alien islands. Twelve of these possess genes with sequence

homology to genes with roles in pathogenesis (Table 2.1). The largest pA is 133,740

bp, contains several transposons and integrases and strikingly also contains eight genes

homologous to the Legionella/Coxiella Type IV virulence/secretion apparatus and therefore

may be a bonafide PAI. Since a separate full complement of genes involved in Type IV

mediated conjugation are located elsewhere on the chromosome we speculate that if the

eight Type IV secretion (virulence) genes found in the pA are indeed virulence factors, then

in order to build a functional Type IV secretion apparatus for virulence, the structural

elements of the conjugation pilus may be utilized during pathogenesis. In addition to

the large island described above, 7 different pAs contain genes encoding drug resistance

proteins. We also found pAs containing genes encoding heavy metal resistance, iron

uptake and metabolism, fimbrial genes, autoinducer processing and cell envelope biogenesis

27



Putative Alien Islands 

pA 
# 

Gene 
# 

start 

Gene 
# 

end General Function 
Potential Role in Virulence? 

(evidence) 
1 54 70 Cell Envelope Biogenesis Yes (Sequence Homology) 
2 119 130 Autoinducer Production Yes (Sequence Homology) 
3 213 226 No homology/Hypothetical Proteins No 

4 642 748 Type IV secretion 
Yes (Sequence Homology and Genetic 
Screen) 

5 796 809 Amino Acid Metabolism  No 
6 981 995 Drug Resistance Yes (Sequence Homology) 
7 1164 1192 Amino Acid Metabolism  Yes (Genetic Screen) 
8 1382 1399 Xenobiotic Degradation No 
9 1409 1426 Metabolism  No 
10 1455 1542 Phenyl Acetic Acid Degradation No 
11 1566 1580 Amino Acid Metabolism  No 
12 1602 1617 Arsenic resistance/Taurine metabolism No 
13 1665 1681 Pilus Biogenesis Yes (Sequence Homology) 
14 1755 1814 No homology/Hypothetical Proteins Yes (Genetic Screen) 
15 1863 1878 Vitamin B12 Metabolism  No 
16 1919 1934 Drug/metabolite resistance Yes (Sequence Homology) 
17 1962 1999 Drug resistance Yes (Sequence Homology) 
18 2012 2103 Drug resistance/Metabolism Yes (Sequence Homology) 
19 2190 2201 Amino Acid Metabolism  Yes (Genetic Screen) 
20 2261 2313 No homology/Hypothetical Proteins Yes (Genetic Screen) 
21 2349 2368 Iron transporters/metabolism Yes (Sequence Homology) 
22 2581 2594 Drug resistance Yes (Sequence Homology) 
23 2659 2704 Drug resistance Yes (Sequence Homology) 
24 2942 2960 Metabolism No 
25 3246 3276 Heavy metal resistance No 
26 3346 3355 Lipid Metabolism No 
27 3600 3616 No homology/Hypothetical Proteins No 

28 3760 3780 Drug resistance/Metabolism 
Yes (Sequence Homology and Genetic 
Screen) 

 

Table 2.1: The putative alien islands were numbered in order based on their chromosomal
start site. The general function was based on an assessment of the ORFs with the pA.
Genes unrelated to this general function may be found in any given pA. The potential role
in virulence was determined by sequence homology to known virulence genes or by virtue
of being recovered in the mutagenesis screen described in this manuscript.

(Table 2.1). Of the remaining 16 pAs, 12 islands contained genes involved in various

aspects of metabolism, lipid metabolism, amino acid uptake and processing and xenobiotic

degradation. Four of the pAs were difficult to characterize since they contained largely

hypothetical genes and mobile elements.

Fournier et al. recently reported the identification of a hotspot in A. baumannii into

which two different genomic islands inserted (Fournier et al. 2006). The larger of the

two islands is an 86,190 bp drug resistance island containing 45 of the 52 drug resistance

genes in A. baumannii strain AYE (Fournier et al. 2006). The smaller island, found
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Figure 2.6: Ethanol-Stimulated Virulence of A. baumannii. A. Bacteria were incubated
on NGM plates without (a and c) or with 1% ethanol (b and d). A single L4 stage worm
was inoculated onto lawns of E. coli OP50 (a-b) or A. baumannii (c-d) and allowed to
proliferate for 4 days. The E. coli OP50 lawns are completely consumed by this time (a-b)
regardless of the presence of ethanol. The worm brood is considerably smaller on plates
containing NGM + 1% ethanol and A. baumannii (d). B. Bacteria and D. discoideum
amoebae were incubated on SM/5 plates without (a and c) or with 1% ethanol (b and d).
In lawns containing K. aerogenes (a-b) amoebae plaques form within 4 days regardless of
the presence of ethanol. Amoebae are able to form plaques in A. baumannii (c) but plaque
formation is completely inhibited when 1% ethanol is added to the media (d).
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in the drug sensitive strain SDF, is 19,362 bp and does not contain any drug resistance

genes. We found an insertion similar to the one found in the drug-sensitive SDF strain.

It is 13,277 bp, comprising 9 genes and is found between 5and 3 ends of a putative

ATPase. The 9 genes include those encoding 4 hypothetical or unknown proteins, two

transposases, one transposition helper, a universal stress protein and the sulphonamide

resistance protein, sulI. Although only one drug resistance gene was found in this insertional

hotspot, A. baumannii ATCC17978 possesses an additional 74 potential drug resistance

genes, including 32 efflux pumps (19 RND type, 3 MFS and 9 others) and 11 permeases of

the drug/metabolite transporter (DMT) superfamily. We also identified 26 genes encoding

resistance to heavy metals including copper, cadmium, zinc, cobalt, tellurite and arsenic.

Since these genes likely derive from mobile DNA and are at many locations in the genome,

clearly the previously identified hotspot is not the only location into which genes have

inserted in this organism.

2.2.6 Insertional Mutagenesis Reveals that Many Alien Islands are

Important for A. baumannii Virulence

Although the genomic sequence analysis revealed many PAIs which might be involved

in virulence, direct evidence is lacking. We therefore sought to determine whether any of

these islands had a role in pathogenesis using a limited insertional mutagenesis approach. A

library of 1324 A. baumannii mutants was generated using the EZ::TN 〈R6Kγori/KAN−2〉

Tnp Transposome system from Epicentre (Dorsey et al. 2002). These mutants were then

tested for their ability to affect pathogenesis in two assays: reduced brood size of C. elegans

and inhibition of D. discoideum. By using two different assays to study the pathogenesis

of acinetobacters we expected to uncover general mediators of virulence, as well as factors

that specifically affect a bacterium’s ability to survive in either host.

The worm assays were performed by inoculating a lawn of bacteria grown on nematode

growth medium (NGM) with a single L4 stage worm. The worm undergoes its final molt

to the adult stage and begins laying as many as 300 eggs during the subsequent 24 hours.
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Figure 2.7: Ethanol-Stimulated Virulence Mutants of A. baumannii Mutants were
generated according as described in Materials and Methods. A: Six individual A. baumannii
mutants were incubated on NGM (wells a-f) or NGM + 1% ethanol (wells a-f). A single
L4 stage worm was inoculated onto lawns of each mutant and allowed to proliferate for
4 days. Avirulent bacterial mutants were recovered as those which allowed the worms to
consume the bacterial lawns as fast or faster on NGM + 1% ethanol as on NGM alone,
e.g. mutant b (b and b) . B: Six individual A. baumannii mutants were mixed with .
discoideum amoebae and incubated on SM/5 + 1% ethanol (wells a-f). These are not
the same mutants as shown in A. Avirulent mutants were defined as those which allowed
amoebae plaque formation, e.g. mutant d.
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This rapid proliferation of worms results in a brood capable of exhausting the bacterial

lawn within 4-5 days. However, when the worms are inoculated onto A. baumannii lawns

that have grown on 1% ethanol (which induces virulence (Smith et al. 2004)), worm

proliferation is slowed and brood sizes are dramatically diminished (Figure 2.6A). Ethanol

does not affect the worms directly since worms feeding on E. coli OP50 proliferate equally

well on ethanol-containing and ethanol-free media. We screened our A. baumannii library

for mutants that would allow worm proliferation at comparable rates on ethanol-containing

and ethanol-free media. A total of 114 mutants were able to support the growth of worms

on ethanol-containing media and were deemed avirulent to worms (Figure 2.7A).

We also tested for hostile interactions between A. baumannii and D. discoideum using a

simple plating assay that was developed for P. aeruginosa (Pukatzki et al. 2002). Amoebae

and bacteria were cultured on media with or without ethanol. Bacteria, due to their

greater growth rate, form lawns with the slower-growing amoebae embedded within them.

On media without ethanol, the amoebae were able to consume A. baumannii and form

plaques in the bacterial lawn. On media supplemented with limited ethanol, no plaques

were observed in A. baumannii lawns. As many as 1x105 amoebae were plated on a single

plate and not a single plaque was formed on lawns of A. baumannii when ethanol was

added to the media (Figure 2.6B). Ethanol does not appear to affect the amoebae directly

since amoebae feeding on K .aerogenes form plaques equally well on ethanol-containing and

ethanol-free media. Screening the mutant library for bacteria that allow plaque formation

by the amoebae in the presence of ethanol, revealed 229 avirulent mutants out of the

1324 mutants tested (Figure 2.7B). Comparison of the results of the worm and amoebae

screens revealed thirty mutants that tested positive in both assays. The identity of the gene

disrupted by the insertion mutation in these thirty mutants was determined by rescuing

the DNA adjacent to the transposon and DNA sequencing. In addition, we also rescued

and sequenced 2 mutants which were robust in the worm assay, but failed in the amoebae

assay and 3 mutants which did not affect amoebae growth, but did inhibit worm growth.

In all, 35 mutants were sequenced and their genomic locations determined. 14 of the 35
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mutants had no homology to A. baylyi seven of which localized to the pAs described above.

Two of these seven pAs were predicted by sequence homology to encode genes involved

in virulence. Thus, our functional assay has contributed 5 pAs as likely to be involved

in the pathogenesis of A. baumannii. 3 of these 5 pAs are predicted to be involved in

various aspects of metabolism, so their relation to virulence mechanisms is unclear. The

remaining 2 pAs are particularly interesting as they may represent novel virulence effectors

since BLAST analysis revealed little sequence similarity to any known genes and they may

represent novel virulence factors.

2.2.7 Further Characterizatio of Ethanol-Stimulated Virulence Mutants

There are two likely mechanisms that would result in the reduction in the worm brood

sizes observed: The worms are dying and/or they are not proliferating. To separate these

two possibilities, we determined worm lifespans and also counted the number of eggs that

worms laid when feeding on E. coli OP50, A. baumannii or 14 of the avirulent, ethanol-

stimulated virulence (Esv) mutants. The results are summarized in Table 2.2. The lifespans

of worms feeding on A. baumannii were 20% shorter when ethanol was added to the

media. A more dramatic effect is observed when eggs are counted. Worms feeding on

ethanol-stimulated A. baumannii lay 42.9% fewer eggs than those feeding on unstimulated

bacteria. Thus, it appears that the combined effect of the shortened lifespan and the

reduction in the reproductive capacity of the worms when feeding on ethanol-stimulated

A. baumannii results in the diminished brood of worms illustrated in (Figure 2.6A). Several

of the bacterial mutants are able to reverse the deleterious effects of ethanol-stimulated A.

baumannii on worm proliferation by both increasing the worm lifespans and egg-laying

capacity. EsvA, encodes a transcription factor in the AraC/XylS family. EsvC encodes

the gamma subunit of urease. EsvI is a likely multidrug efflux transport protein. Some of

the mutants were able to sustain prolonged worm lifespans but had lesser effects on egg

production. Two such examples are EsvB, which encodes a protein in the MarR class of

transcription factors and EsvD, which encodes an ABC-type membrane transporter. Two
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of the mutants, EsvF and EsvM appeared to remain virulent and will not be studied further.

To investigate whether the mutations caused a slow growth phenotype that might indirectly

lead to avirulence, we measured the generation times of each mutant. Each mutant strain

doubled at a rate equal to or faster than wild-type A. baumannii except for EsvF andEsvM

(Table 2.2). Thus, slow growth is not responsible for the avirulent phenotypes observed in

most of these mutants. Biofilm formation is a well characterized developmental pathway

utilized by many bacteria in their pathogenesis. Wild-type A. baumannii form biofilms

on abiotic surfaces (Tomaras et al. 2003). We examined the effect of ethanol on biofilm

formation and the ability of our mutants to form biofilms on plastic surfaces. Ethanol has

no apparent effect on biofilm formation; the cells adheres to plastic surfaces equally well

in the presence or absence of ethanol (data not shown). Furthermore, all of the mutants

tested retained the ability to form biofilms suggesting that, in this strain, biofilms are not

essential for virulence (data not shown). Thus, these genes are likely involved in other

virulence processes.

2.3 Discussion

This manuscript reports the first de novo sequencing effort using a novel high throughput

method for genomic DNA sequence. Examination of this microbial genome revealed little

nucleotide sequence identity between A. baumannii and A. baylyi, the only previously

sequenced member of the Acinetobacter genus. Genomic similarities are seen at the protein

level where in which 2137 of the 3830 (55.79%) predicted A. baumannii share homology

with A. baylyi gene products. The most interesting differences between these two organisms

lies in the 28 putative alien islands identified in A. baumannii. Many of the drug resistance

and potential virulence factors found in the A. baumannii genome reside on these islands

indicating that a large number of them are important for the pathogenesis of this organism.

High-density pyrophosphate sequencing is a rapid, cost-efficient method for large

sequencing projects without the labor or potential bias of cloning steps. By virtue of
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 Worm Lifespans  Egg Counts  
Generation 

Time 

 
LT50 

(NGM) 
LT50 (NGM + 

EtOH) % change  NGM NGM + EtOH % change  % change 

E. coli OP50 232 224 -3.45  229.33 211.67 -7.70   
A. 
baumannii 
(wild-type) 210 168 -20.00  199.67 114.00 -42.90   

          

EsvA 228 276 21.05  186.67 209.67 12.32  13.4 

EsvB 225 273 21.33  204.33 190.33 -6.85  16.9 

EsvC 249 252 1.20  120.67 136.83 13.40  5.2 

EsvD 220 280 27.27  163.00 161.00 -1.23  9.5 

EsvE 245 236 -3.67  190.33 169.00 -11.21  7.9 

EsvF 279 252 -9.68  137.33 110.33 -19.66  10.5 
EsvF 
(isolate 2) 296 237 -19.93  250.33 63.67 -74.57  -3.6 

EsvG 252 283 12.30  156.33 131.50 -15.88  1.6 

EsvH 256 273 6.64  153.67 56.00 -63.56  4.2 

EsvI 218 246 12.84  188.50 209.67 11.23  11.4 

EsvJ 214 278 29.91  166.00 149.33 -10.04  7.5 

EsvK 253 256 1.19  212.33 179.50 -15.46  3.4 

EsvL 256 274 7.03  163.00 127.00 -22.09  1.9 

EsvM 297 282 -5.05  206.00 55.33 -73.14  -38.6 
 

Table 2.2: Analysis was performed as described in the Materials and Methods section.
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large numbers of parallel sequencing runs, genomic sequence coverage is high, in our case

21.1x. This powerful method has been used effectively in genome resequencing efforts and

for sequencing microbial strain variants (Margulies et al. 2005; Hofreuter et al. 2006).

The primary drawbacks of this methodology are the short sequencing runs, which result in

difficulties in assembly of sequences in low complexity or repeated regions, and errors in base

calling in stretches of homopolymers, which can result in frameshifts. These limitations

were overcome by not only the high sequence coverage, but also the use of paired end

analysis and gap closures by traditional and random ended PCR. When combined with

conventional gap filling, we find that the accuracy of the sequence and assembly are

comparable to the whole-genome shotgun sequencing methods which have become the gold

standard of genomic sequencing. In contrast to a recent report, which suggests that high-

density pyrosequencing is unable to replace Sanger sequencing for de novo microbial genome

projects(Goldberg et al. 2006), we find that high-density pyrosequencing can be a suitable

replacement for the sequencing of microbial genomes. We found that an initial assembly

of 21.1x high-density pyrosequencing data is sufficient to determine the genome size and

build a working draft that could be used for almost any genomic analysis. Furthermore,

our initial draft assembly predicted a genome of 3,946,442 base pairs, whereas the final

assembly predicts a genome of 3,976,746 base pairs. Therefore the initial draft provided

coverage for over 99.24% of the completed genome, and only 30,302 base pairs were missing.

One factor that may have negatively impacted Goldman et als evaluation was the omission

of paired end analysis (Goldberg et al. 2006). Our assembly was greatly facilitated by

paired end sequencing and resulted in the joining of 139 contigs into a considerably more

manageable 22 scaffolds. The ability to obtain longer reads will likely facilitate contig

assembly; however paired end reads will still be useful for identification of large tandem

repeats.

The sequence of A. baumannii reveals that this organism has acquired a number of

genes from its environment and that these genes likely play a direct role in its virulence.

We identified 28 putative alien islands (pAs) based on sequence characteristics and also
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sequence comparisons with a non-pathogenic relative. One-fourth of these islands appear

to be involved in drug resistance. The strain used for these studies is resistant to β-

lactams, but shows only weak resistance to tetracycline and is aminoglycoside (kanamycin)

sensitive (unpublished observations). Thus, the presence of so many drug resistance

islands is surprising. This strain was isolated in or around 1951 (Piechaud and Second

1951; Baumann et al. 1968b), prior to the development of the macrolides (erythromycin),

glycopeptides (vancomycin), and cephalosporins and other latter generations of β-lactams.

It is possible that this strain was never exposed to chloramphenicol, which was first

used as a therapeutic in 1949. For these reasons, it would be interesting to subject

ATCC17978 to a full panel of antibiotics and assess its resistance capacity. Potentially

more interesting will be comparative analysis with more recent isolates which can assess the

evolution of antibiotic resistance over the last 50-60 years. In this respect a recent clinical

isolate, resistant to several β-lactams, aminoglycosides, fluoroquinolones, chloramphenicol,

tetracycline, and rifampin was found to contain a single large drug resistance island

containing 45 of the 52 drug resistance genes in its genome (Fournier et al. 2006). This

impressive clustering of drug resistance genes was not observed in the ATCC17978 strain

that we sequenced. Given the differences in the resistance capacities of these two strains, it

appears that the more recent isolate has dispensed with the many less effective resistance

genes in favor of a single, highly potent cassette of drug resistance genes. Other pAs that

appear to play a role in virulence were identified using a random insertion mutagenesis

protocol. Seven different islands were identified as virulent by two different pathogenesis

screens. Of these seven, two have genes thought to be involved in virulence, namely the

type IV secretion apparatus and drug resistance genes. Three are predicted to be involved

in metabolism. The fact that they were identified in this screen may be related to the

use of ethanol as a virulence stimulus and will be investigated further. The final pair

of pAs identified by the mutagenesis contained many hypothetical genes and nucleic acid

mobility related genes such as transposons, integrases and phage proteins. Thus their

potential function assigned by sequence homology is speculative. However, since insertion
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in these sites results in avirulent mutants, the function of these islands is important for

pathogenesis. Thus, the combination of genome sequencing and mutagenesis is a powerful

approach for identifying and validating pathogenic genes in a. baumannii and will be a

useful general method for finding such genes.

Many host-pathogen interactions have evolved in the environment where bacteria

interact with predators and competitors. C. elegans and D. discoideum have been

successfully used as host models for bacterial infection (Pukatzki et al. 2002; Alegado et al.

2003). These two organisms consume their bacterial prey in different ways. C. elegansD.

discoideum has a digestive tract in which the bacteria are crushed, lysed, enzymatically

digested and the subsequent nutrients are absorbed by the cells comprising the intestine

(Avery and Thomas 1997). This process is almost entirely extracellular. Conversely, the

unicellular D. discoideum uses phagocytosis, followed by vesicle fission and fusion resulting

in a phagolysosome to digest bacteria; this process is largely intracellular (Cardelli 2001).

Escape from either the worm gut or amoebae vesicles presents two distinct challenges to

the bacteria, and while some of the tools required may overlap, many must be different.

This is demonstrated by the fact that only 30 of the mutants overlapped between the two

screens. Therefore, using both assays to study pathogenesis will uncover global regulators

of virulence required in both instances, as well as factors specific to either host. This

approach was validated by the recovery of two transcription factors that are potentially

global regulators of virulence. Future studies will identify their downstream effectors. One

interesting gene that was uncovered by our screen was urease. The enzymatic function

of urease is to produce ammonia and carbon dioxide from urea. However, recent studies

on plant ureases suggest that they play a role in defense mechanisms and have biological

function independent of their enzymatic activity (Olivera-Severo et al. 2006). The A.

baumannii urease gene may play a similar role.

Seven different alien islands were identified as virulent by two different pathogenesis

screens. Of these seven, two have genes thought to be involved in virulence, namely the

type IV secretion apparatus and drug resistance genes. Three are predicted to be involved
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in metabolism. The fact that they were identified in this screen may be related to the use

of ethanol as a virulence stimulus and will be investigated further. The final pair of pAs

identified by the mutagenesis contained many hypothetical genes and nucleic acid mobility

related genes such as transposons, integrases and phage proteins. Thus their function, by

sequence homology is speculative. However, since insertion in these sites results in avirulent

mutants, the function of these islands is apparently pathogenesis related. Future studies

will be aimed at understanding how these genes play a role in A. baumannii virulence and

what role ethanol contributes to their function.

2.4 Materials and Methods

2.4.1 Whole-genome sequencing

Genomic DNA from A. baumannii (ATCC 17978) was extracted from cells grown overnight

at 30C in LB liquid cultures using the MasterPure DNA kit (Epicentre, Madison, WI).

50 µg DNA was then sequenced by 454 Life Sciences (Branford, CT) using high-density

pyrosequencing methodology (Margulies et al. 2005).

2.4.2 Sequence assembly and validation

Initial assembly efforts were performed by 454 Life Sciences and resulted in the formation

of 139 contigs assembled into 22 scaffolds. Contigs were joined using Vectorette PCR

(Riley et al. 1990; Kumar et al. 2002). Briefly, the primers ABP1 and ABP2 (ABP1

: 5-GAAGG AGAGG ACGCT GTCTG TCGAA GGTAA GGAAC GGACG AGAGA

AGGGA GAG-3; ABP2 : 5-GACTC TCCCT TCTCG AATCG TAACC GTTCG TACGA

GAATC GCTGT CCTCT CCTTC-3) were denatured for 5minutes at 95oC and annealed

together at 5nM each in annealing buffer (10 mM Tris pH 8.0, 10 mM MgCl2, 50 mM NaCl

). The primers were then ligated to genomic DNA previously digested with a blunt-ended

restriction endonuclease. The ligation mixture is then used as a template for HotStart PCR

(Qiagen, Hilden, Germany). The PCR primer UV was used in all reactions (UV: 5 CGAAT
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CGTAA CCGTT CGTAC GAGAA TCGCT 3) while the reverse primer was designed to

each of the two ends of the 139 contigs. In all, 9 different restriction enzymes/enzyme

combinations were used (DraI, HaeIII, HincII, PsiI, ScaI, SspI, XmnI, HincII/EcoRV and

MscI/HpaI/PvuII). PCR products were gel purified and sequenced using the same primers

from which they were amplified and standard methods and capilary electrophoresis using

an ABI 3730 DNA sequencing instrument. Contigs and PCR products were assembled

using the Sequencher assembly program (Gene Codes, Ann Arbor, MI).

2.4.3 Genome analysis and annotation

A combined gene prediction strategy was applied on the assembled sequences using

GLIMMER and GeneMark. Putative ribosomal binding sites and tRNA genes were

identified with RBSFinder (Suzek et al. 2001) and tRNAscan-SE (Schattner et al.

2005), respectively. Prior to the manual annotation of each predicted gene, an automatic

functional annotation was computed based on different analyses. Similarity searches were

performed against different databases, including BLASTnr and KEGG. Finally, each gene

was functionally classified by assigning a cluster of orthologous groups (COG) number and

corresponding COG category.

2.4.4 Calculating error frequency

To calculate an error frequency, we divided the number of errors resulting in a split gene

by the fraction of protein coding genes regions whose frameshift is likely to produce two

ORFs (greater than or equal to 100 bp) that can be detected by our BLAST searches.

This amounts to 2,853,379 bp of total protein coding sequence minus 200 bp for each gene

(723,181 bp), since insertions in this regions will not generated new ORFs. This calculation

assumes that an error will result in a nearby translation termination. Thus, the final error

rate from this method is 30/2,130,198 bp or 0.0014%.
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2.4.5 Genomic comparison

For comparative analyses, the annotated genome sequence of A. baylyi (GenBank accession

no. CR543861) was accessed. Homology searches were conducted on the nucleotide

and amino acid sequence level using BLAST [cite BLAST]. Comparisons of chromosomal

sequences were carried out with the Artemis Comparison Tool (ACT) [cite ACT].

2.4.6 Detection of regions with atypical G+C content

Genomic regions with atypical G+C content were identified using a sliding window

technique with a window size of 1,000 bp. For this, the G+C content was treated as a

Gaussian distribution, and regions with differences of at least 1.5 standard deviations from

the mean were calculated.

2.4.7 Detection of putative pathogenicity islands

The four methods outlined by S. Karlin (Karlin 2001) were implemented for detection of

anomalous regions. These included atypical G+C content, dinucleotide signature, codon

bias, and amino acid bias. In each case, a sliding window technique with a window size

of 1000 bp was used. Assuming a Gaussian distribution, those regions with a difference

of at least 1.5 standard deviations from the mean were identified as anomalous regions.

Homology searches on these regions were carried out to identify putative pathogenicity

islands.

2.4.8 A. baumannii mutagenesis

Mutagenesis of A. baumannii was performed as described previously (Dorsey et al.

2002). Briefly, electrocompetent cells were generated as follows: Overnight cultures of

A. baumannii were diluted 1:100 and grown to a cell density of 0.5-0.8 x 108 cells/ml. The

cells were collected by centrifugation and washed with ice cold ddH2O three times. The

cells were washed once in ice cold 10% glycerol and resuspended in 10% glycerol to a final

41



concentration of 2.0-2.5 x 1010 cells/ml. These electrocompetent cells were electroporated

with the EZ::TN 〈R6Kγori/KAN−2〉 Tnp Transposome (Epicentre, Madison, WI) and

kanamycin-resistant transformants were selected. The electroporation was performed using

a Gene Pulser II (Bio-Rad Laboratories, Hercules, CA) at settings of 25 FD, 200 and

1.8kV. Mutants were rescue cloned according the Epicentres protocol. Briefly, mutant

bacteria were grown, and their genomic DNA purified. The DNA was cut using EcoRI,

ligated to itself and transformed into pir-116 electrocompetent E. coli. Kanamycin-resistant

colonies were harvested, and plasmids containing the insertion cassette and flanking A.

baumannii sequence were purified and sequenced using primers complementary to the

insertion cassette.

2.4.9 A. baumannii generation times

Three colonies of each mutant as well as the wild-type A. baumannii were inoculated into

LB an incubated overnight at 37 degrees with shaking. Cultures were diluted to a cell

density of 1.0 x 107 cells/ml in fresh LB and incubated at 37 degrees with shaking. Cell

densities were measured by optical density at 600nm at 1-2 hour intervals for 36 hours.

Generation times were determined during the exponential phase of growth for each isolate

and the average for each strain determined. Generation times of the mutants were then

compared to the wild-type strain.

2.4.10 C. elegans killing assay

Escherichia coli (strain OP50) grown on NGM media(Sulston and Hodgkin 1988) were

fed to Caenorhabditis elegans (strain N2). L3/L4 stage worms were placed onto lawns of

A. baumannii . grown on NGM or NGM + 1% ethanol. Plates were incubated at 25oC.

Viability was tested every 24 hours by visual examination. Worms were considered dead if

they no longer moved nor responded to touch. For each strain of bacteria tested, 60 worms

were assayed. The LT50 is defined as the time it takes for half of the worms to die.
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2.4.11 C. elegans egg count assay

1 L4 stage worm was placed onto lawns of E. coli OP50 or A. baumannii. grown on NGM

or NGM + 1% ethanol. Each day for 5 consecutive days, the worm was moved to a fresh

bacterial lawn. The plates were examined for the presence of eggs/L1 stage worms for each

of the 5 plates. Egg production typically peaked at day 2 or 3 and was exhausted by day

5. Plates were incubated at 25◦. For all strains of bacteria tested, the egg production of 9

worms were assayed.

2.4.12 D. discoideum plaque assay

Performed essentially as described by Pukatzki et al.(Pukatzki et al. 2002). Briefly, D.

discoideum AX3 were grown axenically in HL/5 media (Sussman 1987) at 20 degrees. D.

discoideum cells from mid-logarithmic cultures were collected by centrifugation(1,000 x

g; 4 min), washed once with SM/5 medium (Sussman 1987), and added to the bacterial

suspensions at a final concentration of 5 x 102cells/ml suspension; 0.2 ml of this mixture

was plated out on SM/5 plates. Plates were incubated for 35 days and examined for plaques

formed by amoebae.

2.4.13 Database submission

The nucleotide sequences of the chromosome of Acinetobacter baumannii ATCC17978 and

its two plasmids, pAB1 and pAB2, are being submitted to GenBank.
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Chapter 3

Comparative Genomics: Integation

of curated databases to identify

genotype-phenotype associations

3.1 Introduction to microbial phenotype prediction

The ability to rapidly characterize an unknown microorganism is critical for both

responding to infectious disease and biodefense. Such characterization requires a method

for anticipating or predicting an organism’s phenotype based on the molecules encoded

by its genome. However, the link between molecular composition (i.e. genotype) and

phenotype for microbes is not obvious. Traditionally, microbes have been identified on

the basis of their response to a battery of phenotypic assays, for example, survival on a

particular type of growth media or morphological characteristics. However, with the advent

of high throughput sequencing efforts, over 300 microbes have been completely sequenced

(Benson, 2005). By integrating complex phenotypic data with sequence information,

an approach can be developed to identify new phenotype-genotype relationships. Such

relationships will both increase our understanding of the mechanisms of the phenotype

and perhaps provide more sensitive assays.
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The underpinnings for this work can be found in Marcotte et al. where phenotype

was defined in terms of pathway membership, which was used to predict protein function

(Marcotte, 1999). In addition, previous studies have proposed comparative genomic

methods to predict characteristics such as hyperthermophily (Makarova, 2003; Jim, 2004),

flagellar motility (Jim, 2004; Levesque, 2003; Korbel, 2005), plant degradation (Korbel,

2005), and pili assembly (Jim, 2004). However, most of these studies focused on a few

specific phenotypes within certain organisms (Makarova, 2003; Jim, 2004; Levesque, 2003).

Korbel et al. proposed an automated method to make word-species associations retrieved

from Medline abstracts (Korbel, 2005); however, here we present a systematic approach

to discover genotype-phenotype associations that combines phenotypic information from a

biomedical informatics database, GIDEON, with the molecular information contained in

National Center for Biotechnology Information’s Clusters of Orthologous Groups database

(NCBI COGs).

Using this approach, we identified phenotype-COG association pairs and verified these

findings in the literature. Finally, this analysis suggested possible phenotype-genotype pairs

that have not yet been experimentally determined. By integrating a clinical microbiological

database, GIDEON, with a molecular database, COGs, we can make inferences between

the presence of a protein and the protein’s function in a large-scale fashion.

3.2 Results

3.2.1 Identifying Phenoype-Genotype Associations

To identify associations between the presence or absence of a particular gene (COG)

in a microbial genome and that microbial species’ expressed phenotype (GIDEON), we

computed the correlation between the measured expression of a certain phenotype to the

absence or presence of COGs (genomic content) in that microbial species and filtered for

significant correlations (P < .01, figure:fig-gideon-schematic).

We generated two separate result sets (r2 = 0.8 and 0.9, containing 290 and and
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Figure 3.1: Diagram of correlation analysis for associating COGs to lab condition
phenotypes. The correlation analysis measures the association between a COGs organism
profile (presence or absence of an organism) and a lab conditions organism survival profile.
Organisms that have a COG (red) are mapped to the organisms response to adverse growth
conditions (blue) creating two vectors that are used for the correlation calculation.
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Data Set 

Total 
Number 

of 
Associated 

Pairs 

Number of 
COGs with 

Known 
Function 

Number of 
Pairs 

Randomly 
Selected for 
Literature 

Search 

Number of 
Pairs with 
Confirmed 
Association 

in the 
Literature 

% 
Confirmed 

Pairs 
Corr Scores 
>=0.8 

290 154 100 66 66% 

Corr 
Scores>=0.9 

74 36 36 31 86% 

 

Table 3.1: Number of validated associations at the 0.8 and 0.9 threshold

74 association pairs, respectively). One hundred and thirty-six random data pairs were

selected from the 0.8 and 0.9 result set, respectively for literature validation. We refer

to verified association pairs as annotated pairs. Sixty percent for the 0.8 set and 86%

of the 0.9 set were confirmed (Table 3.1). Below, we give several examples of these

annotated pairs (Table 3.3). For simplicity, the laboratory conditions are referred to by

their GIDEON identifier/phenotypic description, and a COG with a known function is

defined as characterized.

3.2.2 Examples of Annotated Association Pairs

A) B01/Gram-negative - Sixteen of the annotated COG-phenotype pairs (Table 3.2)

are involved in the B01/Gram-negative phenotype. This resulted in 94% accuracy for

determining Gram-negative organisms. Gram negative bacteria differ from Gram-positive

in the composition of their cell wall (Beveridge, 1999). Perhaps unsurprisingly, the

confirmed pairs found with the Gram-negative phenotype contained proteins involved

with lipid A and lipopolysaccharide biosynthesis and other proteins belonging to the outer

membrane of Gram-negative bacteria (Table 3.3).

B) B02/Gram-positive - More interestingly, annotated pairs with the B02/Gram-

positive phenotype were not just specific to the specialized Gram-positive membrane but

also to a variety of conserved genes found only in the Gram-positive bacteria. Of the

six proteins with known function found in the 0.8 correlation score data set, 3 pairs were

positively confirmed by the scientific literature. In the 0.9 correlation result set, 100%
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(2/2) of the characterized pairs were corroborated.

C) B29/Growth on MacConkey Agar - Growth on MacConkey agar is indicative of

Gram-negative bacteria that can ferment lactose (MacConkey, 1905). Sixteen (52%) of

the associated pairs from the 0.8 correlation data were confirmed, as were 4 (100%) of

the associated pairs from the 0.9 correlation set Organisms that were able to grow on

MacConkey agar contained proteins involved with the outer membrane of Gram-negative

bacteria. Given the use of this test in specifically differentiating those Gram-negatives that

can ferment lactose, one would expect this result; however, the proteins associated with

growth on MacConkey agar do not overlap with those proteins most associated with the

Gram-negative test. This suggests that this method of building associations can be specific

to a particular condition.

D) B30/Oxidase - Two characterized COGs were positively associated (P < 7.48x10−6)

with oxidase activity. Both are components of Cbb3-type cytochrome oxidase, which is

unsurprising since the goal of the oxidase test is to detect the presence of this enzyme.

Although this is not a novel finding, it does illustrate the ability of the method to

recaptitulate known relationships.

E) B31/Catalase - In the catalase test, hydrogen peroxide is added to the media.

Those microbes that do not contain the catalase enzyme are unable to break the hydrogen

peroxide into oxygen and water and die. As would be expected, the COGs associated to

the B31/Catalase test were usually enzymes that belong to similar regulation pathways as

the catalase enzyme. For example, human acyl-CoA hydrolase, one of the COGs found

to be positively associated to the catalase phenotype, upregulates peroxisome biogenesis

and, in turn, activates catalase activity (Alexson, 1989). The highest scoring pair was a

member of the catalase protein family. For both the 0.8 and 0.9 correlation result sets, the

confirmation percentages were 64% and 63% respectively.

F) FAC/L-Arabinose - With a high correlation score of 0.97, 5-keto 4-deoxyuronate

isomerase was the only characterized protein family associated with the ability to assimilate

arabinose. 5-keto 4-deoxyuronate isomerase, or kduI, is an enzyme involved with pectin
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degradation and shares the same regulator protein, crp or CAP protein, as the L-Arabinose

catabolism pathway (Bankaitis, 1981; Nasser, 1997).

G) FAT/Trehalose - The COGs most associated with the capability to metabolize the

sugar trehalose were several maltose-related proteins with correlation scores of 0.94. It

has previously been shown that addition of trehalose to growth media induces the maltose

system verifying both of these associations (Boos, 1998).

H) G03/Motile - Finally, the pairs related to the G03/Motile phenotype contain proteins

involved with chemotaxis and flagella. The result set with a correlation score above 0.8

contained 17 such proteins, and 100% of these were verified by the literature. Similarly, all

5 proteins from the result set with a 0.9 threshold were also confirmed.

Additionally, the 0.8 and 0.9 correlation score threshold data sets for motility were

compared with the KEGG database (Kanehisa, 1997; Kanehisa, 2000). This analysis

revealed that 100% of the proteins found to be associated with motility were also annotated

as part of the Cell Motility functional classification in the KEGG pathway database.

3.2.3 Prediction of genes associated to phenotypes

After analyzing the accuracy of the data sets, it is also possible to make reasonable

hypotheses for COG-phenotype pairs that are characterized but have not yet been

confirmed by the biological literature. These COG-phenotype pairs are listed using

their GIDEON identifier/description-COG description/protein name. One example is the

B31/Catalase-COG1651/Protein-disulfide isomerase (DsbG) pair with a correlation score

of 0.91. Dsb proteins are known to oxidize the sulfhydryl groups of periplasmic proteins

to disulfide bonds, donating electrons to ubiquinone, and thereby making the electron

transport chain the primary source of oxidizing power for sustaining periplasmic sulfhydryl

oxidation (Rietsch, 1998; Bader, 1999). During the stationary phase, electron transport to

oxygen is reduced. Bandyopadhyay et al. suggest a possible complementary role between

catalase and the Dsb proteins in maintaining periplasmic sulfhydryl oxidation. It is possible

that catalase may be critical in peroxidatically oxidizing ubiquinol or another periplasmic
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Correlation Above 0.8 Correlation Above 0.9 

Lab/Condition 

Total 
Characterized 

Pairs 

Confirmed 
Pair 

Associations 
Percent 

Confirmed 

Total 
Characterized 

Pairs 

Confirmed 
Pair 

Associations 
Percent 

Confirmed 
B01/Gram-
negative 17 16 94% 12 12 100% 

B02/Gram-
positive 6 3 50% 2 2 100% 

B28/ Growth on 
Ordinary Blood 
Agar 

5 0 0% NA NA NA 

B29/Growth on 
MacConkey 
Agar 

31 16 52% 4 4 100% 

B30/Oxidase 2 2 100% NA NA NA 
B31/Catalase 11 7 64% 8 5 63% 
FAC/L-
Arabinose 1 1 100% 1 1 100% 

FAJ/Lactose 1 0 0% NA NA NA 
FAL/D-Mannitol 1 0 0% NA NA NA 
FAM/D-
Mannose 2 2 100% NA NA NA 

FAP/L-
Rhamnose 1 0 0% 2 0 0% 

FAT/Trehalose 2 2 100% 2 2 100% 
FAU/D-Xylose 1 0 0% NA NA NA 
G03/Motile 17 17 100% 5 5 100% 
G14/ Nitrate to  
Nitrite 1 0 0% NA NA NA 

Table 3.2: Accuracy of associations confirmed by literature broken down by individual
condition. Characterized are those pairs where the COG has a known function. Confirmed
are those associations that were verified in the literature.Number of validated associations
at the 0.8 and 0.9 threshold
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or inner membrane component using H2O2 as an electron acceptor during the stationary

phase when the oxidizing capacity of the electron transport is diminished (Bandyopadhyay,

2000).

With a correlation score of 0.95, other possible associations can be made for the FAP/L-

Rhamnose phenotype with various phosphotransferase system sorbitol-specific component

proteins. Some microbes such as the Klebsiella I-174 make exopolysaccharides with a

high rhamnose content (Morin, 1990). Farres et al. showed that the addition of sorbitol

increased the production and growth of rhamnose over other carbon sources such as sucrose

(Farres, 1997). This study suggests that proteins involved with sorbitol metabolism and

utilization could be linked to rhamnose production.

3.3 Discussion

Based on the breakdown of total number of associated pairs for each laboratory condition

(Figure 3.2) for the 0.8 correlation data set, the phenotypes that have 10 or more associated

COGs have a more likely chance of containing confirmed literature hits. This is roughly 3%

of the total number of phenotype-COG pairs. However, there are labs such as B30/Oxidase,

FAM/Mannose, and FAT/Trehalose with only 2 results, but all are confirmed at 100%. The

0.9 correlation data set has 86% confirmed associations out of all the characterized pairs,

while the 0.8 correlation data set has 66%.

This study reports a percentage of confirmed associations in order to approximate

the accuracy of these results. However, this number is most likely a lower bound, since

it is possible that some of the predicted associations mentioned in this paper will be

experimentally corroborated in the future, raising these percentages.

In addition, although we used the literature as a means of verifying associations, in

essence, it is those associations which we were unable to verify that are perhaps the

most interesting because these represent new testable hypotheses. By uncovering these

novel relationships, it is possible to make inferences about the interrelatedness of what

51



Lab/Condition Protein Name r2 P Protein Function
Lipid A disaccharide 
synthetase 0.95 2.E-09 Involved in Lipid A biosynthesis
UDP-3-O-acyl-N-
acetylglucosamine 
deacetylase 0.95 2.E-09 Involved in Lipid A biosynthesis
CMP-2-keto-3-
deoxyoctulosonic acid 
synthetase 0.95 2.E-09

Involved in lipopolysaccharide 
biosynthesis

3-deoxy-D-manno-
octulosonic acid 8-
phosphate synthase 0.95 2.E-09

Involved in lipopolysaccharide 
biosynthesis

Biopolymer transport 
protein 0.95 2.E-09 Outer membrane transporters

Outer membrane protein 0.84 2.E-09 Outer membrane protein
Sortase 1 3.E-08 Plasma membrane protein
AT-rich DNA-binding 
protein 0.92 8.E-07 Transcriptional regulator

D-alanine transfer protein 0.84 1.E-05
Cell wall/membrane component 
protein

Outer membrane 
cobalamin receptor protein 0.99 8.E-09 Outer membrane protein
Flagellar basal body rod 
protein 0.97 2.E-07 Periplasmic protein

Tfp pilus assembly protein 0.83 1.E-05 Outer membrane proteins

B30/Oxidase
Cbb3-type cytochrome 
oxidase, 1 and c 0.85 8.E-06 Oxidase protein subunit

Acyl-CoA hydrolase 0.97 8.E-06
Enzyme involved in lipid 
metabolism

B31/Catalase Catalase 0.97 8.E-06 Peroxisomal Marker Enzyme
FAC/L-
Arabinose

5-keto 4-deoxyuronate 
isomerase 0.97 4.E-05

Enzyme involved in carbohydrate 
metabolism

FAM/D-
Mannose

Mannitol-1-
phosphate/altronate 
dehydrogenases 0.85 5.E-05 Oxidizes mannitol to mannose

FAT/Trehalose

Maltose-binding 
periplasmic 
proteins/domains 0.94 3.E-05 Maltose-related protein

G03/Motile
Chemotaxis signal 
transduction protein 0.94 5.E-09 Chemotaxis-related protein

Flagellar capping protein 0.94 5.E-09 Flagella-related protein
Flagellin-specific 
chaperone FliS 0.94 5.E-09 Flagella-related protein

B01/Gram-
negative

B02/Gram-
positive

B29/ Growth 
on MacConkey 
Agar

Table 3.3: Accuracy of associations confirmed by literature broken down by individual
condition. Characterized are those pairs where the COG has a known function. Confirmed
are those associations that were verified in the literature.
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Figure 3.2: Number of COG-phenotype associated pairs in each subset of the 0.8 and 0.9
threshold correlation score data sets. The resulting data sets of the (a) 0.8 correlation
threshold and the (b) 0.9 correlation threshold are broken down into four different subsets.
Total number (dark blue) is the total number of COG-phenotype associated pairs found at
the 0.8 and 0.9 thresholds respectively. Characterized (light purple) refers to those pairs
where the COG has a known function. Annotated (blue-green) are those pairs which were
selected for literature verification. Finally, confirmed (light blue) are the associations which
were validated in the literature. This is shown for each lab indicated with by its GIDEON
identifier.
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at the outset seem disparate processes. In a similar fashion, for the purpose of assessing

our method we were unable to include the COGs with unknown function, but ideally

we would like to extend this method to make predictions regarding possible functions of

these uncharacterized COGs on the basis of the phenotypes they are most associated with.

Finally, while the data in the GIDEON database is extensive, not all assays were performed

on all microbes resulting in some missing data.

3.4 Conclusions

This analysis shows that the integration of biological and biomedical information databases

can augment and enhance biological understanding. This approach is an introduction to

resources that are yet to be fully utilized. Here we describe the combination of a manually

annotated phenotype database, GIDEON, with the well-documented COG database to

find new associations between a certain phenotype and a microbial genotype. We have

demonstrated that the method is able to detect known phenotype-COG relationships, as

well as, discover new ones.

These results suggest a new direction for inferring either the phenotype or genotype

of an uncharacterized organism. This approach can further be applied to discovering

relationships between the pathogenicity of these organisms to functionally related proteins.

Moreover, this type of analysis could be extended beyond phenotype-genotype to

phenotype-drug design by associating molecules to their phenotypic effects. By integrating

clinical and biological databases, additional studies can be developed to further the

understanding of phenotypic relationships and, in turn, augment the medical community’s

ability to rapidly identify infectious agents.
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3.5 Materials and Methods

3.5.1 GIDEON and COG Database Descriptions

The Global Infectious Diseases and Epidemiology Network (GIDEON) is an expert system

used primarily by physicians to aid in the diagnosis of infectious diseases (Berger, 1993).

This database was chosen because it provides an exhaustive, hand-curated categorization of

microbial phenotypes. GIDEON catalogs the results of 93 different microbiological assays

for 1147 microbial taxa providing a wealth of phenotypic data.

NCBI’s Cluster of Orthologous Groups of proteins (COGs) database currently consists

of 138,458 proteins, which form 4873 COGs (Tatusov, 1997; Tatusov, 2000; Tatusov, 2003).

This database uses orthology to group proteins from completely sequenced prokaryotes into

COGs. All the newly classified COGs and new members of pre-existing COGs are manually

curated.

3.5.2 Mapping organisms between databases

The laboratory results in the GIDEON database are primarily used for identifying bacterial

species for medical diagnostics. Since different strains of the same bacterial species are

often sequenced, NCBI’s taxonomic annotation is sometimes at the subspecies level. In

contrast, the GIDEON phenotypes do not achieve such a high resolution, and for this

reason GIDEON taxonomic annotation is established at the level where the phenotype is

consistent in all descendants of the phylogenetic tree (generally the species level).

This presented a complication in integrating the two data sources. To overcome this,

we assumed that phenotypes from the microbiological database for one species are valid

for every subsumed subspecies and strain listed in the COGs database. This is a valid

assumption since the GIDEON dataset provides microbiologists with relevant tests designed

to distinguish between organisms according to their phenotypes. Thus if the phenotype

is specific to a subspecies, it will be annotated at the level of the subspecies, but if the

phenotype is common to all subspecies, it is recorded at the level of the species.
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Following this principle, we first identified the taxonomic level for the fully sequenced

bacteria in the COGs dataset, and then used text string matching followed by manual

examination to map the species in GIDEON (Lussier, 2004). As a result, we have mapped

the 37 microorganisms present in both GIDEON and the COGs. Of the 37 mappings, 23

have identical species annotations in GIDEON and COGs, and 9 have a species annotation

in GIDEON mapped to one or more subspecies in COGs.

There were several COGs species including H. pylori, E. coli, M. tuberculosis, and N.

meningitides which had more than one subspecies with complete genome sequences. In

these cases, the subspecies were merged to the single GIDEON species by selecting only

the COGs common to all subspecies. In this manner, we eliminated the subspecies specific

differences that the phenotypic assays would have been unable to resolve. We generated a

matrix showing the presence and absence of COGs across these 37 species.

3.5.3 Associating genes to phenotypes

We employed a correlation analysis to quantify the association between a given COG and a

GIDEON phenotype. Two matrices were constructed. We defined X as a two-dimensional

matrix indicating the presence or absence of organisms within a COG (X was constructed

as an MxN matrix, where M is equal to the number of COGs and N is equal to the

number of organisms within a COG). For the corresponding GIDEON lab conditions, a

similar distance matrix, Y , was constructed as an NxL matrix, where N is equal to the

percent survival of organisms subjected to each lab condition and L is equal to the number

of lab conditions. Xij is the presence or absence of a COG mi within an organism nj ,

and Ykj signifies the percent response of an organism nj under a certain lab condition

lk. We computed an MxL matrix of linear correlation coefficients rik; the hypergeometric

distribution was used to test for significance.

56



3.5.4 Assessment of predicted results

The following criteria were applied to the correlated data set. The intersection between a

specific COG and a phenotype had to contain at least 3 organisms, and for any intersection,

30% of the microbes had to share the COG. The scores were adjusted using the standard

Bonferroni error correction for multiple testing.

For the 0.8 correlation threshold, 290 total associations were obtained. We identified

a subset of these data (154) that contained only COGs that have a known function. Of

these 154 pairs, we performed detailed literature searches on 100 randomly selected pairs

to confirm the validity of the positive COG-phenotype associations.

There were 74 associations found in the 0.9 correlation data set. Thirty-six of these

pairs contained a COG of known function. Literature searches were performed on all 36

associations.

3.5.5 Data Deposition

All data files and additional tables are available from http://gersteinlab.org/proj/phenome
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Chapter 4

Network Dynamics: Quantifying

environmental adaptation of

metabolic pathways in

metagenomics

4.1 Introduction

Microbes function as highly interdependent communities. Fundamental to the maintenance

of the ecosystem’s energy balance, the recycling of nutrients, and the neutralization and

degradation of toxins and other detritus (Karl, 2002), microbial community processes

are intimately intertwined with ecosystem functioning. Thus, it is critical to understand

the complex interplay between the environment’s influence on microbial communities and

microbe’s reshaping of their environment.

Until recently the tools to systematically study global community function and

environment at the molecular level were not available, since complex microbial communities

are generally not amenable to laboratory study( Allen, 2005). The recent advent of direct
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sequencing of environmental samples (i.e. metagenomics) has allowed the first large-scale

insights into the function of these complex microbial communities.

Comparative metagenomics approaches have revealed significant variation in sequence

composition (Foerstner, 2005), genome size (Raes, 2007), evolutionary rates (von Mering,

2007), and metabolic capabilities (Tringe, 2005; Dinsdale, 2008; Rodriguez-Brito, 2006)

among qualitatively dissimilar environments (e.g. terrestrial vs. marine) providing

evidence for genomic adaptations. Further, variation in specific community biological

processes have been shown for different water column zones at a single geographic site

(DeLong, 2006), different climatic regions in the ocean (Rusch, 2007), and more recently,

among nine ecosystems (Dinsdale, 2008).

The wealth of information generated from these studies emphasizes the importance

of investigating relative differences in biological processes among qualitatively different

environments. However, to date none of them have directly incorporated multiple, specific

measurements of the environment. By treating the environment explicitly as a set of

complex, continuous features rather than relying on an implicit subjective classification,

one can build models to determine how a diverse array of biochemical activities, and

particularly metabolic versatility, reflect sets of or specific environmental differences.

Providing an ideal dataset for exploring these environmental-biochemical links,

the Global Ocean Survey (GOS) collected quantitative environmental features and

metagenomic sequences from over 40 different aquatic sites (Rusch, 2007). Here, we

used GOS data to investigate and develop multivariate approaches to systematically

relate metabolic pathway usage directly to quantitative environmental differences. These

approaches allowed us to address multiple relationships simultaneously as well as to relate

specific environmental features to metabolic processes at different levels of resolution

including 14 broad functional categories, 111 pathways, 141 modules (sections of pathways),

191 operons, and 15554 orthologous groups. By identifying environmentally-dependent

pathways involved in energy conversion, amino acid metabolism, and cofactor synthesis,

among others, we were able to define metabolic footprints of distinct environments. Our
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study provides an analytical framework for uncovering ways in which microbes adapt to

(and perhaps even) how they change their environment.

4.2 Results

4.2.1 Quantitative approach for footprint detection

We mapped thirty-seven size-filtered GOS sites (Table 4.4) to their respective environmental

and metabolic features at several levels of complexity (pathways, modules, operons; Figure

4.1A-B). These data can naturally be represented as matrices where the rows are geographic

sites and the columns are either environmental or metabolic features. We inter-related these

matrices to examine how pathway usage across different sites is related to environmental

parameters. The simplest and most direct approaches for performing such operations

are correlation and regression (see Materials and Methods for comparisons with other

types of methods). Thus, we examined the first order relationships by computing the

pairwise correlation between each metabolic pathway and each environmental feature

(e.g. photosynthesis and temperature). Note that for clarity, we use the word pathway

to refer to the usage of the pathway, as in photosynthesis as opposed to usage of

photosynthesis, in the remainder of the text. This analysis revealed a number of significant

correlations (environmentally-dependent pathways). Such pathways were used to build

linear models (LM) of each environmental feature. Although these models performed well

in predicting single environmental features (Figure 4.2), there are limitations to viewing

each environmental measurement in isolation, as there are hidden dependencies among the

environmental features.

To discover the complex, higher order interactions between and within environmental

features and metabolism, we used a second complementary approach, regularized canonical

correlation analysis (CCA). CCA has two primary functions: (1) to determine if a global

relationship between two types of features (here environmental and metabolic) exists and

(2) to calculate the relative contribution of each feature to the global relationship (e.g.
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Figure 4.1: Illustrated schematic of approach. The large squares labeled B1, B2, etc.
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environmental features (salinity (ppt), sample depth (position in water column from which
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(D) Schematic of canonical correlation analysis (see details in text).
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pathways. Linear model for temperature built from subsets of highly correlated pathways
including N-acetylglucosamine biosynthesis, many components of amino acid metabolism,
and fatty acid biosynthesis. Axes are normalized actual and predicted temperature for x
and y, respectively.

temperature or photosynthesis) by weighting both sets of features simultaneously. In brief,

CCA computes a linear combination for each feature set and simultaneously attempts to

maximize the correlation between the two feature vectors (Figure 4.1D). Thus, CCA is

able to simultaneously assess relationships both between and among the environmental

features and metabolic pathways. Since the sites are quite similar, we developed a more

robust but less sensitive method called discriminative partition matching (DPM). DPM

first partitions the sites into site-sets on the basis of their environmental parameters, then

tests which pathways give the greatest discriminatory power among the site-sets (Figure

4.1C).

4.2.2 Footprint Characteristics

The goal of DPM and CCA is to simultaneously explore the relationship between

metabolism and the quantitative environmental parameters by identifying environmentally-

dependent or co-varying metabolic pathways (footprints). The main difference between

DPM and CCA is that DPM identifies those pathways that discriminate the best between
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site-sets, but when defining the site-sets, all the environmental variables are considered

equally important. Thus, although robust to noise, DPM is more coarse-grained and at this

resolution the individual differences among sites and their relationship to the environment

can be lost. In contrast, CCA can highlight these individual differences by weighting each

environmental feature and each metabolic pathway independent of any partitioning making

it both more sensitive but also more susceptible to noise (Figure 4.1D).

4.2.3 DPM Footprint

Applying DPM, the sites were partitioned into two different site-sets that can loosely be

classified as open ocean and coastal. We found the distribution of those COGs and KEGG

maps annotated as having a role in metabolism were significantly different between site-sets

(P < 9x10−3 and 4x10−14, respectively); however, no statistically significant difference was

found for control matrices that were composed of translational/transcriptional machinery

(see Materials and Methods).

Further, we find 10 KEGG maps, 24 modules, 61 operons, and 98 gene families

were significantly different (FDR-corrected q < .05) between the two site-sets. These

pathways together form the DPM footprints. By examining the broader trends of these

footprint pathways, we found that secondary metabolite biosynthesis, lipid transport

and metabolism, amino acid metabolism, and energy production and conversion were

significantly different between site-sets. Finally, we showed the cluster similarity between

the environment-based site partitioning and metabolic footprint-based site partitioning was

quite high (normalized mutual information = 0.46, rand index = 0.76, P < .001) suggesting

that footprints have predictive power in recapturing features of the environment based

purely on pathways identified as significant in DPM.

4.2.4 CCA Footprint

Next, we applied regularized CCA to measure the strength of each metabolic pathway’s

co-variation with environmental features (Figure 4.3). We identified 22 KEGG maps, 53

63



1.0

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●●

●

●●

●

●

●●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●●●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

−1.0 −0.5 0.0 0.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Dimension 1

D
im

en
si

on
 2

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

● ●

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Dimension 1

D
im

en
si

on
 2

A. KEGG B. Module

Salinity

Chlorophyll

Sample 
Depth

Water
Column
Depth

Temp

Salinity

Chlorophyll

Sample 
Depth

Water
Column
Depth

Temp

Color Legend for Pathway Functional Category

Carbohydrate Metabolism Energy Metabolism Lipid Metabolism Amino Acid Metabolism
Nucleotide Metabolism Glycan Biosynthesis and Metabolism Cofactor and Vitamin Metabolism
Biosynthesis of Secondary Metabolites Xenobiotic Degradation and Metabolism

Figure 4.3: Bullseye plot of CCA-derived structural correlations. Results from CCA
for (a) KEGG and (b) module. The x and y-axes represents the structural correlation
coefficients (normalized weights) in the first and second dimension, respectively. The closer
either environmental features (red triangles) or metabolic pathways (circles color coded by
functional category) are to the perimeter of the outer circle, the better they fit the model.
In addition, the closer an environmental feature is to a metabolic pathway the stronger
the co-variation between them. The inner circle (radius 0.3) represents those features
that did not fit the model (see Gonzalez for further explanation). Those pathways in the
inner circle can be thought of as environmentally invariant, and those outside this circle as
environmentally variant.
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modules, and 35 operons as being environmentally-dependent (absolute value of structural

correlations > 0.3; Figure 4.4). These pathways form footprints that can be investigated for

subtler environment-based changes in metabolic capabilities. In this manner, we identified

diverse functional processes that co-varied significantly with the environment including

xenobiotic degradation, energy conversion, lipid metabolism, and amino acid metabolism.

4.2.5 Adaptation of energy conversion strategies to specific environmental

challenges

Many of the environmentally-dependent pathways were associated with energy conversion.

The diversification in energy conversion strategies is reasonable given that a primary

challenge to all microbial communities is how to maintain adequate energy reserves despite

challenging conditions in their specific environment.

Our results demonstrate ample diversification in energy conversion strategies linked to

such quantitative environmental differences. In particular, we show that proteins involved

in (photo)autotrophic processes, such as photosynthesis, oxidative phosphorylation, and

carbon and nitrogen fixation, are strongly influenced by variation in environmental

parameters (Figure 4.4). This link is seen at all functional levels and reinforced by multiple

methodologies (Table 4.1). The module-level analysis showed that only photosynthetic

modules involved in light capture and electron transport (photosystem I, II and the

cytochrome b6/f complexes) correlated with the environment. In contrast, the abundance

of the module for the ATP synthase complex, whose function is independent of the

particular energy conversion strategy, does not change significantly (Figure 4.4A). A similar

trend can be seen for oxidative phosphorylation, albeit not as strongly (Figure 4.4B). The

seeming lack of environmental constraint on the ATP synthases probably reflects their

role in coupling energy to a proton gradient (e.g. oxidative phosphorylation, etc) that are

required regardless of which specific energy conversion strategy is employed. Furthermore,

in some cases our approach allows the three-way linking of functional, phylogenetic and

environmental patterns. For instance, in respiratory complex I, the module covering the
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module will have the same color. Shaded gray boxes (A-G) for pathways and corresponding boxes
for modules (no modules available for C and D) denote examples from the text: energy conversion
(A-E), amino acid metabolism (G), and lipid synthesis and glycan metabolism (F). Photosystem I
and II modules (box A, bright yellow to green) show significant co-variation with the environment,
but the ATPase is invariant (blue). Similar pattern observed for oxidative phosphorylation (B,
see text for more details). Box C highlights pieces of the photosynthetic machinery (including
heme/porphyrin synthesis) and D shows carbon fixation. Glycerophospholipid pathways (F) shows
only the ”pipe” leading to or from the citrate acid cycle co-varies. G highlights amino acid metabolic
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cyanobacterial NADH dehydrogenases (i.e. most likely those from Prochlorococcus-like

species) co-varies positively with temperature and other photosynthesis modules. However,

the module covering the proteobacterial NADH dehydrogenase (i.e. most likely from

SAR11-like species) varies inversely with the temperature gradient. Such observations can

be associated with their respective geographic distributions. Photosynthetic Prochlorococci

are mostly absent in the northern, temperate sites but dominate in tropical waters (Rusch,

2007; Johnson, 2006); whereas, SAR11-like proteobacteria, which do not rely on the

classical photosynthetic machinery to collect energy, dominate the northern, temperate

regions (Giovannoni, 2005). Thus, although variation in the reliance on autotrophic

processes is not unexpected, these observations illustrate the potential of the proposed

methodology to detect biologically relevant co-variation.

4.2.6 Balancing amino acid synthesis vs. import: adapting to nutrient-

limited conditions

We observed that metabolic pathways associated with amino acid and cofactor transport

and metabolism varied significantly with the environmental features. Given the

oligotrophic nature of the oceans (Stocker, 2008), this observation may reflect the variability

in amino acid uptake and recycling pathways as an alternative nutrient source in the

various environments sampled; a strategy used by many of the dominating species in ocean

surface waters (Mary, 2008). Lending further support to this hypothesis, operons with

significant structural correlations consisted of both amino acid metabolism pathways and

transporters necessary for exogenous uptake (Table 4.2). Amino acid uptake is sensitive to

light availability (Mary, 2008) which, given the north to south sample collection gradient,

could be an additional factor in their variation. The strength of this co-variation is further

reflected by the positioning of many of the amino acid metabolism maps along the same

principal axis as temperature and chlorophyll in the positive direction (Figure 4.3).
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CCA DPM LM

K 00710

M 10297

M 10274 Complex I NADH dehydrogenase

M 10284

M 10291

S 01937 Ferrodoxin oxidoreductase

K 00941

M 10625

S 03655 Heme/quinol biosynthesis

M 10305

S 04345

K 00190 Oxidative Phosphorylation

K 00195

M 10292

M 10290

K 00860 Porphyrin and chlorophyll metabolism

K 00130

S 02892

Photosynthesis (including 
Photosystem I and II)

Ubiquinone/Thiamine biosynthesis

Carbon fixation (including dark 
reaction)

Cytochrome b6f/c complexes

Flavonoid biosynthesis

Nitrogen fixation (plus transporter)

Footprint

Le
ve

l

Id Description

Table 4.1: Pathways involved in energy conversion with significant environmental co-
variation.
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4.2.7 Environmentally variant/invariant amino acid pathways differ by

cofactor cost

One of the most striking aspects of our findings is that amino acid biosynthetic pathways

could be divided into those that vary with the environment (high structural correlation

coefficient) and those that do not. Interestingly, co-variation of amino acid biosynthesis

with the environment was unrelated to the energetic cost of synthesizing a particular amino

acid (e.g. metabolic optimization). This simple result is seemingly counter-intuitive as

one would expect that those pathways that used the most energy might vary the most

with the energetic potential of their environment. However, we observe a significant

positive correlation (P < 0.05) between the structural correlation of the amino acid

pathways (strength of environmental co-variation) and their dependence on potentially

limiting cofactors (e.g. thiamin, tetrahydrofolate, cobalamin; see methods), corroborated

by concordant variation in the cofactors’ ABC transporters.

This result suggests that the “cost” of obtaining trace metals for use in cofactors

could be more expensive than the energetic cost of synthesizing transport machinery and

degradative components that would allow for import of exogenous amino acids reducing

the need for cofactor. The relationship among an amino acid’s environmental co-variation,

cofactor dependency, and transporters suggests the idea of “synthesis versus import” as an

adaptive strategy in aquatic environments. That is, the import of exogenous amino acids

may be more favorable than direct synthesis in environments where the manufacture of the

cofactors required for their synthesis is limiting.

4.2.8 Environment-driven variation in methionine (-dependent) pathways

Methionine, a central amino acid in oceanic micro-organisms, presents a particularly

interesting example of this phenomenon and further illustrates the importance of a

complex network of metabolic adaptations to limiting factors. Reduction in the use of
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CCA DPM LM
M 10086
M 10087
M 10064
M 10063
M 10022 Asparagine biosynthesis
M 10046 Asparagine degradation
S 03285
S 03791
S 04029
M 10040 GABA shunt (Glutamate)
M 10246
M 10020
S 10020
M 10079 Glutamate synthesis/Histidine degradation
K 00471 D-Glutamate (D-Glutamine) metabolism
M 10048
S 03459
M 10028 Leucine biosynthesis
M 10024
S 03056
S 04163
M 10056
M 10054
M 10055
M 10260
M 10261
S 04453
S 04298 Selenoamino acid biosynthesis
M 10030 Serine biosynthesis
M 10057 Threonine biosynthesis
M 10027 Valine biosynthesis
M 10068
S 03812
M 10078 Tyrosine degradation
K 00350 Tyrosine metabolism
M 10169
M 10165

Footprint

Le
ve

l

Id Description

Cysteine degradation/taurine biosynthesis

Aspartate-arginosuccinate shunt (including 
cobalamin-dependent step)

Glutamate degradation/(Heme, proline, siderophore)
synthesis

Lysine biosynthesis

Other Amino Acid Metabolism

Methionine biosynthesis (including S-adenosyl-
methionine and cobalamin synthesis pathways)

Methionine degradation & salvage pathways

Polyamine biosynthesis (including spermidine 
putrescine transporters)

Tryptophan degradation

Table 4.2: Pathways involved in amino acid synthesis, degradation, salvage, and transport
with significant environmental co-variation.
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methionine in nutrient limited environments has been noted previously (Mazel, 1989).

Our results suggest this reduction may stem from cofactor (and perhaps more specifically

metal) cost optimization rather than (or in addition to) energetic constraints. We find

environmentally-linked variation throughout methionine metabolism including methionine

synthesis, salvage, and degradation reinforced at multiple levels of pathway resolution.

More specifically, we note that synthesis of both methionine and its cofactor cobalamin

(contains cobalt) both decrease as methionine degradation and amino acid transporters

(e.g. spermidine and putrescine) increase. Oceanic micro-organisms have been shown

to take extreme measures to conserve limited metals (e.g. iron Palenik, 2003); these

observations suggest an analogous adaptive response to cobalt limitation.

If such a limitation exists, one would expect to find equally wide-spread changes

throughout methionine- and thus cobalamin-dependent pathways - in particular, in those

which are dependent on the cofactor S-adenosylmethionine (SAM) such as methylation

and secondary metabolites biosynthesis. Indeed, we do find evidence for environmental

dependence for a whole suite of methionine processes including cobalamin biosynthesis, as

well as variation in many of the SAM-dependent processes (e.g. polyamines, ubiquinone,

chlorophyll, and heme) hinting that methionine plays a significant role in shaping

downstream environmental adapatations. These observations provide evidence in support

of a “synthesis versus import” theory.

4.2.9 Modulating lipid and glycan metabolism as an adaptation to

physicochemical conditions.

Lipids and glycans are important components of the microbial outer membrane and thus

would be expected to be particularly responsive to environmental conditions. We do find

strong environment-linked variation in a plethora of lipid and glycan metabolism-related

processes (Table 4.3; Figure 4.4). Indeed, modification of the cell wall is a known adaptive

71



CCA DPM LM

M 10120
S 03937
M 10228
M 10227
S 03167 Extracellular polysaccharide synthesis
K 00061
M 10172
M 10159
K 00071
M 10177

M 10181 Glycerophospholipid degradation 
(Triacylglycerol biosynthesis)

K 00561
M 10202
K 00564
K 00600

M 10204 Glycerophospholipid degradation (CDP-
diacylglycerol biosynthesis)

M 10215 Glycerophospholipid metabolism (ether 
lipid biosynthesis)

M 10197
M 10191
M 10192
M 10155 Keratan sulfate degradation
K 00540
M 10156
M 10114
M 10101
M 10103
S 03722
S 04359
K 00550 Peptidoglycan biosynthesis

Cell wall synthesis maintenance 

Footprint
Description

Le
ve

l

Id

Cholesterol degradation

Fatty acid biosynthesis (initiation and 
elongation)

Fatty acid degradation

Glycerophospholipid biosynthesis 
(diacylglycerol degradation) 

Isoprenoid biosynthesis (mevalonate and 
non-mevalonate pathway)

Lipopolysaccharide biosynthesis (including
lipid A)

N-GlycNac synthesis (including GlycNac 
transporter)

Table 4.3: Pathways involved in glycan and lipid metabolism with significant environmental
co-variation.
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mechanism (e.g. for membrane fluidity) (Morgan-Kiss, 2006; DeLong, 2006), and the

variation of pathways involved in extracellular polysaccharide synthesis, lipopolysaccharide

synthesis, cell wall maintenance, and glycerophospholipid synthesis (Table 4.3) along the

salinity, sample depth, and temperature gradients sampled in the GOS sites could be a

reflection of such an adaptation. In addition, significant contributions of lipid metabolism

modules in the construction of a linear model for sample depth may illustrate an adaptation

strategy to maintain buoyancy for optimal growth conditions (e.g. to optimally profit

from light scavenging machinery adaptations for certain wavelengths (Johnson, 2006).

Alternatively, it could reflect an adaptation of heterotrophic prokaryotes to the varying

composition of phytoplankton-produced dissolved organic matter with depth. Due to the

diversity of these pathways’ roles without further experimentation one can only speculate

on the validity of these particular interpretations. However, undoubtedly, the extreme

variation and flexibility of these pathways indicate their central importance in metabolic

adaptation to the environment.

4.3 Discussion

As different evolutionary strategies are required to cope with the unique set of challenges

specific to each geographic site sampled, our results suggest how environmental pressures

shaped these pathway differences. The detailed analysis of three case studies revealed

particular pathway adaptations that provide numerous testable hypotheses for linking

metabolic versatility to the environment.

Recently, Dinsdale, et al. demonstrated that functional differences can be used to

discriminate among nine qualitatively categorized, discrete ecosystems (Dinsdale, 2008).

However, as in genome wide association studies where methods using binned data have

been supplemented by more sensitive methods that make use of continuous measurements

(Sanna, 2008), we have demonstrated the utility of a similar transition in microbial

ecology by using comparative metagenomics. Our methods associate microbial community
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functions with quantitative, continuous features of the environment allowing for an

objective, data-driven framework to classify sites both on the basis of their metabolism

and environmental parameters. We show evidence for widespread environmentally-

dependent metabolic versatility even in seemingly similar sites (sharing same habitat

classification). The methods implemented here also provide a valuable and sensitive

assay for simultaneously assessing a number of environmental parameters allowing us to

predict both individual and groups of environmental features (Figure 4.2). In reverse,

we also predict the usage of a particular metabolic pathway given a set of environmental

conditions. Thus, our results suggest that metabolic footprints can be used as the basis

of biosensors in situations where no clear measurable environmental factors are available

(e.g. monitoring water quality, predicting health state from clinical samples). Indeed,

such biosensors would provide more information than the current practice based on species

composition (Carignan, 2002), which measure downstream effects (e.g. marker species in

pollution) instead of focusing on the molecular processes of the ecosystem as a whole.

Like all current metagenomics datasets, the GOS dataset provides only a snapshot of

a site’s total genomic content. However, by quantifying the difference in pathway usage

along different environmental gradients, one can see the environmental (spatial) dynamics

of pathways – analogous to the temporal dynamics in usage of pathways between different

cellular states (Luscombe et al., 2004).

Although we have taken precautions to ensure the coverage across sites is the same

(see Materials and Methods), the potential remains for important but rare components

of metabolic adaptation to be overlooked. Similarly, although we were able to map

74% of proteins to STRING orthologous groups, there is still a fraction of hypothetical

proteins that may harbor unknown and thus “unmapped” metabolic components. Indeed,

environmental covariation may provide contextual clues to annotate this uncharacterized

portion. Novel techniques to functionally characterize this fraction represent a significant

challenge and an avenue of active research (Schloss, 2008; Harrington, 2007). Additionally,

the five features reported do not fully encapsulate environmental complexity, and the
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integration of more environmental measurements will likely reveal many new and exciting

discoveries. Despite the data’s inherent limitations, they do not compromise the ideas or the

conceptual framework presented. Indeed, although the available datasets have constrained

us to an analysis of aquatic habitats, the same methodology could readily be applied

to investigate the specific metabolic capabilities for any ecosystem in which (physical)

environmental parameters are collected including e.g. different anatomical locations, which

form “microbial habitats” in humans.

The potential contribution of large viruses as a reservoir for microbial diversity has

recently been shown (Monier, 2008; Ghedin, 2005). However, less than 0.3% of proteins in

our set can be characterized as viral suggesting a negligible impact on our reported findings

(see Materials and Methods). Repeating this analysis on just the viral sample represents

an interesting avenue for future research.

4.4 Conclusion

It is clear that microbial communities play a critical role in shaping our world from aiding

in global climate regulation (Watson, 1998) and geochemical cycles to degrading hazardous

byproducts; however, the complicated, intertwined nature between microbial communities

and the environments they inhabit and influence remains poorly understood. We have

presented a methodological framework that provides a roadmap to explore these questions

in a systematic and statistically rigorous fashion.

4.5 Materials and Methods

4.5.1 GOS data collection and preprocessing

For this study, we filtered the data from the first phase of the GOS expedition to keep only

those sites that used a 0.1 to 0.8 µm filter size (with the exception of the Sargasso Sea station

11, which was excluded as it is suspected of contamination; Mahenthiralingam, 2006) thus
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Scaffold

Reads

? ? ? Peptides

Given a scaffold where
R - set of reads
BS- set of buckets to which reads from R belong
P - set of peptides

BucketA BucketB

Pseudocode:
foreach p in P:
 s=p’s scaffold
 find R(s) 
 foreach r in R(s):
  if r overlaps with p
   put p in r’s bucket

Figure 4.5: Schematic and pseudocode for mapping of peptides to a geographic site(s).
Given a set of reads (color coded blue or green depending on which bucket (site) they were
recovered from), a set of peptides (boxes), and the coordinates from the scaffold (long black
line), the algorithm returns which buckets the peptides (boxes) belong to.

only prokaryotes are part of this analysis. For the remaining 37 sites (Table tabletable-

meta-sites), the site metadata was downloaded from the CAMERA database (Seshadri,

2007). For this study, the measurements for temperature, sample depth, water depth,

salinity and monthly average chlorophyll level were used. As ten salinity measurements

were missing, we averaged the salinity for all non-zero (excluded freshwater site) salinity

measurements. In some cases, we were able to corroborate the missing measurements

validity through extrapolating from the World Ocean Database (Boyer, 2006). For the

protein sequence data, the 6.1 million predicted proteins (Yooseph, 2007) were downloaded

from CAMERA.

4.5.2 Mapping peptides to sites

Peptides were mapped to sites based on the read-to-scaffold and orf-to-scaffold mappings

available at CAMERA (Seshadri, 2007). Thus, to assign these peptides to a particular site,

we used a mapping algorithm that cross-referenced between reads, scaffolds, and peptides

based on predicted gene coordinates (Figure 4.5). Therefore, there were instances in which

reads that formed part of a single peptide originated from two different sites; as this allowed

peptides to be “present” in multiple sites; we term these “multi-site” peptides (see below
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ATGCTCATGCT--------------

GTATCGTAGCATGCTT--------------
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ATCGTGACGCGATGC--------------
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CCGTGAGCACGATGCGC--------------

CCGTGAGCACGATGCGC--------------

CCGTGAGCACGATGCGC--------------

GCGATCGATCGATCGTAGC--------------

GCGATCGATCGATCGTAGC--------------

GCGATCGATCGATCGTAGC--------------

P
2 
= f

4
 +  f

5
 + f

6

Divide each pathway sum by the “mappable portion” of the site.

(Sum of all f for the site).

Figure 4.6: Pathway score schematic (see text for additional details)

for additional details).

4.5.3 Mapping cofactors for modules

Cofactors were mapped to each module via EC numbers using the BRENDA database

(Barthelmes, 2007). In order to normalize the effects of module size, the fraction of chemical

reactions requiring certain cofactors per module is regarded as the cofactor-dependence of

module. We then used a goodness of fit test (K-S test) to compare the distribution of CCA

structural correlation coefficient between the amino acids that have no cofactors (score=0)

and those with cofactors (score>0)(p < .05).

4.5.4 Assignment and Pathway score

The 111 KEGG maps, 141 modules and 191 operons were assigned as in (Tringe, 2005).

For clarity, in the remainder of the text we use the term pathway to refer to all of these

levels. Module definitions were downloaded from KEGG (Kanehisa, 2006) and operons were

constructed as in (von Mering, 2007). In brief, protein sequences were searched against the

extended database of proteins assigned to orthologous groups (OGs) in STRING 7.0 (von
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Mering, 2007) using BLASTP (Altschul, 1997), and a pathway was called present when a

hit matching one of its proteins occurred (with a BLAST score of at least 60 bits). All

results described were also manually scrutinized to reduce artefactual assignments.

The pathway frequency for each site was assigned by summing the total number

of instances of that pathway for a particular site and normalizing by total number of

assignments for that site to compensate for sample coverage differences. For all analyses,

pathways for which the summed count over all sites constituted less than or equal to 0.01%

of the total count were removed to avoid artifacts (Figure 4.6).

In addition, we calculated a mismatch rate where we looked to see how many times

the top 5 BLAST hits for each peptide mapped to the same pathway. We find that 80%

of the time all the top-5 hits will map to the same pathway with a corresponding drop at

less stringent bit scores suggesting our results are threshold-independent. A second source

of miscalling could be cross hitting of pathways by more “generalist” enzymes. Therefore,

we have manually checked the assignments and sought confirmation at multiple levels of

resolution (map-module-operon-orthologous group) for all the case stories reported in this

manuscript.

4.5.5 Pairwise Correlations and Linear Regression

We computed pairwise Spearman correlations between each pathway frequency vector and

each environmental metadata vector for the same sample set – p-values corrected for

multiple testing using the Benjamini-Hochberg false discovery rate (Benjamini, 1995) –

. Linear models were constructed in two directions. (1) The environmental factor was

treated as the response variable and predicted from a subset of pathway frequencies),

and (2) the inverse model where pathway frequency was treated as the response variable

and predicted from environmental factors. To identify the subset of predictive variables, we

used a stepwise regression analysis based on Akaike’s information criterion (implementation

in R stats package). To avoid overfitting in (1), we used only the top 20 pathways

that showed the highest pairwise correlation (as measured by uncorrected p-value) with
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the environmental feature modeled. As in many feature selection methods, one is not

guaranteed the “best” subset, and we acknowledge that there can be multiple suboptimal

solutions. Linear models were considered significant at p < 0.05 for both the total model

and the estimate of the variable coefficients. For regressions in both directions, the pathway

frequencies were standardized to a mean of zero and a standard deviation of one. For (1)

we used the centered, quantile-normalized environmental data transformed into percentiles

to ensure a truly normal distribution and thus accurate p-values.

4.5.6 Discriminative Partition Matching (DPM)

To analyze whether groupings of sites based on similar environmental features also shared

functional similarities, we clustered the sites based on their quantitative environmental

metadata resulting in two distinct clusters or site-sets. Next, we partitioned the sites in

the metabolism matrices (see Figure 4.1A) into the same two site-sets and calculated the

mean normalized frequency for each pathway in each site-set (see below for generalized

approach). If the means of the pathway frequency between the two site-sets were not

significantly different, this would suggest that the environment-based partitioning does not

reflect functional differences. If the distributions do differ significantly, it would imply that

the environmental features are related to the specific aspect of metabolism. Further, we

computed the two-sample t-test for each individual map, module, operon, and COG. Those

pathways that were significantly different (Benajamini-Hochberg corrected p < 0.05) were

combined to form the DPM footprint.

4.5.7 Canonical Correlation Analysis (CCA)

The goal of canonical correlation analysis is to identify the set of projections that maximally

correlate two sets of variables (Wichern, 2003) (for a more detailed description of the

relations of CCA to other common techniques including principal components analysis and

least squares regression; see Borga, 1998).

Due to the large number of dimensions and small number of data points the
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solution can be unstable, thus we applied a variant of CCA, regularized CCA (Eaton,

1973) implementation in (Gonzalez, 2008). We estimated regularization parameters λ1

and λ2 (penalty to covariance matrices) via a leave-one out cross-validation procedure

(implementation in Gonzalez, 2008). Because of interdependencies between metabolic

pathways, canonical weights must be interpreted with caution. For this reason, we

also calculated the structural correlation coefficient, which is the correlation between

the original variable and the canonical variate. This allows one to specifically answer

the question how important is this one variable (metabolic pathway) relative to all the

other variables (metabolic pathways) (see below for additional evaluation metrics). Those

pathways, which had a structural correlation coefficient greater than 0.3, formed the CCA

footprint. In addition, we investigated the effect of changing this threshold. Principal

components analysis and the resultant biplot on the environmental features show these

features to be basically orthogonal (Figure 4.8).

4.6 Additional Evaluation Metrics and Controls

4.6.1 Construction and Results from Control Matrices

To control for relative differences in metabolic pathways among the geographic locations

simply reflecting sampling bias, we constructed two control matrices composed of proteins

that would not be expected to change among sites, such as those involved in basal

transcription or translational machinery. The first is composed of those COG categorizes

as information processing, and the second those involved in cellular processes. We used

Student’s t-test and found that although the distributions of the means for the control

matrices (composed of those COGs annotated as belonging to either information or cellular

processing) are not significantly different between the two environmental site-sets (p < .07

and p < .08, respectively), there are significant differences in metabolism (p < 9x10−3

and p < 4x10−14, COG and KEGG annotated metabolism definitions). However, we

do see the same asymmetry as originally noted in the GOS paper for DNA polymerase,
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topoisomerase, and gyrase (Yooseph, 2007) by aggregating across the basal machinery

this effect is minimized. Thus, DPM’s greatest strength is as a means of evaluating the

functional significance of a particular partitioning and in controlling for potential sampling

bias through the testing of control matrices (expected to be environmentally invariant)

alongside matrices that are suspected of being environmentally variant.

4.6.2 More detailed CCA Evaluation Metrics

As in PCA, there are a number of metrics that can be used to determine the number of

dimensions, in this case canonical variates, that should be included in the analysis (Borga,

1998). The overall canonical correlations for both dimension 1 and dimension 2 are high

for KEGG maps, module, and operons; however, there is a significant drop in average

redundancy between dimension 1 and dimension 2 and further dimension 2 and dimension

3 making it appropriate to use only these two dimensions in the overall analysis. We can

also measure the amount of information the environmental variate is able to “cover” from

metabolism and vice versa by calculating the average variance of the dimensions and the

redundancy (Wichern, 2003). These measurements are both high for the environment but

lower for the metabolic pathways. This suggests that there are many weaker signals coming

from the metabolic matrices as opposed to a few strong ones.

4.6.3 Generalization of DPM

We provided a specific use of DPM in the text; however, DPM can be generalized. There

are three basic steps to DPM. (1) The sites from the first matrix are partitioned to create

site-sets. (2) The second matrix is partitioned in accordance with these site-sets. (3) A

t-test (or ANOVA for more than two site-sets) is performed to test whether the site-sets

are statistically different in the attributes of the second matrix.
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Figure 4.7: Comparison of different classes of methods. We evaluated the efficacy of three
different classes of methods based on their explicit use of the quantitative environmental
data, which we term independent, isolated, and simultaneous. Independent methods
include no environmental description (green), isolated only one environmental feature
at a time (purple), and simultaneous methods incorporate all environmental features
simultaneously (blue). For clarity, we refer to the highly-weighted set of pathways generated
for each method as a footprint. Each of the five methods was used to generate a metabolic
footprint, and each bar represents the normalized mutual information (NMI) score for
that method’s footprint. No statistically significant difference was observed between scores
within each particular category (p > .05).
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4.7 Comparison with Variance-Maximization

Approaches

4.7.1 Compare/Contrast with other Methods

An entirely different approach to the one presented in the text assumes that the inherent

variability of the environments could be directly observed by examining the global variance

in the metabolic dataset. That is, one identifies the pathways with greatest variance

without directly measuring whether they co-vary specifically with the environment. First,

we performed a simple standard deviation (SD) calculation to find pathways that changed

the most. We also used a principal component analysis (PCA) to identify the pathways

that encapsulate the greatest proportion of variance. We then assessed the performance

of these methods to identify metabolic adaptation to environmental parameters based on

their ability to recapture the environmental-based partitioning using only the metabolic

pathways identified as significant for each method by measuring cluster similarity (see

below). Simply identifying the metabolic pathways with the greatest variance did not

always reflect changes in the environmental parameters (Figure 4.7). Indeed, both methods

that simultaneously incorporate environmental and metabolic data significantly outperform

the variance-based, independent methods, and perhaps, unsurprisingly, the linear models,

which are more appropriate for investigating single relationships than looking at global

context. These results were consistent despite varying the number of pathways using a

variety of different thresholds for all methods SD, PCA, LM, DPM, and CCA.

4.7.2 Clustering

The environmental data matrix was first standardized to mean of zero and standard

deviation of one. We evaluated distances using 1-correlation and used average linkage

hierarchical clustering. The clustering procedure was repeated using spectral k-means

without significance differences (data not shown).
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Figure 4.8: Biplot and boxplot of standardized environmental variables. To examine
possible dependencies between the variables we performed principal component analysis.
We next plotted component 1 and 2 (A). One can see that the variables with the exception
of temperature and salinity are basically orthogonal to one another. (B) Boxplot of
standardized variables.

4.7.3 Metrics to Compare Cluster Similarity

Cluster similarity was measured by computing both a normalized mutual information score,

which measures the amount of information lost if one applies the classification ”clustering”

from the first partition to the second (Forbes, 1995), and the rand index (Hotelling, 1936),

which computes the number of ”correct” pairwise interactions between the two sets of

clusters. The closer the normalized mutual information (NMI) score is to 1.0 the better the

metabolic footprint generated from the method performed in recapitulating the structure

of the environmental data. For each set, a significance value for the rand index was

computed by randomly shuffling the clustering assignment, recalculating the index after

each iteration, and counting the number of times the index computed from the random

data exceeded the index computed from the real data after 10,000 iterations.
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Hydrostation S, Sargasso Sea Browns Bank, Gulf of Maine
Outside Halifax, Nova Scotia Bedford Basin, Nova Scotia
Bay of Fundy, Nova Scotia Northern Gulf of Maine
Newport Harbor, RI Block Island, NY
Cape May, NJ Delaware Bay, NJ
Chesapeake Bay, MD Off Nags Head, NC
South of Charleston, SC Off Key West, FL
Gulf of Mexico Yucatan Channel
Rosario Bank Northeast of Colon
Lake Gatun Gulf of Panama
250 miles from Panama City 30 miles from Cocos Island
134 miles NE of Galapagos Devil’s Crown, Floreana Island
Coastal Floreana North James Bay, Santigo Island
Warm seep, Roca Redonda Upwelling, Fernandina Island
Mangrove on Isabella Island Punta Cormorant, Hypersaline Lagoon, Floreana Island
North Seamore Island Wolf Island
Cabo Marshall, Isabella Island Equatorial Pacific TAO Buoy
201 miles from F. Polynesia Rangirora Atoll

Table 4.4: Size selected GOS sites

4.8 Future Challenges and Current Limitations

4.8.1 Need for rigorous, quantitative descriptions of the environment

Taxonomic classification underwent a paradigm shift with the introduction of molecular

features to a system that had been based purely on morphological characteristics. Many

species were discovered to have been mistakenly lumped together under the scrutiny of

comparative sequence analysis. Similarly, the terms currently used to describe marine

habitats need to be grounded in rigorous quantitative measurements of oceanic features.

While this idea is certainly not new to oceanographers, in order to truly exploit the potential

of metagenomics, this same rigor must be brought to bear. There is a great human influence

on marine microbial communities. To better understand this human-microbial interaction,

we must have more comprehensive ways of characterizing these environments both in space,

as well as, through time. One of the major limitations of the current study is that without

measurements of nutrient gradients and fluxes, one is forced to rely on indirect and thus

somewhat artificial measurements of these variables. Oceanographic institutes such as
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NOAA have gridded the entire earth for the collection of oceanographic measurements

including nitrate, phosphate, oxygen levels, etc which reach back over two decades and are

often accompanied by exhaustive censuses of biomass subdivided into bacterioplankton,

phytoplankton, zooplankton, and even larger marine creatures. While oceanographic tools

can measure explicit variables in the ocean (nitrate, phosphate, etc), it is the microbes and

particularly their amazingly versatile metabolism that are reshaping them. It would make

sense then to try to couple some of the oceanographic measurements with a metagenomics

initiative. Studies such as the Hawaiian Ocean Time series (DeLong, 2000) and the planned

Monterrey Bay Time Series are employing such a strategy by exhaustively collecting

oceanographic data along with performing metagenomics profiling. However with a large

number of oceanographic measurement projects beginning particularly in the Arctic over

the next couple of years; it would be wise to consider these sites or at the least the

availability of such data in deciding on metagenomics project locations. The increase in

such data collections will need to be accompanied with the development of more analytical

tools for connecting the genic content with a particular environment.

4.8.2 Computational challenges

Working with this type of data is necessarily compute-intensive. This study consumed

0.5 cpu-years and was only plausible because of access to a high performance compute

cluster. However, in order for such data to be used it needs to be presented and stored

in an accessible manner. It is not current practice to release raw data such as blast

scores for each read, etc resulting in widespread and unnecessary duplication of this

type of work which tends to be some of the most compute intensive steps in these

types of analysis. To this end, all of the raw data including the original blast hits and

many of the utility scripts are included in the supplementary material and the website

http://networks.gersteinlab.org/metagenomics.
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Database construction and computational resources

The scale and complexity of the data presented several obstacles. We built a mysql database

to facilitate the storage and retrieval of analysis results. The mysql server used ran on a

dedicated Dell fileserver with four 3.2 Ghz cpus and 8 GB RAM. The database contained

approximately 328 Million records and totaled 5 GB on disk. In order to facilitate high

performance computing on the data, the read sequences themselves were not stored in the

tables; rather, metadata and a pointer to a position within a fasta file was stored. We found

this to be a very useful division, keeping the mysql database to a manageable size. The

blasting between the various databases was performed on two compute clusters (bulldogc

and bulldogi) at the Yale Life Sciences High Performance Computing Center. Bulldogc

consists of 130 dual cpu Dell PowerEdge1855 nodes, totalling 260 3.2 Ghz cores. Bulldogi

consists of 170 dual/dual Dell PowerEdge 1955 nodes, totalling 680 3.0 Ghz cores. Lustre,

a high performance, parallel filesystem, was used to manage the I/O traffic. Each blast job

was run in parallel, typically on 10-100 cpus, depending on availability. The computations

were parallelized by splitting the input sequence set into many disjoint pieces, blasting each

piece against the database, and combining the results. We have found that this technique

scales very well, so long as there are enough input sequences and the I/O system sustain the

required rates. Approximately 4500 cpu-hours (more than 0.5 cpu-year) were consumed

during the blasting.
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Chapter 5

Network Evolution: Divergence of

gene regulation in close yeast

5.1 Introduction

Differences in related individuals are generally attributed to changes in gene composition

and/or alterations in their regulation. Previous efforts to examine divergence of regulatory

information have relied on the analysis of conserved sequences in putative promoter regions

(Cliften, 2003; Kellis, 2003). However, these approaches are limited as transcription factor

(TF) binding sites are often short and degenerate making their computational detection

difficult (Tompa, 2005), while requiring the conservation of motifs across species precludes

detection of sequences which are evolutionarily divergent.

In an effort to measure the divergence in transcriptional networks across related species,

we used chromatin immunoprecipitation followed by DNA microarray analysis (chIP chip)

(Iyer, 2001; Ren, 2000) to directly monitor the binding site distribution of orthologous

transcription factors in four yeast species. The targets of the transcription factors Ste12

and Tec1 were mapped in diploid strains of S. cerevisae, S. mikatae, S. bayanus and C.

albicans (Ste12 only). S. cerevisiae, S. mikatae and S. bayanus, which are all members of

the Saccharomyces sensu stricto group, are estimated to have diverged between 5 and 20
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millions years ago; C. albicans, an important human pathogen, is thought to have diverged

over 200 million years ago (Kellis, 2003 ; Wolfe, 2006).

In diploid strains of S. cerevisiae, Ste12 and Tec1 act cooperatively to regulate genes

during the formation of pseudohyphae (branching chains of elongated cells formed during

growth in low nitrogen environments (Madhani, 1997; Gavrias, 1996; Liu, 1993); whereas,

in haploid cells, Ste12 regulates mating genes through association with a different factor

(Fields, 1985). Highly conserved orthologs of Ste12 and Tec1 are present in S. mikatae

and S. bayanus (80-88% identity); these are more divergent in C. albicans (50% and 44%

identity, respectively) where they are required for regulating dimorphic growth (related to

pseudohyphal growth) and pathogenicity in this species (Stoldt, 1997; Liu, 1994; Leberer,

1996; Lane, 2001). Our mapping of Ste12 and Tec1 across the genome of these species has

revealed remarkable diversity in transcription factor binding site locations, even among

closely related organisms.

5.2 Results

5.2.1 Identification of Ste12 and Tec1 Binding Sites in S. cerevisiae, S.

mikatae and S. bayanus

The detection of binding sites using chromatin immunoprecipitation and microarray

analysis (chIP chip) (Iyer, 2001; Ren, 2000) offers the ability to globally map transcription

factor (TF) binding locations experimentally, rather than computationally. For species

such as yeast, where genome sequences of numerous related species are available (Piskur,

2004), this approach can allow for the evolutionary comparison of binding sites of conserved

TFs across species.

We have used this approach to investigate evolutionary divergence in the targets

of two developmental regulators in the Saccharomyces sensu stricto yeasts S. cerevisae,

S. mikatae, S. bayanus. In S. cerevisiae diploids, Ste12 and Tec1 act cooperatively

to regulate genes during pseudohyphal development (Madhani, 1997; Gavrias, 1996;
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Figure 5.1: Ste12 and Tec1 binding overlap. Ste12 and Tec1 bind to discrete regions of
chromosome IX of S. cerevisiae and to orthologous regions of S. mikatae and S. bayanus.
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Gene target overlap across the Saccharomyces species.example caption
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Liu, 1993), whereas in haploid cells, Ste12 regulates mating genes (Fields, 1985). The

binding sites of Ste12 and Tec1 were mapped in all three species under low-nitrogen

(pseudohyphal) conditions using triplicate chIP chip experiments and species-specific high-

density oligonucleotide tiling microarrays (Figure 5.5) (Borneman, Submitted).

5.2.2 Extensive Divergence of Binding Sites in the Saccharomyces sensu

stricto Species

Ste12 bound to 380, 167, and 250 discrete sites in S. cerevisiae, S. mikatae and S. bayanus,

respectively, whereas Tec1 bound 348, 185 and 126. For each species the two factors bound

to a high proportion of common regions (86%, 80% and 87% for S. cerevisiae, S. mikatae

and S. bayanus, respectively) suggesting that the cooperative interaction observed between

Ste12 and Tec1 in S. cerevisiae is conserved across the three Saccharomyces species.

Analysis of the signal tracks allowed for global comparisons in TF binding to be made

between the species revealing qualitative and quantitative differences in ChIP binding

regions (Figure 5.1A). To systematically perform inter-species comparisons, regions that

were not represented across all three yeast genomes were removed. Comparison of the

overlap in binding across species as a function of rank order revealed significant binding

differences throughout the rank order indicating that even strong targets from one species

may not be bound in the others (Figure 5.1B). As a control, replicate experiments from S.

cerevisiae displayed over 98% concordance in binding.

5.2.3 Three classes of TF binding events

Overall, three classes of TF binding events were observed: those conserved across all three

species, those present in two of three species and species-specific binding events (Figure 5.3).

Of the 221 and 255 targets bound in total by Ste12 and Tec1 respectively, only 47 (Ste12,

21%) and 50 (Tec1, 20%) were conserved across all three species (Figure 5.1C, reffig:regnet-

profilesA). The conserved binding events were present throughout the rank order indicating

that both highly occupied and less occupied regions are conserved. To ensure that these
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Figure 5.2: Ste12 and Tec1 binding patterns. Comparison of binding by Ste12 and Tec1
across S. cerevisiae (red), S. mikatae (blue) and S. bayanus (green). (A) Conserved
binding. (B) Conserved binding with quantitative signal differences (C) Conserved binding
with loss of consensus sequences in one species. (D) Species-specific binding despite
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binding differences were not due to the scoring threshold used, signal distributions for non-

bound orthologs of target regions were calculated. Of the unbound orthologous regions,

80% had signals similar to background, indicating that the vast majority will be unaffected

by threshold changes (Figure reffig:fig-regnet-threshold). Even when identical binding

regions were utilized, 23% differed in their intensity by at least 1.5 fold between species (0%

between S. cerevisiae replicates), suggesting quantitative differences exist in site occupation

or binding strength between species (Figure 5.2B). Thus, the majority of target genes were

bound in only one or two of the three species indicating considerable divergence in binding

sites across these yeasts (Figure 5.2C). As the fraction of non-conserved genes between

S. cerevisiae, S. mikatae and S. bayanus is less than 0.05% (Kellis, 2003), the amount of

variation in TF binding is substantially larger than that of gene variation.

5.2.4 Comparison of Binding Sites with Conserved Sequences Reveals

Significant Differences.

One possible cause for the inter-species differences in the chIP binding locations is

divergence in binding site sequences, whereby the loss of a regulatory motif results in

the concomitant loss of transcription factor binding. To examine this possibility, sequence

motifs in both bound and orthologous unbound regions were investigated across the three

Saccharomyces species. Position weight matrices (PWM) representing the putative binding

motifs for Ste12 and Tec1 were generated from the chIP chip data (Liu, 2002). Analysis

of the Tec1 targets of the three species revealed an over-represented sequence motif which

matched the known Tec1 consensus (Madhani, 1997) (Figure 5.3A), while the targets of

Ste12 in S. cerevisiae and S. mikatae revealed a motif that was similar to the known

binding sequence (Dolan, 1989) (Figure 5.3B). This sequence was not over-represented in

S. bayanus. Using the PWM sequences, chIP bound regions and orthologous unbound

regions from each species were then scored for the presence of each motif (Bailey, 1998).

There were several significant classes of TF binding events, with those genes bound by all

three factors present near the top of both the Tec1 (all bound, motif in all) and Ste12
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(all bound, with and without motif) lists (Figure 5.3C, D). For promoter regions that

displayed evolutionarily-conserved chIP binding in all three Saccharomyces species, 83%

(Tec1) and 24% (Ste12), contained at least one significant occurrence of the PWM motif

for that factor in each species (Figure 5.3E, F). In contrast, 2% and 62% of the promoters

that displayed conserved chIP binding did not contain a match to the PWM in at least

two of the three species. Thus, the Ste12 motif is not present in a high proportion of

pseudohyphal-responsive genes implying Tec1 may target Ste12 to these regulatory regions

(Chou, 2006).

In contrast to the previous results in which experimentally determined binding

correlated with the presence of predicted motifs, there were many examples where a species-

specific loss of binding and/or a loss of sequence have occurred. There were 48 (Tec1, 14% of

total binding events) and 35 (Ste12, 10%) experimentally-bound regions, which contained

PWM match where the orthologous region in at least one other species was neither bound

nor contained a motif match. For these loci, loss of chIP binding is concordant with loss

of the motif for this factor, providing clear examples of regions where network evolution

occurred through the gain or loss of regulatory sequences.

Furthermore, there were 45 (Tec1, 12%) and 9 (Ste12, 3%) instances where a PWM

match occurred in all three species but where that region was experimentally-bound in only

two (Figure 5.2D). Either these loci are occupied at other times in the life cycle or they are

not functional. Conversely, in 11 (Tec1, 3%) and 22 (Ste12, 6%) instances, genomic regions

displayed conserved chIP binding but at least one species was missing a PWM motif match

(Figure 5.2E. Thus, sequence conservation does not predict binding.

To further examine the role of conserved versus non-conserved chIP binding events and

motifs, these results were compared with expression microarray studies of pseudohyphal

formation in S. cerevisiae (Prinz, 2004). Of the chIP binding targets which had significantly

altered expression (2̃0% of the chIP targets), there was no significant enrichment for genes

with conserved binding (11% bound versus 14% unbound) or PWM matches (12% with

motif versus 16% without). Thus, in this case, sequence-based motif analyses in the absence
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of experimentally-determined binding data were not sufficient for the accurate prediction

of TF binding profiles and gene function.

5.2.5 Conserved Classes of Targets and Regulatory Networks Across

Related Yeasts

To elucidate the biological significance of both the conserved and species-specific gene

targets, each bound region was mapped to its downstream target genes by identifying

ORFs which were 3’ of and directly flanking each chIP binding event. Conserved Ste12 and

Tec1 gene targets displayed enrichment for two GO (Boyle, 2004) categories, ”filamentous

growth” and ”regulation of transcription from RNA polymerase II promoters” (Figure

5.4A). As the majority of the genes from within the second category encode TFs, the

predicted downstream TF networks of S. bayanus and S. mikatae were compared to those

of S. cerevisiae (Borneman, 2006) to determine which connections had been maintained

during the evolution of the Saccharomyces sensu stricto group (Figure 5.4C). The binding

of Ste12 and Tec1 to downstream TFs was shown to be highly conserved (73% across the

three species). The network of S. mikatae was most diverged and had several key regulatory

omissions including Flo8 (not bound by either Ste12 or Tec1) and Mga1 (Ste12). Thus,

although important differences can be found, TF binding to the promoters of other TFs

was highly conserved between species relative to the level of conservation observed for other

genes.

5.2.6 Genes Important for S. cerevisiae Mating are Bound Under

Pseudohyphal Conditions in S. mikatae and S. bayanus

From those groups of genes which did not display conserved binding across the three species,

one interesting class was bound by Ste12 specifically in S. mikatae and S. bayanus and was

enriched in genes involved in mating (GO: reproduction in single-celled organisms) in S.

cerevisiae (Figure 5.4A, B). Unlike the diploid cells used in this study, these genes are

targets of Ste12 in haploid S. cerevisiae cells (Harbison, 2004; Zeitlinger, 2003) and this
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Figure 5.4: (A) Ste12 and Tec1 bind to common and distinct genes across the
Saccharomyces sensu stricto lineage. Over-represented GO terms are listed for each
combinatorial category. (B) Mating genes bound specifically by Ste12 in S. mikatae and
S. bayanus. (C) TF network conservation in S. cerevisiae (red), S. mikatae (blue) and S.
bayanus (green).

differential binding occurs despite the presence of conserved Ste12 binding motifs. Thus,

Ste12 binding targets may be occupied under different conditions across related species.

In S. cerevisiae, Ste12 binds to these sites only during mating, while in S. mikatae and S.

bayanus Ste12 binds to these same regions in diploid cells.

5.2.7 The Ste12 homolog of C. albicans also binds upstream of mating

genes

To extend this study outside of Saccharomyces yeasts, the binding of the C. albicans

Ste12 ortholog, Cph1, was also mapped (Jones, 2004). Cph1 functions in the dimorphic

switch of this yeast, a process which shares many genetic components with pseudohyphal

growth (Sanchez-Martinez, 2001). A total of 52 significant Cph1 chIP binding events

were detected under dimorphic growth conditions, with many residing upstream of known
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pathogenicity determinants (Birse, 1993; Braun, 2000; Braun, 2000; Lane, 2001; White,

1993). From these gene targets, 33 have recognizable orthologs in S. cerevisiae and of

these, 10, 10 and 13 displayed conserved binding with S. cerevisiae, S. mikatae and S.

bayanus, respectively. While the majority of gene targets of Cph1 in C. albicans are not

conserved with the Saccharomyces species, the C. albicans orthologs bound by Ste12, like

those from S. mikatae and S. bayanus included a significant number of genes that function

during reproduction and mating in S. cerevisiae (P = 4x10−3) (Boyle, 2004) including

CEK1 (FUS3), FUS1 and SST2. Thus, in C. albicans, like S. mikatae and S. bayanus, the

Ste12 ortholog also binds to genes required for mating in S. cerevisiae under filamentous

growth conditions raising the possibility that these genes have become more specialized in

S. cerevisiae.

5.3 Discussion

We find that extensive regulatory changes can exist in closely related species, which is

consistent with a recent study which showed that distinct regulatory circuits can produce

similar regulatory outcomes in S. cerevisiae and C. albicans (Tsong, 2006). Furthermore,

while S. cerevisiae and S. mikatae are quite similar to one another at the nucleotide

sequence level, they are equally different to each other and S. bayanus in their TF profiles.

We expect that the extensive binding site differences observed in this study reflect the

rapid specialization of these organisms for their distinct ecological environments and that

differences in transcription regulation between related species may be responsible for rapid

evolutionary adaptation to varied ecological niches.
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5.4 Materials and Methods

5.4.1 Yeast strains, growth conditions and epitope tagging

Yeast strains used in this study were the S. bayanus NRRL Y-11845, S. mikatae IFO 1815

and C. albicans BWP17 (Wilson, 1999). S. bayanus, S. mikatae were both transformed

by a PCR-based approach used for S. cerevisiae. As each strain is diploid, sequential

transformations were performed using G418 resistance (kanMX) (Wach, 1994) as a marker,

with marker conversion to nourseothricin (nat) resistance (natMX) (Goldstein, 1999)

performed to allow reuse of the kanMX marker prior to tagging of the second allele. For S.

mikatae, G418 and nat were used at 200 µg/ml and 100 µg/ml respectively for selection of

transformants, whereas for S. bayanus, 50 µg/ml and 20 µg/ml were used. C. albicans was

also transformed using a PCR based approach, with sequential rounds of tagging performed

using modified versions of pFA6a-13myc-kanMX6 (Longtine, 1998) where kanMX was

replaced by URA3 and ARG4 as selectable markers. For each strain, protein expression was

examined by immunoblot analysis and tagged proteins were produced of the expected size.

The tagged strains appeared functional as cell elongation in the tagged strains appeared

similar to that of wild type strains under conditions that induce pseudohyphal or dimorphic

growth.

5.4.2 Array design

Arrays were designed to the available genome sequences of S. mikatae, S. bayanus (Kellis,

2003) by selecting 50 bp oligonucleotides every 60 bp on both strands of each sequencing

contig, with top and bottom strand oligonucleotides offset by 30bp (see Figure 5.5). For

C. albicans, 50 bp oligonucleotides were also designed every 60 bp across the published

genome sequence (Jones, 2004), although due to microarray feature constraints, tiling of

the bottom strand was limited to one 50 bp oligonucleotide every 120 bp.
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Figure 5.5: Tiling array designs used in S. mikatae, S. bayanus and C. albicans. For each
species, oligos were deisgned to tile the genome sequence contigs with a 50bp oligonucleotide
every 60 bp on the Watson strand. For S. mikatae and S. bayanus, this same spacing was
used on the Crick strand offset 30 bp compared to those oligonucleotide on the Watson
strand. For C .albicans, limitations on the number a features allowed on the arrays resulted
in a 50 bp oligonucleotide being spaced every 120 bp, offset 30 bp.

5.4.3 Immunoprecipitations, DNA labelling and hybridisation

For immunoprecipitations, S. bayanus and S. mikatae were grown using conditions similar

to those used for S. cerevisiae (Borneman, 2006), except with the time in nitrogen

starvation medium altered to reflect the differences in doubling time of S. mikatae (3 hrs

induction) and S. bayanus (6hrs induction). For C. albicans, cells were grown at 25◦C to

an OD600 of 0.3 in Lee’s medium (Lee, 1975) prior to being induced for 4 hrs at 37◦C Lee’s

medium. Cells were fixed with formaldehyde and immunoprecipitations, DNA labelling

and array hybridisations were carried out as described elsewhere (Borneman, Submitted;

Borneman, 2006).

5.4.4 Microarray analysis and scoring

Following scanning, the two files corresponding to each channel (in .pair file format) were

uploaded to the Tilescope pipeline for high-density tiling array data normalization and

scoring (http://Tilescope.gersteinlab.org (Zhang, submitted). Tilescope processes the data
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in a sequential fashion. These steps can be approximately grouped into three stages:

normalization, tile scoring, and feature identification. We describe some of the key steps

in our system below in detail.

Normalization. For each array in an experimental set, the relative contributions of

the test and reference signals are compared. Ideally, if nucleic acid probes have equal

concentration in the test and reference samples, the signals of the two dyes should be

relatively equal (i.e. the ratio of the two signals should be close to one for probes

hybridizing to an equal degree in both fluorescence channels). In practice, the signals

can be rather different due to different chemical properties of dyes and non-specific or

incomplete hybridization to the array. Normalization is used to compensate for these

effects by either applying a scale factor to equalize signals from probes with unchanged

concentration or imposing the same empirical distribution of signal intensities. Tilescope

uses Quantile normalization. This not only normalizes data between channels and across

arrays simultaneously but also removes the dependency of the log-ratio on the intensity

in one step. It imposes the same empirical distribution of intensities to each channel of

every array. Quantile normalization is fast and has been demonstrated to outperform other

normalization methods)(Bolstad, 2003). Tile scoring. Tilescope pools the normalized log-

ratios of all tiles on every array into a matrix and sorts them based on the tiles’ genomic

locations regardless of which strand they come from. At the tile scoring step, the program

identifies tiles that exhibit differential hybridization. These tiles ultimately correspond

to the locations of transcription factor binding sites. Instead of considering each tile

across array replicates separately, a sliding window around each tile that incorporates the

hybridization intensity of its neighboring tiles is used. For each tile, given its neighboring

tiles across replicates, Tilescope calculates its signal, the pseudo-median log-ratio value

S = median(logratio(i) + logratio(j))/2)

from all (i, j) pairs of tiles in the sliding window across arrays. Due to the small

sample size in each sliding window, whether the intensity distribution is normal or not in

a given window cannot be reliably assessed. Without making the normality assumption
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about the intensity distribution, Tilescope uses the nonparametric Wilcoxon signed-rank

test (Troyanskaya, 2002) to compare the test with the reference signal intensities and

quantifies the degree of significance by which the former consistently deviates from the

latter across the window. At the scoring step, Tilescope generates two tile maps, the signal

map and the p-value map. Two values are calculated for each tile position: the pseudo-

median of log-ratios, the signal, as a measure of the hybridization difference between test

and reference samples at this genomic location and the probability, the p-value, that the

null hypothesis (the local intensities of the test and the reference samples are the same)

is true. Feature identification. Given the tile map annotated with pseudo-medians and

p-values, Tilescope filters away tiles that are below user-specified thresholds. Retained

tiles are used to identify binding sites. Based on the observation that a tile is usually

too short to constitute a feature alone, the Max-gap and min-run method, modified from

the scoring scheme used in Cawley et al. (Cawley, 2004), groups together qualified tiles

that are close to each other along the genomic sequence into ’proto-features’ and then

discards any proto-features that are too short. To use this method, a user needs to specify

the maximum genomic distance (’max-gap’) below which two adjacent qualified tiles can

be joined and the minimum length (’min-run’) of a proto-feature for it to be qualified as

a feature. Experimental scoring variables. For all experiments, max-gap was set at 60

bp and min-run at 120bp. p-value cut offs were set at ≤ 1X10−4, with pseudo-median

cut offs of ≤1.25 (Sc Tec1 and Ste12, Sm Tec1 and Ste12), ≤1.10 (Sb Tec1) and ≤1.00

(Ca Cph1) used. Independent confirmation of the chIP chip procedure was performed

by qPCR for binding targets from across the range of binding strengths, plus two non-

enriched controls; all positives targets which gave PCR signals were enriched compared to

the negative controls.

5.4.5 Array Reproducibility

To determine the reproducibility of the chIP chip and high-density microarray methodology,

duplicate Ste12 and Tec1 binding experiments (each consisting of three additional biological
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replicates) were performed in S. cerevisiae at the beginning and end of the study. In this

second set of samples, Ste12 bound 290 targets, while Tec1 bound 357 targets. The two

duplicate datasets showed a high degree of congruence, with 97% (Ste12) and 95% (Tec1)

of the targets from the smaller dataset contained within the larger set such that nearly all

of the observed differences were due to variations near the signal threshold used (Figure

reffig:fig-regnet-tracksB.

5.4.6 Species-specific arrays and sequence independence

In order to compare the results of the species-specific arrays, we perform tests to ensure

that the actual sequences printed on the arrays did not significantly affect the hybridization

results and any subsequent binding sites scoring. To calculate the sequence-independent

array reproducibility, three biological replicates were chosen and alternating probes from

each replicate were separated into two new result files. These new files were then scored

independently for binding events using Tilescope. Comparison of the files showed that 93%

of the total binding peaks arrays were shared, with each pair of peaks differing in average

signal enrichment by ±5% and starting and stopping on average ±68bp from each other.

5.4.7 Genome Alignment and Standardization

As the S. mikatae and S. bayanus genome sequences are in draft form, difficulties arose

in directly comparing results from different species as regions from one species may not

necessarily be present in all. To guard against a lack of sequence representation influencing

our results, the genomes of all three species were aligned to ensure that orthologous

sequences were present in all three species for any bound region. This was performed

using conserved gene sequences and chromosomal synteny to position sequence contigs

from S. mikatae and S. bayanus onto the S. cerevisiae genome. Over 250 instances were

identified in which differences in binding between at least two of the three species were

attributed to species-specific gene annotation, missing sequences or contig breaks (often

due to the presence of repetitive Ty elements, which are bound strongly by both Ste12
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Figure 5.6: Differences in binding caused by (A) Ty elements (black bars) and (B) genomic
rearrangements (inversion pictured here, with the break points indicated by the vertical
black lines). In each case, the binding signal (log2 tagged versus untagged) of Ste12 in S.
cerevisiae (red), S. mikatae (blue) and S. bayanus (green). In each case, the positions of
homologous ORFs between species are indicated by the dashed lines.
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and Tec1, Figure 5.6). To prevent these ambiguous regions from affecting further analyses,

they were excluded from any subsequent calculations.

5.4.8 Measuring Threshold Effects

To examine the effect of setting different thresholds on the amount of binding conservation,

we set one species as the reference and examined the signal distribution of all regions in

the remaining two species (Figure 5.7). We next determined the number of orthologous

unbound regions in each of these two remaining species where the intensity was just below

threshold but still above background. In the case where 2 of 3 species had binding, we

showed that 6, 9, and 6 for S. cerevisiae, S. mikatae, and S. bayanus respectively had

regions that fit these criteria (Figure 5.7).

5.4.9 Motif Discovery and Scoring

MDscan (Liu, 2002) was used to generate the position weight matrices for both Tec1 and

Ste12. In all cases, input data to MDscan included the central 250 bp of each bound

region (corresponding to the center of the binding peak). For Tec1, the entire list of

bound regions from all species was sorted by signal intensity with the top 20 sequences

used to seed the algorithm. Employing the same strategy as listed above, failed to elicit

a significant match to the known Ste12 consensus sequence; however, upon restricting the

search in a species-specific manner, a suitable PWM was obtained for both S. cerevisiae

and S. mikatae, but not for S. bayanus. The S. mikatae PWM was used for all subsequent

analysis. Logos were prepared using Weblogo (http://weblogo.berkeley.edu/logo.cgi). To

compare between the bound and unbound orthologous regions, 1 kb regions corresponding

to the peak of each chIP hit for the bound regions and 1 kb regions directly upstream of

unbound homologs were selected for motif searching. 1 kb was selected to ensure all of the

potential regulatory space was searched; however, given that the bulk of the PWM matches

were 200 bp - 500 bp upstream of start, 1 kb maybe somewhat larger than necessary. The

program MAST (Bailey, 1998) was then used to score both the bound and unbound regions
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Bound in Two of Three Species 0<X<1.2 

Bound in SC, SM NOT SB 12 

Bound in SC, SB NOT SM 18 

Bound in SM, SB NOT SC 12 

Total below threshold but above background 42 

Bound in One of Three (at least one below theshold but above background) 0<X<1.2 

Bound in SC, NOT SM or SB 17 

Bound in SM, NOT SC or SB 19 

Bound in SB, NOT SM or SC 27 

Total below threshold but above background 64 

Bound in One of Three (both below threshold but above background) 0<X<1.2 

Bound in SC, NOT SM or SB 6 

Bound in SM, NOT SC or SB 5 

Bound in SB, NOT SM or SC 1 

Total below threshold but above background 18 

*where X refers to the target's log ratio signal intensity 
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Figure 5.7: (A) Distribution of orthologs of Ste12 bound regions from S. cerevisiae. (B)
Distribution of orthologs of Tec1 bound regions from S. cerevisiae. Blue bars, enrichment
signals higher than the threshold, red bars, below the cut off threshold. Background intesity
is equal to 0 (C) Total numbers of binding events which were below the signal enrichment
threshold, but which had signals which were detectable above background levels.
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(Ste12, P < 0.0001; Tec1, P < 0.001).

5.4.10 Testing Significance of the Relationship between Binding, Motif

Matching, and Conservation

To test the significance of the configuration of binding and sequence motif matching, each

chIP hit for each of the three species was assigned a two bit code, where the first bit

represented binding/no binding and the second bit motif match/no motif match. This

gave a 6 bit representation, so for example 1 1 1 1 1 1 means that the region was bound in

all three species, and there was a motif match in all; whereas, 101010 indicates the region

is bound in all three but that there are no matches to the motif. We next shuffled each

column of this table, which preserves the overall distribution but scrambles the relationship

between binding, conservation, and motif matching. We calculated a p-value by counting

the number of times that the frequency of the class i in each of the 1000 random datasets

exceeded the frequency of class i in the scored data.

5.4.11 Data Deposition

All array designs have been deposited in GEO under the accession numbers GPL4033,

GPL4034 and GPL4037 for S. bayanus, S. mikatae and C. albicans respectively. All array

results were deposited in GEO under the series accession number GSE5421. Detailed lists

of scored binding regions, conservation information, and motif scores are available from

http://www.gersteinlab.org/proj/regnetdiverge.
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Chapter 6

Cross Integration: A framework

for identifying cross patterns in

systems biology

6.1 Summary

The scale and complexity of available yeast systems-data presages the considerable scale-

up to humans and other organisms, and mining such complexity represents an exciting

challenge. Although numerous scientific discoveries have resulted from the integration

of these datasets, current schemas only allow integration in a single dimension lacking

the flexibility to accommodate data that do not share the same index. As an example,

understanding the relationship between the conservation score of target genes and their

associated transcription factor (TF) binding sites may elucidate factors in gene regulatory

evolution; however, as binding sites and gene targets do not share the same index, the two

types of objects features can neither be correlated nor “stacked.

Here, we introduce cross patterns to describe more complex, multidimensional

relationships that spans across differently indexed features. Further, we develop a method

Identifying Transitive Relationships (ITeR) to identify them. The key of ITeR is a connector
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matrix that maps one type of feature to another. Construction of a connector between

target genes and their associated TF binding sites is straightforward; however, we can also

formulate more complex connectors.

As an example, we used a connector matrix mapping small molecules to their associated

target proteins and applied ITeR to an available chemogenomics dataset. By integrating

1194 drug sensitivity profiles, 6 types of structural features, and 7 types of protein

properties, we identified a number of cross patterns spanning structural properties of a

drug and features of their target proteins. Some were intuitive, such as, the charge of

drugs and protein targets are often complementary. Others were less obvious, such as, a

shared sensitivity to both a particular type of environmental stress and to a particular

structural parameter of a drug. This finding suggests that one may be able to track sets

of physical properties underlying common stress responses.

6.2 Introduction

From gene regulation to kinase specificity to protein-protein interactions, the growth of

systems-wide S. cerevisiae datasets has led to rapid advances in our understanding of yeast

biology. The experimental innovations and computational techniques developed in yeast

presage the considerable scale-up coming for human from efforts such as the ENCODE

consortium (ENCODE, 2007). To fully take advantage of the depth and breadth of such

system-wide data, questions will increasingly rely on integrating heterogeneous forms of

data. Current integration schemes revolve around a “gene or protein centric” view where

individual datasets can be conceived of as data layers, and positions within the individual

layer are determined by referencing a gene or protein. In other words, the gene or protein

serves as the index to all of the individual data layers allowing the gene or protein to

be represented by a single data vector (Lan et al., 2002) or “stack” of all its features.

Integration then is a matter of performing operations on these stacks.

We can use “stacking” as an explanatory term to describe the creation of such data
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vectors; however, operations to combine these vectors or “stacks” have taken many non-

trivial forms including functional coupling (Fraser and Marcotte, 2004), phylogenetic

profiling (Marcotte et al., 1999; Pellegrini et al., 1999) and various machine learning

approaches including decision trees (King et al., 2003), Bayesian networks(Jansen et al.,

2003; Troyanskya et al., 2003), unsupervised approaches (Flaherty et al., 2005; Bergmann

et al., 2003), and many different kinds of kernel methods (Ben-Hur and Noble, 2005;

Lanckriet et al., 2004; Tsuda and Noble, 2004). These have provided a wealth of insights

into biological processes from gene essentiality (Seringhaus et al., 2006) to arsenic resistance

(Kelley and Ideker, 2005) and DNA damage (Haugen et al., 2004; Begley et al., 2004)

among many others. Further, through such integration, it has been shown that genes or

proteins that share similar properties (e.g. protein interaction partners) tend to share

similar functional roles (Kelley and Ideker, 2005; Tasan et al., 2008; Jansen et al., 2003;

Parsons et al., 2004; Wong et al., 2004).

6.2.1 Limitations of Current Techniques

The major theme of “stacking” techniques is that the features are “indexable”by a single

class of variables: gene or protein. This is an intuitive solution when all the data can be

stacked. That is, when they are of the same type and can thus be treated in a similar

manner (e.g. stored in the same relational table and queried directly). The limitation in

stacking is in capturing connections between features that are indexed on different kinds

of objects and thus cannot be stacked (Figure 6.1). To give a simple example, we pose

the following question: Is there a relationship between the conservation scores of genes

and conservation scores of their transcription factor (TF) binding sites?. It is clear that

properties of TF binding sites cannot simply be stacked on top of properties of targets as

they do not share the same index. However, despite the dissimilarity of object types, such

integration could potentially identify principles governing gene regulatory evolution that

would not be observable from just looking at the patterns of a single gene or single set of

binding sites. Similarly, identification of associations between properties of a small molecule
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(e.g. charge) and properties of the small molecule’s target protein (e.g. protein’s charge)

could provide additional details about general mechanisms underlying such interactions.

The means to identify this type of indirect, complex connection remains an open question.
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Figure 6.1: Graphical representation and comparison of ITeR algorithm. (A) Each stack
represents a single gene (green), and each slot in a stack is a feature of the gene or its
associated protein product. (B) This panel gives an example of connector matrix (cyan)
that maps gene targets (numbered green boxes) to their associated transcription factor
binding sites (lettered blue ellipses). The rows of the matrix are the genes (represented as
stacks in panel A) and the columns are binding sites (represented as stacks in B). A dot
denotes a mapping between a gene and a known binding site. The bottom panel shows
stacks of site-properties (blue) analogous to A. (C) Schematic of the ITeR algorithm (see
text for more details).

6.2.2 Connector Matrix

Here, we introduce the concept of a connector matrix to map between two differently

indexed datasets. In the transcription factor example, we can easily derive such a matrix
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where the rows are the gene targets and the columns would be the binding sites identified

through ChIP-Seq or other kinds of transcription factor mapping datasets. We developed

a new algorithm, Identifying Transitive Relationships or ITeR, to leverage this connector

matrix in order to systematically combine information from multiple tables with different

indices. This allows one to not only stack features in a single dimension but also to span

across multiple ones. Thus, ITeR captures a new type of relationship between different

types of data (e.g. gene and binding site properties) called a cross pattern. It is important

to note that this is not a correlation; there is no obvious way to correlate two differently

indexed objects. Rather, cross patterns are a means of achieving consilience between

different objects, and we formally define both cross patterns and the algorithm itself in the

text.

6.2.3 Applying ITeR to Chemogenomics

Finally, we applied ITeR to the earlier example of identifying relationships between small

molecule properties and properties of their target features. We first selected six molecular

descriptors frequently used in computational chemistry to characterize small molecules

(Todeschini and Consonni, 2000; Tetko et al., 2005): molecular weight, charge, the number

of aromatic bonds and rings, hydrophilicity, and hydrophobicity (MlogP), and seven

categories of systems data as features of the target proteins including physicochemical

properties, localization, known function and process categories from GO, topological

properties of the regulatory and protein-protein interaction networks, gene composition

features, and response to environmental stress. The connector matrix was derived from a

recent chemogenomics dataset generated by Hillenmeyer et. al. (Hillenmeyer et al., 2008)

that provides a potential mapping between over 300 drugs and their effect on almost all

potential target S. cerevisiae proteins.

For the purposes of this work, we assume this data allows us to infer a direct physical

connection between a drug and a target protein; there are some limitations to this

assumption that we discuss in considerable detail later. Despite these caveats, given a direct
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physical connection between a drug and a particular protein, it is perhaps intuitive that

physicochemical properties of a drug and the protein it targets would be complementary

(e.g. charge of drug and protein). Indeed, a large body of literature describing the

relationship of structural properties of small molecules and individual proteins exists.

However, the structural diversity of the compounds assayed in the Hillenmeyer dataset

provides the opportunity to investigate how changes in a structural parameter influence

the drug’s effect on a proteome-wide scale.

As described above, these relationships cannot be ascertained directly as molecular

descriptors cannot be indexed on a particular protein. Rather such comparisons must be

done indirectly through abstracting features of the small molecules and similarly features

of the proteins themselves. Here, we applied ITeR for such indirect integration to test the

hypothesis that the subset of proteins affected by a structural parameter may also share

physicochemical or other types of properties. This allowed us to pose questions in the form:

Does a property of a small molecule relate to properties of its protein? For instance, Do

charged proteins exhibit a tendency to interact with charged compounds?

We integrated the response of 1194 proteins that were subjected to 253 different small

molecules, six properties of these small molecules, and 7 different types of protein properties

to identify numerous drug property-protein property cross patterns comprising 10 types of

environmental stress, 2 gene composition features, 2 physicochemical properties, 1 network

topological property, and many function and process categories from GO along with strong

enrichment for particular localization categories.

6.3 Results

6.3.1 Identifying Transitive Relationships (ITeR)

We applied ITeR to identify cross patterns between properties of drugs and properties of

their target proteins. We first give a general, high-level overview of the ITeR algorithm

before describing the method more formally.

113



L = [DarkGreen, DarkGreen,

LightGreen, LightGreen]

Labeler: Transfers label 

on columns of 

previous datset to rows 

of new dataset.

Slicer: Partitions rows 

into dark and light 

green slices.

Discriminator: Returns 

a label for the columns

based on whether 

the slices (from the rows)

are sig di!erent.

G
E

N
E

S
G

E
N

E
S

G
E

N
E

S

SITES

REPEAT  ...

G1

G2

G3

G4

SITES

SITES

G1

G2

G3

G4

G1

G2

G3

G4

Figure 6.2: More details of the labeler, slicer, and discriminator.

ITeR has three generic types of functions: a labeler, a slicer, and a discriminator. The

labeler transfers a label from one dataset to another (rows to columns or the reverse). As

an example, drugs (rows) maybe classified as either high or low molecular weight, and the

labeler transfers this classification (high or low) to the columns of the new dataset (e.g.

drug response dataset). The slicer partitions this new dataset into separate “slices” on

the basis of the label generated in the previous step (e.g. treatments with high versus low

molecular weight drugs).

Finally, the discriminator applies some statistical test to the slices to generate a new set

of labels. In our example, proteins that had disparate responses to large and small drugs

were labeled the “sensitive” proteins and those that did not were labeled the “insensitive”
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proteins. More generally, the discriminator determines if there are any features in the

second dataset that “discriminate” among the labeled slices based on the parameter in the

first dataset. The entire process is iterated until all of the matrices have been used (Figure

6.2). As we will show more formally, such relationships can be thought of as transitive.

Basic Notation

We apply our algorithm to three matrices M1, M2, and M3, which contain drug properties,

a mapping between drugs and their effect on proteins, and protein properties, respectively.

It will suffice in this section to think of these matrices more abstractly. In the following,

we define some basic notation to support the labeler, slicer, and discriminator described

conceptually above, and in the next section we define the operations themeselves.

Let us consider a matrix M whose rows and columns are indexed by sets I and J

respectively. Compactly, this specification is written M : RI×J , where the colon is read

“is of type”. Elements are accessed using brackets: each element M [i, j], where i ∈ I and

j ∈ J , has a value x ∈ R. The set of indices are just named values, and in particular there

is no assumption that they be contiguous.

The labeling we provide also requires vectors of categorical values, which can be defined

in a manner similar to matrices. For example, if matrix M ’s columns are going to be labeled

either a or b, we can define the set of labels L = {a, b}. Then the notation L : LJ declares

a vector L indexed by j ∈ J and whose values are elements of L. For example, we might

have

L =
[
a a b a

]
, (6.1)

where we have assumed J has 4 elements.

We can also invert L to get the subset of columns with a particular label. Let Ĵa =

{j ∈ J | Lj = a} be the subset of columns J that were labeled a. Similarly, Ĵb = {j ∈ J |

Lj = b}. For labeling vector (6.1), we have Ĵa = {j1, j2, j4} and Ĵb = {j3}.

Next we define a notation for slicing matrices. Assume we have a matrix M : RI×J ,
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and consider a subset of rows I ′ ⊆ I and a subset of columns J ′ ⊆ J . Then, we let

M [I ′, J ′] denote the slice of matrix M such that M [I ′, J ′] : RI′×J ′ , where the values for

the (i, j)th element are equal to those in the original matrix. Note M [I ′, J ′] has no values

for i 6∈ I ′ or j 6∈ J ′. Often we need to extract a single row i which could be done with

the notation M [{i}, J ], but we allow omission of the curly braces and write simply M [i, J ].

Analogously, column j is extracted by writing M [I, j] instead of M [I, {j}]. When both

sets are singletons, this coincides with the notation for element access, M [i, j].

Formal Definition of ITeR

Thus far our notation has assumed a single matrix, but our algorithm iterates over a

sequence of datasets M1,M2, . . . ,Mn. Furthermore, it is required that the columns of

each matrix are indexed over the same set as the rows of the next. Thus, we refer to the

nth matrix’s rows as In−1 and its columns as In, instead of I and J as above. The (n+1)th

matrix’s rows would then be In, giving the desired correspondence between the columns

and rows of adjacent matrices. In summary, we have

M1 : RI0×I1

M2 : RI1×I2

· · ·

Mn : RIn−1×In

Similarly, the labeling of the nth matrix’s columns will be denoted Ln instead of just L,

and the set of columns labeled a in the nth matrix is denoted În
a , instead of Ĵa as above.

Labeling is the first step in our algorithm. On the nth iteration, we operate on matrix

Mn : RIn−1×In
, and use the labeling Ln−1 : LIn−1

of the previous matrix. Assuming

L = {a, b}, we can get the sets În−1
a and În−1

b , which give the columns of Mn−1 that

were labeled a and b, respectively. This labeling can be transferred directly to the current

matrix Mn because its rows are equal to the columns of Mn−1.
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The next step is to slice Mn along its rows such that each resulting partition has only

the rows with one label. These slices are Mn[În−1
a , In] and Mn[În−1

b , In]. For simplicity of

discussion, we have assumed the specific labels a and b, but in general there can be many

labels, leading to more than just two slices.

Finally, let fn denote the discriminator employed to label the columns of Mn. Various

statistical tests might be used (e.g. t-test or ANOVA for more than two slices), but the

general idea is that fn tests whether the values of each column in Mn differ amongst the

slices generated in the previous step. The output of fn is a labeling vector Ln : LIn
. (Again

for simplicity, we have assumed the columns of Mn are assigned the same labels L as those

of Mn−1, but in general different sets of labels can be used.) For each column j ∈ In,

the discriminator fn will compare the jth columns of the slices generated in the previous

step, Mn[În−1
a , j] and Mn[În−1

b , j], and assign a label to column j based on the result. For

example, if the values in column j differ significantly between the two slices, L[j] might be

set to a and otherwise it might be set to b.

The net input to the discriminator fn is the current matrix Mn and the labeling of the

previous matrix Ln−1. Its output is Ln. In other words, fn : RIn−1×In × LIn−1 → LIn
,

which means fn is a function taking two arguments, the first a matrix of type RIn−1×In
and

the second a labeling vector of type LIn−1
, and returns a labeling of type LIn

. Precisely

then, we have Ln = fn(Mn, Ln−1), which makes the transitive nature of our algorithm

apparent.

The final output of the algorithm defines a new type of relationship which we call a

cross pattern. A cross pattern defines a relationship between a row i ∈ I0 of the initial

matrix and a column j ∈ In of the final matrix such that j is labeled as being interesting

(according to the particular application) through the propagation of labelings from L0

through Ln. We notate the set of cross patterns between all the rows of the initial matrix

and all the columns of the final matrix by I0 7→ In. The specific cross pattern would be

defined as i 7→ j.

On the first iteration, numbered 1, an initial labeling L0 must be obtained from an
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external procedure. In the next section, we show that our specific application of ITeR does

not require this, or alternatively that it consists trivially of a single label. Thus, the initial

discriminator f1 differs slightly in that it does not compare values between multiple slices,

but uses another test to assign labels to the first set of columns.

Application of ITeR

We apply the ITeR algorithm to three datasets: drug property measurements M1 :

RIdprop×Idid
, the Hillenmeyer drug response dataset M2 : RIdid×Ipid

, and protein property

measurements M3 : RIpid×Ipprop
. Note these are structured as required, with the column

indices of each equaling the row indices of the next where the abbreviations are as follows:

did - drug IDs, dprop - drug property names, pid - protein IDs, and pprop - protein

property names. The goal then is to link M1 to M3 through M2 by testing for the presence

of transitive relationships resulting in cross patterns of the form drug-property/protein-

property.

We actually apply the algorithm to each row of M1, one at a time. Thus, the initial

matrix for each application of ITeR is M1
[
m, Idid

]
, where m is the current drug property

under consideration. A specific m is implicitly assumed in the subsequent discussion.

The discriminator for M1
[
m, Idid

]
determines whether each drug has a high or low

value for drug property m. It simply tests whether the value for each drug is above or

below the median over all the drugs. This produces the labeling Ldid : {lo, hi}Idid
, a vector

assigning the label lo or hi to every drug ID in Idid. Recall that Ldid can be inverted to

give Îdid
lo and Îdid

hi , the drug IDs assigned the label lo and hi.

The second dataset is M2, which gives the degree of growth defect of each target

subjected to each drug. The labeling from the first matrix is applied to M2 by slicing it

into the two matrices M2[Îdid
lo , Ipid] and M2[Îdid

hi , I
pid], a partitioning of M2 into the lo-

and hi-labeled drugs.

For each protein in Ipid, the columns of M2, we consider whether the protein’s affect

on growth is significantly different when subjected to the lo- versus hi-labeled drugs.
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Figure 6.3: Illustration of ITeR algorithm. Drug property matrix (green) with the drugs
color-coded by molecular weight (light green high and dark green low. Connector matrix
(cyan) with a zoom in panel on column T1 showing the disparate response to high and low
molecular weight compounds (peak height corresponds to how affected the protein was by
the drug). Protein property matrix (blue) showing the sensitivity of R1, R4, and R5 to
the labeling on the target proteins.
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This produces the labeling Lpid : {sensitive, insensitive}Ipid
. In other words, we classify

proteins as either DP-sensitive or DP-insensitive, where DP is replaced with the specific

drug property m under consideration.

Analogously, the third dataset M3 gives a measurement of many protein features for

every protein. As with M2, we slice M3 into the two matrices M3[Îpid
sensitive, I

pprop] and

M3[Îpid
insensitive, I

pprop], containing the rows with just the sensitive- and insensitive-labeled

proteins.

As inM2, for each protein property in Ipprop, we consider whether the protein property’s

measurement is significantly different between the sensitive and insensitive targets. This

produces the labeling Lpprop : {yes, no}Ipprop
. Now we can conclude through transitivity

that any yes-labeled protein property is sensitive to the original drug property m under

consideration as shown in Figure 6.3. We term this transitive relationship between each

drug property and each protein property a cross pattern. This then is the heart of the

algorithm. There is no means to directly correlate these two types of data. Further there

is no matrix that directly involves both indices; however, by using the Hillenmeyer dataset

as a connector matrix and employing ITeR, one can begin to explore the relationship

between these two disparate and differently indexed data types.

We seeded the algorithm with six different drug properties. By changing the initial

Idprop and repeating the entire procedure, we can find cross patterns between multiple

drug properties and protein properties, Idprop 7→ Ipprop. An individual cross pattern would

be represented as d 7→ p where d ∈ Idprop and p ∈ Ipprop.

6.3.2 DP-sensitive Proteins

A summary of the number of the proteins found to be sensitive to each type of drug

property is provided in Table 6.1. Cross patterns are classified as either: direct, secondary

or complex, based on the type of protein property they refer to. Direct cross patterns arise

from both physicochemical properties, such as charge and primary sequence features, such

as, codon bias. Cross patterns derived from secondary characteristics include localization,
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Figure 6.4: Plots of DP-sensitive proteins. Plots were generated by first segmenting small
molecule treatments into high (above median, blue) and low (equal to or below median,
red.) The x-axis is the growth defect score of the particular protein after treatment with a
small molecule and the y-axis is the density plot. The purple region shows the overlap
between the two distributions. The smaller this overlap the greater the difference in
response to high and low-labeled drug treatments and the more ”sensitive” the protein
is to the value of the particular drug property.
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MW Ms nAB ARR Hy MlogP
MW 77 170 119 143 153 261
Ms 9 102 136 162 158 253
nAB 5 13 47 95 126 229
ARR 4 10 22 70 145 253
Hy 6 26 3 7 82 249
MlogP 12 45 14 13 29 196

Table 6.1: Matrix showing the total number of proteins sensitive to each drug property.
For each drug property pair (row, column), we report both the number of proteins that are
sensitive to both properties (lower triangle, intersection) and the total number of proteins
sensitive to either property (upper triangle, union). The diagonal is the total number of
proteins that were sensitive to the particular drug property.

interaction network topology, functional categories, and finally complex cross patterns

include more subtle properties such as stress response. Below, we show several examples

of cross patterns that both recapitulate expected observations and suggest new indirect

relationships between molecular descriptors and protein properties (Figure 6.5).
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Figure 6.5: Graphical representation of cross patterns. The top portion of the tree are the
drug features represented by different shapes. The bottom portion of the tree corresponds
to the different types of protein properties: direct (physicochemical properties and gene
feature composition), secondary (localization, network statistics, and GO terms), and
complex features (environmental stress response). A line connecting the top and bottom
portion are cross patterns.
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6.3.3 Direct properties of small molecules are sometimes mirrored by

those of their protein targets

Although cross patterns are identified indirectly, there is a physical basis underlying why

physicochemical properties of small molecules may mirror physicochemical properties of

their protein. In order to disrupt a protein’s function, a small molecule must either

bind directly to the protein or act indirectly by interfering with another component up

or downstream. In the former case, there is a logical intuition that the composition of the

small molecule would constrain or limit the types of proteins that it could affect or more

positively that certain properties of a small molecule would be more favorable in disrupting

a particular flavor of target proteins.

As an example, membrane proteins have a distinct polarity moving from the hydrophilic

head group to hydrophobic tails. This unique composition disallows the entrance of most

polar compounds while encouraging passive diffusion of hydrophobic compounds. Thus, it

might be expected that membrane proteins may be more affected by the hydrophobicity

of a compound, and indeed we identified a cross pattern, explained in more detail below,

which recapitulated this observation.

A standard means of identifying membrane proteins is through measuring a protein’s

hydrophobicity (GRAVY score). In this scoring function, each amino acid has been assigned

a hydropathy value based on its free energy change when moved from a hydrophobic

solution to water. The highly polar arginine has the lowest score, and isoleucine has the

highest. By summing over all residues, GRAVY scores provide a measure of hydrophobicity

and are used to predict membrane-spanning domains and exposed regions (Doolitte, 1982).

We find that the 102 charge-sensitive proteins had a large proportion of high GRAVY scores

indicative of membrane protein enrichment and were more affected by compounds of low

charge than highly charged compounds. Since low charge compounds would be expected

to more easily interact and thus more easily disrupt the function of membrane proteins,

this finding is concordant with membrane protein physiology.
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Aromatic-ring (AR) sensitive proteins also exhibited a complementary physicochemical

property. The seventy AR-sensitive proteins had a higher degree of aromaticity than the

AR-insensitive set. Although we do not know enough about the placement of the aromatic

residues on the protein itself, it is true that aromatic packing is of particular importance

in aromatic proteins. Aromatic compounds would be particularly effective in disrupting

aromatic protein function because of their ability to disrupt these stacking interactions.

AR-sensitive proteins had both a higher frequency of aromatic residues and a higher

frequency of two sequence composition scores: optimal codon usage and codon bias scores.

Primary sequence features can often serve as proxies for a physicochemical property. Using

the above as an example, aromaticity can be estimated by counting the number of aromatic

residues; however, it can also be measured indirectly by looking at the optimal codon usage

and codon bias scores. The conceptual basis behind both scores is that areas of higher codon

adaptation may represent optimizations or high selective pressure. Aromatics represent a

special case as the aromatic amino acids have fewer possible codons. Tryptophan has

just one codon, so it is always optimal, and phenylalanine and tyrosine both have only

two. The lack of degeneracy itself has been thought to reflect the importance of aromatic

interactions for biological function as the importance of these types of optimizations was

vividly illustrated in a recent paper where the polio virus was almost completely crippled

by recoding its genome with a non-preferred set of codons (Coleman et al., 2008).

6.3.4 Secondary Characteristics

We next examined cross patterns related to secondary characteristics of the protein. These

include localization, interaction network topologies, and functional categories. Since a

small molecule must be able to reach its protein to disrupt function, physiological aspects

of a protein’s cellular compartment can constrain physicochemical properties of a small

molecule. Thus, the localization of the protein will have a profound effect restricting

the entrance of compounds with one set of physicochemical characteristics and enhancing

favorable access of others. Likewise, topological properties of the networks, such as
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Protein 

Features Drug Features MW Charge # of Aromatic Bonds
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Rings Hydrophilicity MlogP
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Table 6.2: Summary of cross patterns between drug and protein features

degree and betweenness, can be used to infer additional constraints on the physicochemical

property of the drugs (Kim et al., 2007). In particular, hubs in interaction networks have

been shown to be more disordered as this allows more potential interaction partners (Kim

et al., 2008). Using ITeR, we identified global cross patterns between the physiological

conditions encountered in the proteins’ compartment and the compound’s corresponding

physicochemical properties. As an example, we observed that proteins, which responded

differently to drugs that were charged as opposed to those that were uncharged, are more

likely to localize to the Golgi (highly hydrophobic) or the nucleus than proteins which were

as affected or unaffected by charged as with uncharged drugs (charge-insensitive proteins).

Similarly, MW-sensitive proteins showed an enrichment to be localized to the nucleus, AB-

sensitive to the mitochondria, and both AB-and MlogP-sensitive to the vacuole. Further,

we found that AR-sensitive proteins had higher degree in the regulatory interaction network

reinforcing the importance of disrupting aromatic interactions in this class of proteins.

It is sometimes important to identify how to disrupt a particular functional class

(e.g. cell wall synthesis) irrespective of a specific protein (Begley et al., 2004). Thus,

by calculating the GO enrichment within the drug sensitivity sets, we could see whether

disruption of a specific functional class could be related to the compounds’ physicochemical
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properties. We found enrichment in RNA metabolism for both AR and AB-sensitive

proteins, in DNA binding for AR and hydrophilicity-sensitive proteins, and protein

binding for MlogP-sensitive proteins. In addition, charge-sensitive proteins showed an

enrichment in transferase activity and MlogP in transcriptional regulator activity and

protein catabolism.

We have summarized the individual cross patterns; however, we also searched for

more general trends amongst all the cross patterns. As an example, the AR-sensitive set

was enriched in aromatics (physicochemical), had higher scores for frequency of optimal

codon usage and codon bias (composition), had a high degree in the regulatory network

(topology), and finally was enriched in DNA-binders (function). The flexibility of the

aromatic residues partially explains the higher degree observed in the regulatory network,

and further integrating across all cross patterns suggests that to disrupt DNA-binders (such

as transcription factors) compounds should most likely be aromatic. Thus, by looking at

these cross pattern profiles a picture begins to emerge of the overall relationship between

drug-features and protein-features.

6.3.5 Complex Protein Properties: Environmental Stress Response

For physicochemical properties, localization, network topology, and functional classes, the

cross patterns are easy to interpret from a purely physical or physiological basis. To see

if we could use these cross patterns in a more a subtle way, we searched for transitive

relationships with a more complex and less obvious protein feature: environmental stress

responses. Although it is well-known that disparate types of stress can result in a similar

response, the mechanistic reasoning is unclear. We hypothesized that perhaps there is an

underlying set of molecular properties unifying shared portions of the stress response, and

moreover that the cross patterns derived from ITeR could be useful in identifying some

of these properties. By applying ITeR to a dataset that measured the change in gene

expression of yeast subjected to a number of different types of stress (Gasch et al., 2000),

we identified cross patterns comprising ten different types of stress including amino-acid
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starvation, heat, hypo, and hyper-osmotic shock, which we describe below in more detail.

6.4 Discussion

In this study, we presented a method to identify cross patterns between small molecule

descriptors and seven classes of systems data. We showed that physicochemical properties

of drugs often complement physicochemical properties of their proteins or physiological

properties of the protein’s compartments and further overlap with particular protein

functions or processes.

As an example, we identified forty-seven proteins that were sensitive to compounds

containing aromatic bond (AB-sensitive proteins) and showed that these proteins have a

tendency to be localized to mitochondrion and the vacuoles. From this cross pattern, one

could infer that access to mitochondrial or vacuolar proteins and thus to mitochondrial

or vacuolar function is partially determined by the aromatic nature of the compound.

Interestingly, a recent drug screen was performed to search for compounds that decrease

radical oxygen species production and concomitantly increase mitochondrial oxidative

phosphorylation (Wagner et al., 2008). After testing 2500 compounds for this activity,

they identified six highly aromatic compounds as being particularly effective in modulating

these mitochondrial functions. Cross-referencing with the Hillenmeyer set showed that

three of these: nocodazole, mebendazole, and paclitaxel had been profiled on the deletion

collection. Further, all three were in the top 20% for number of aromatic bonds within

the Hillenmeyer set. This experiment thus provides support for the utility in identifying

structural parameter sensitivities of functional classes.

6.4.1 Implications of Responses in Environmental Stress

In addition, to these perhaps intuitive cross patterns, we identified environmental stress

response cross patterns requiring a more subtle interpretation. By looking at these cross

patterns, we investigated whether molecular properties can tease out hidden similarities
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that unify common stress responses or conversely provide a more mechanistic reasoning

for the observed specificities (dissimilarities) in responding to stress. These specificities

were observed in the early nineties when Ramoter and Masson deleted genes known to be

involved in generalized environmental stress response (ESR) (Masson and Ramotar, 1996).

Previously, it had been thought that such perturbation would then result in wide-spread

sensitivity to stress; however, they noted particular deletions corresponded to specific types

of stresses. Gasch et. al. (Gasch et al., 2000) have since performed a more comprehensive

study subjecting yeast to 14 different types of environmental stress (e.g. heat shock,

oxidative, etc) and profiling genome-wide changes in gene expression. The Gasch study

showed that although there is a “core” of yeast ESR-regulated genes that respond in a

characteristic manner to a diverse array of stresses, there are also “physiological themes”

that regulate condition and gene-specific expression programs. In total over 900 genes

were shown to be activated or repressed in response to environmental stresses. Despite the

enormous quantity of data collected open questions remain regarding the commonalities

and specificities of stress response, their mechanistic underpinnings, and regulation, and

we hypothesized that an underlying physical basis may be observed. Below, we provide

an interpretation of these environmental stress response (ESR) cross patterns within the

context of three general principles established by Gasch et al in their landmark set of

experiments (Gasch et al., 2000). (1) Specific sets of genes have coordinated behaviors in

response to disparate typs of stress, (2) isozymes are often involved in different types of

stress-response, and (3) different treatments resulting in the same type of stress often work

through the same stress response pathway (Hohmann and Mager, 2003) (see Table 6.3.

ESR-regulated proteins exhibit specific drug feature-sensitivities

Analogous to “physiological themes,” there are several cases where ESR-regulated genes

including TOR1, CYC7, GPM2, and SSA3 also exhibited strong preferences for a particular

structural determinant. Further, each of these proteins is known to play a stereotypical

role in one or more stress responses. As an example, TOR1 (protein of rapamycin) is a
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Gasch Results Our Results Implications Example

Specific sets of genes 
have coordinated 
behaviors in response 
to disparate types of 
stress (ESR-regulated).

ESR-regulated genes 
exhibit specific DP-
sensitivities.

DP-sensitivities 
may allow the 
tracking of an 
underlying 
molecular 
reasoning for 
similarities and 
dissimilarities in 
ESR. That is, they 
may form 
Equivalence 
Groups with Env 
Stress.

TOR1, CYC7, GPM2, SSA3 
stereotypical stress 
response and DP-sens.

Isozymes are often 
involved in different 
types of stress 
response.

Isozymes exhibit 
different DP-
sensitivities. 

Subtle differences 
in amino acids may 
render one 
isozyme more 
suitable than 
another under a 
given set of 
conditions. DP-
sensitivities may 
allow tracking of 
underlying 
biochemical 
differences.

GGT1 exhibited charge 
sensitive, but GTT2 
showed no specificity

Different treatments 
resulting in the same 
type of stress often 
work through the same 
stress response 
pathway.

Different treatments 
resulting in the same 
type of stress exhibit 
different DP-
sensitivities.

Different 
mechanisms of 
similar ESR can be 
detected vi 
differential DP-
sensitivities.

H202 and meniadione 
have different DP-
sensitivities and subtle 
differences in their 
response to osmotic stress 
have since been identified.

Table 6.3: Implications of complex cross patterns for environmental stress response
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kinase that controls response to amino acid starvation, and we show that it also exhibits

a sensitivity to a compound’s charge. Similarly, SSA3 is involved in protein unfolding

and heat shock response and is MlogP-sensitive. Thus, one intriguing possibility is that

structural determinants could form equivalence groups with environmental stresses. That

is, one can use the connection with specific drug features to track an underlying molecular

reasoning for similarities and conversely dissimilarities in stress response. Here, we have

only begun to identify such relationships, and future work will be required to unravel the

mechanistic reasoning underlying the stress response specificity and structural determinant

sensitivity.

Isozymes exhibit different DP-sensitivities

Isozymes have different amino acid sequences, but they perform the same chemical reaction.

Interestingly, one of the hallmarks of the general environmental stress response (ESR) in

yeast is differential regulation of isozymes (Hohmann and Mager, 2003). That is, only

one of a pair of isozymes has a known role in a stress response, or both may have

roles but each under a different set of conditions. As an example, GPD1 is important

in responding to osmotic stress; whereas, GPD2 seems to be activated under aerobic

conditions. The mechanism governing this differential regulation remains unknown. One

intriguing possibility is that the isozyme’s subtly different amino acid sequence results

in dissimilar biochemical properties that may render one isozyme more suitable than

another under a given set of conditions. In keeping with this theory, we do observe

differential drug property sensitivities between several pairs of isozymes. As an example,

the non-ESR regulated glutathione transferase, GTT2, exhibits charge-sensitivity, but

GTT1 showed extremely low variance and there was almost no-specificity in its response

to drug-treatments. This suggests that differential drug sensitivity may prove useful in

tracking these underlying biochemical differences and how they impact stress response

regulation.
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Different mechanisms of similar ESR can be detected via FD-sensitivities

It has been shown that different perturbations can sometimes induce the same type of

stress (O’Rourke et al., 2002). As an example, oxidative stress can be triggered in yeast

through the application of either hydrogen peroxide or meniadione among others (Hampsey,

1997). Further, despite the different reactive oxygen species (ROS) generated by each of

these oxidants, both menadione and hydrogen peroxide seemed to show almost identical

expression profiles suggesting a remarkably similar response despite the disparate properties

of the ROS generated (Gasch et al., 2000). We identified a cross pattern between the

drug property MlogP and hydrogen peroxide treatment; however, we found no significant

cross pattern between the MlogP and the meniadione profile. Interestingly, differences

in response were identified among hydrogen peroxide, menadione, and two other types of

oxidants were reported in S. pombe Mutoh et al. (2005). One potential explanation then is

that differences in structural parameter sensitivities may reflect the specific requirements

in responding to each of the different types of reactive species generated. This suggests

that cross patterns may prove useful in teasing apart differences between closely related

stress responses.

6.4.2 Guilt-by-association to predict function or mechanism of compound

action

Akin to building a compendium of a protein’s response to small molecules, the cross

patterns described can be aggregated to generate a profile of a protein’s sensitivity to

structural parameters across a number of different small molecule applications (drug

property-sensitivity profiles). There are numerous ways to characterize small molecules;

nevertheless, using just 6 well-characterized molecular descriptors, we see evidence that

proteins whose sensitivity profiles overlapped were also functionally similar. Thus, it

is likely that by applying traditional “guilt-by-association” rules using these profiles

(Pellegrini et al., 1999), we can generate hypotheses about the role of uncharacterized
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proteins.

A large number of the DP-sensitive proteins are of unknown function, and one of the

most intriguing is YCR101C, which is both molecular weight and aromatic-bond sensitive.

Five proteins had a similar DP-sensitivity profile to YCR101C including GUP1, which

localizes to the membrane and is suspected of being a glycerol transporter and a known

GPI remodeler. The shared DP-sensitivities also mapped to osmotic stress response and

a proclivity to be localized to the vacuoles. The physiological role of the vacuole during

osmotic stress is unclear; however, it is known that phosphoinositides quickly accumulate

stimulating actin patch-formation and that disruption of this pathway causes abnormal

vacuole morphology. Based on these observations, we would suggest that YCR101C plays

some role in cytoskeletal reorganization in the vacuole. Indeed, YCR101C also has several

known interacting partners including GPI1, a membrane protein involved in N-GlycNac

synthesis and ARP1, a cytoskeletal element. Finally, in MIPS, YCR101C is reportedly

similar to a vacuole-localized glycoprotein making the inference from the sensitivity profile

seem likely.

Although the number of MW-sensitive proteins that localized to the mitochondria was

too small to pick up a general trend, we did observe that the mitochondrial protein

YAL008W was markedly more affected by smaller compounds (P < .01) than larger

ones (Figure 6.4). YAL008W’s function is unknown although interactions with two

other mitochondrial proteins: YML086C, which plays an important role in protecting

against oxidative stress, and YPL186C, which has some as yet uncharacterized role in

ubiquitination, have been identified in large-scale screens. All three of these mitochondrial

proteins are localized to the outer mitochondrial membrane. These other interactions

are particularly interesting given that MW-sensitive proteins also have a tendency to be

affected by hyper-osmotic shock.

Although we used only 6 molecular descriptors, including additional features of these

small molecules can allow structure-based profiles to be built. Such profiles can be used

both to infer new knowledge regarding mechanism of action, specificity of response, and

132



through a nearest neighbor approach the function of currently uncharacterized genes and

the discovery of novel functions of pre-existing ones

6.4.3 Connector Matrix Interpretation
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Figure 6.6: Schematic of a chemogenomics profiling experiment, see text for details

Connector matrices can range from the simple and straightforward to subtler

connections. In order to use the Hillenmeyer dataset (Hillenmeyer et al., 2008) as a

connector matrix, we have made several simplifying assumptions in the mapping of drugs to

their associated target proteins. In particular, we have treated ORFs as being synonymous

with their protein product and for clarity used the terms protein and protein property

as opposed to ORF and ORF property. However, the actual measurements in the drug-

response datasets are not based on proteins. Precisely, rows of this matrix represent a

heterozygous deletion strain and each column is a separate small molecule treatment.

Each element of the matrix is the fitness defect of that particular strain treated with a

particular compound where fitness defect is quantified as the difference between growth

under wild type conditions and in the presence of the compound. Hillenmeyer et. al

(Hillenmeyer et al., 2008) subjected the heterozygous yeast deletion collection (only one
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copy of ORF is deleted) and homozygous collection (both copies of ORF deleted) to over

300 structurally diverse compounds and quantified the difference between growth under

wild type conditions and in the presence of the compounds. We used only treatments of

the heterozygous collection as fitness defects of heterozygotes have been found to serve as

an indicator of the ORF’s involvement in the compound’s mechanism of action (Lum et al.,

2004; Giaever et al., 1999, 2004; Hillenmeyer et al., 2008). The simplest interpretation stems

from a phenomenon termed the haploinsufficiency effect (Giaever et al., 1999; Deutschbauer

et al., 2005). As heterozygous deletions (only one copy remaining) natively produce less

gene product than the wild type strain, it is expected that adding a compound targeted

to that gene product should result in a more severe loss of function (in this case measured

by growth) than in the wild type (Deutschbauer et al., 2005). However, it is important

to note that fitness defects alone do not provide sufficient evidence to infer whether the

mechanism of action is physical binding between the small molecule and target protein.

Target disruption could also occur through more downstream processes, or the target itself

could be lipid, DNA, or RNA rather than a protein. We performed extensive filtering on

both the drug and protein set to remove drugs that acted on too few or too many proteins

and correspondingly proteins that were affected by large numbers of drugs (see Materials

and Methods) to reduce problems arising from non-specificity of drug-protein interactions.

6.4.4 Generality of ITeR

The amount of available multidimensional data (unstackable features) will continue to

grow. A number of current datasets could be formulated in terms of connector matrices

and thus be amenable to an ITeR type of approach. The complexity of the connector

matrix can range from the straightforward, such as mapping transcription factors to their

binding sites, to the more complicated derivation, such as chemogenomics datasets to

tissue or tumor-specific expression surveys. Whereas, direct integration only allows for

identification of tissue-specific or tumor-specific expression, ITeR can connect such tissue

properties potentially to sets of gene properties or metabolites. One can even potentially
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integrate features of disease or clinical state alongside metagenomics data cataloguing a

particular person’s microbial community structure perhaps uncovering additional instances

where microbes are responsible for things like chronic inflammatory response or other

microbial-induced disease progression.

6.5 Conclusion

At the moment, yeast represents a special case in terms of the range of available system-

wide datasets; however, yeast is a harbinger for other systems. Technological and

computational advances are leading to a dramatic increase in system-wide datasets for

many different model organisms. The unprecedented scale and diversity of these datasets

present both opportunities for new discoveries and interesting computational challenges.

Straightforward integration, as currently done in genomics, does not provide enough

flexibility when the dataset can no longer be indexed on a gene or protein or even a

single class of variable. We have introduced a method to discover transitive relationships

between differently indexed metadata and have used this formalism to identify cross

patterns connecting small molecule descriptor sensitivities to disparate types of systems-

wide features. Further, we showed that this type of integration can reveal novel and

non-obvious connections between many different and not necessarily gene-centric types of

data. In a broader context, to fully leverage the coming deluge of systems-wide datasets

will require the development of new types of spanning techniques as more and more model

organisms join the ranks of yeast in terms of both quantity and diversity of data. Mining

such complexity requires a robust infrastructure and new computational models; many rich

and exciting discoveries remain.
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6.6 Materials and Methods

6.6.1 Preprocessing ORFs

Yeast strains with defects in transport machinery, lipid permeability, and drug efflux

pumps, etc. (Bauer et al., 1999) will be sensitive to a wide range of drugs; however,

their effect is non-specific and any connections we observe with this class is likely to be

spurious (DeRisi et al., 2000). Thus, we first filtered multi-drug resistant ORFs using

identical criteria as in (Hillenmeyer et al., 2008). Analogously,if the variance of a single

protein’s growth scores across all small molecule perturbations is too low, one would only

be correlating noise. Therefore, we computed the variance of growth scores for each ORF

and selected those with a variance greater than 1.5. There were 1194 ORFs remaining

after this two-step filtering. After removal of ORFs not in the protein-feature datasets (see

below), the final set is 1170. Finally, there were a few cases where the ORF grew better in

the presence of a particular drug suggesting resistance; however, we set the value of these

treatments to 0 effectively excluding this effect from the analysis.

6.6.2 Preprocessing Small Molecules and Calculating Molecular Descriptors

Hillenmeyer et al. tested 291 unique compounds on the heterozygous deletion collection

under a number of different concentrations (Hillenmeyer et al., 2008) . As the concentration

of a drug increases, its effects can become less specific as it approaches toxicity. Since

we are most interested the specific response, we selected profiles generated using the

minimum drug concentration. We then converted the small molecules to text strings using

the SMILES format (James et al., 2005). Although many different properties of small

molecules can be calculated from SMILES, we chose 6 for their interpretability, diversity

of measurements, and wide-spread use in computational chemistry (Leach and Gillet,

2003); the molecular weight, charge, number of aromatic bonds, number of aromatic rings,

hydrophilicity, and MlogP of each compound was calculated (Tetko et al., 2005). Only

compounds with no missing values were kept. Thus, the final dimensions are 281x1170
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and 6x281, respectively. However, this analysis could easily be expanded to include other

parameters.

6.6.3 Significance Testing

As shown formally in the text, we performed two rounds of significance testing. First, we

calculated a sensitivity score for each protein and similarly, we computed a sensitivity score

for each protein property. For the protein sensitivity, the drugs were first partitioned into

two classes based on the median (e.g. high and low molecular weight drugs). Then the

sensitivity score S is then calculated as follows:

S =
X̂H − X̂L

SX̂H−X̂L

where X̂H is the mean growth score for a protein after all treatments with drug labeled as

high for the particular feature and SX̂H is the standard error. Similarly, X̂L is the mean

growth score for a protein after all treatments with drug labeled as low for the particular

feature and SX̂L is the standard error. Since the protein propertiess encompassed both

categorical and continuous measurements, a slight modification was required to calculate a

sensitivity score for the categorical variables. These were transformed into a series of binary

variables (e.g. localization to nucleus, cytoplasm, etc). We then used these new features

to calculate the expected frequency from the background distribution and compared this

expected frequency with the distribution for each of the six drug property sensitivity classes.

To determine the significance of enrichment, we used the hypergeometric distribution. Any

number of tests could be used to compute significance for the continuous features; here we

use the Welch’s t-test or Wilcoxon for bimodal distributions.

6.6.4 Protein-features

We used seven different types of systems-data. Physicochemical properties of the ORFs

were obtained from SGD including molecular weight, isoelectric point, protein length,
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GRAVY (hydropathicity index), and aromaticity (Nash et al., 2007) as were the gene

composition features as follows: codon adaptation index (CAI) and frequency of optimal

codons (FOP) and GO categories (Ashburner et al., 2000). The localization was taken from

(Huh et al., 2003). Compartments were aggregated into nine categories, and binarized as

described above. We used two types of networks: protein-protein interactions and gene

regulatory (Stark et al., 2006) (genetic interaction and phosphorylome (Ptacek et al., 2005)

had too little overlap with the protein set to be able to determine significance; results not

shown). All topological statistics (degree, clustering coefficient, betweenness, eccentricity,

shortest path) were computed for each node in the network using tYNA (Yip et al., 2006).

The environmental stress response data were from (Gasch et al., 2000). If there were fewer

than 5 missing values in a given row, they were imputed by computing the row mean. If

there were more than 5 missing values, the ORF was deleted from the analysis.
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Chapter 7

Future Outlook: Mining Biological

Complexity

Sheer brute force sequencing is allowing questions to be asked at a scale unimaginable even

several years ago. With so-called second generation sequencing technologies, sequencing

capacity will only continue to increase (Mardis, 2008; Salzberg, 2008). Such capabilities

have allowed groups to explore new applications for sequencing including identifying

structural variants (Korbel, 2007), profiling transcription (Nagalakshmi, 2008; Sultan,

2008), mapping transcription factor binding sites (Robertson, 2007; Rozowsky, 2008), and

cataloguing microbial and viral genetic content of entire ecosystems (Dinsdale, 2008).

The theme reinforced in all of these studies is that from simple components emerges

unimaginable complexity. The ability to decipher it requires a deep understanding of

the context and combinatorial interactions from which it emerges. Mining such complexity

offers rewards commensurate with the difficulty of the challenge; for as we continue to

develop the capacity to read the genetic code, we also acquire more tools to edit pieces of

it and even write some it ourselves.
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