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Transcription of DNA into mRNA is a first step towards translating the genetic code 

of an individual into functional proteins necessary for life. By regulating transcription 

levels, a cell can quickly react to changes that may otherwise negatively affect its long-

term viability. Understanding this process is a central theme to understanding the very 

fabric of molecular biology itself. High-throughput techniques combined with 

computational, in silico methods have allowed the field to advance passed the Central 

Dogma of molecular biology and to expand beyond the limitations of studying the 

mechanisms of transcription regulation at a small number of loci. Instead, transcription 

can now be queried on a genome-wide basis by examining transcription factor binding, 

mRNA abundance, chromatin remodeling, and other regulatory mechanisms. In short, the 

past five years have seen the rise of several new assays to probe transcription, but each 

assay has various biases and other nuances that must be understood to accurately analyze 

and interpret experiments as well as enable proper methods and tools to be developed. 

My graduate work has focused upon understanding these various assays and determining 

the best way to integrate the resulting data to gain a more holistic view of transcription 

regulation. This dissertation is focused upon bioinformatics approaches to study 

transcription regulation at multiple scales through data integration, computational 



 

analysis, and the design of new software tools. Chapter 2 focuses on understanding the 

different reference DNA types that were set forth for scoring ChIP-Seq experiments and 

their downstream effects on calling significant regions, or peaks. Chapter 3 takes the 

lessons that we learned from Chapter 2 when studying ChIP-Seq and applies them to a 

complex with very different properties than ChIP-Seq had been applied to previously: 

four subunits of the human SWI/SNF chromatin remodeling complex. In Chapter 4, we 

analyze data generated from an RNAPII ChIA-PET experiment to hypothesize different 

models of transcription and how DNA folding affects the formation of protein complexes 

by integrating these data with other sources. Chapter 5 discusses Coupled Analysis of 

Polymerase Binding and Expression (CAPE), a Java program designed to identify 

transcripts with an unexpected relationship between transcription factor binding at the 

promoter and mRNA abundance. Finally, Chapter 6 concludes this dissertation with a 

summary and discussion of possible future directions. 
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Chapter 1: Background and Dissertation Outline 

1.1 Introduction 

 The sequencing revolution has not been as simple as replacing older genome-wide 

experimental methods with newer methods. The transition to sequencing-based methods 

and the corresponding increase in the quality and amount of data available requires new 

computational analysis methods as well as renewed focus on experimental and analytical 

design. In my opinion, these new and exciting technologies require the roles of wet-lab 

biologists and bioinformaticists to shift. While the traditional perception or notion of a 

computational biologist has been someone who designs new algorithms and analytical 

methods in the background to be applied by the community, when working with new 

assays a computational biologist must involve himself or herself in a much earlier stage 

of the process and should have a working knowledge of biological underpinnings. In 

short, high-throughput experiments and next-generation sequencing have opened a world 

of possibilities, but each experimental assay has its own quirks and analysis must be 

customized to fit the biological question being asked. This is, in a sense, the mission of 

the computational biologist during the era of next-generation sequencing. Although a 

challenging task, the advantage is that very complex systems can begin to be teased apart. 

This dissertation focuses on one such complex process as its overarching theme: 

transcription of mRNA from DNA in the eukaryotic cell. 
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1.2 Understanding Transcription in the High-Throughput Age 

 Transcription of DNA into mRNA is a first step towards translating the genetic 

code of an individual into functional proteins necessary for life. Understanding this 

process is a central theme to understanding the very fabric of molecular biology itself. 

High-throughput techniques combined with computational, in silico methods have 

allowed the field to advance beyond the Central Dogma of molecular biology first 

described by Francis Crick (1) and expand beyond the effects of transcription at a small 

number of loci. Instead, now transcription can be queried on a genome-wide basis by 

examining transcription factor binding and mRNA abundance. Chromatin 

immunoprecipitation-based techniques such as ChIP-chip enable the identification of 

transcription factor binding sites while expression microarrays provided researchers with 

a quick way to compare gene expression profiles between different cells, tissues, and 

even organisms. Next-generation sequencing technologies such as those from Illumina, 

Life Technologies, and 454 Life Sciences have ushered in a new era in genomic analysis 

still, allowing the genome to be studied in higher resolution. Chromatin 

immunoprecipitation followed by sequencing (ChIP-Seq) vastly improves upon the 

localization of transcription factor binding sites while RNA-sew still allows for mRNA 

quantification but boasts a greater dynamic range and decreased sources of error over 

microarrays (2). 

1.3 The ChIP-Seq assay: Past, Present and Future 

As most of this dissertation centers on the analysis of data from ChIP-Seq and 

related technologies as well as its integration with other data types to answer interesting 

biological questions, one must first discuss the evolution of these technologies. The 
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analysis of ChIP-Seq data provides several unique computational challenges even though 

from an experimental standpoint, this assay was a logical extension of ChIP-chip. In the 

early days of the ChIP-Seq technology, many different methods were attempted to obtain 

a “signal map” of TF binding. These methods included which reads to map to a genome 

(e.g. does one map all reads obtained from a next-generation sequencing study at the risk 

of overmapping, map only unique reads at the risk of omitting reads in repeated regions, 

or apply a sampling approach representing a compromise), how to call peaks (e.g. 

whether to represent peaks with a model such as a Poisson or negative binomial 

distribution or to use a non-model-based approach such as a kernel density function (3-

5)), and whether to score the data against a reference sample. The resolution of ChIP-Seq 

mapping has also improved. When this technology was first being developed, 

computational algorithms assumed a standard library fragment size (usually 200 or 250 

bp) for all reads. As paired-end sequencing became more practical on the new platforms, 

however, bioinformaticists were able to use this extra information to determine the 

fragment size for each read-pair empirically, which in turn improves the peak calling 

process. Several peak calling algorithms now support the use of paired end data. The next 

improvement to this assay will likely bring single-nucleotide resolution to the 

identification of transcription factor binding sites (6). 

1.4 Extensions to ChIP-Seq 

Although ChIP-Seq can identify transcription factor binding sites on a genome-

wide scale, the technology cannot identify which regions of the genome are close in 

three-dimensional space. This information is particularly useful to the bioinformaticist as 

it can be used to identify potential enhancer sites, particularly when coupled with a ChIP 
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experiment targeted towards RNAPII, as well as to model DNA folding and to identify 

all regions of a genome in close 3-D proximity. The ChIA-PET assay combines a 

standard ChIP-Seq experiment with a proximity ligation step to retain spatial information 

of a DNA looping event (7). This is particularly important for studying transcription. In 

3-D space, necessary transcription factors are thought to occupy certain regions of the 

nucleus in very high concentrations. These regions are termed “transcription factories” 

and are analogous to the nucleosome essentially being a large concentration of RNA 

Polymerase I complexes (8, 9). In this manner, DNA can actually be brought into contact 

with these transcription factories via DNA looping, overcoming the physical 

complications with the previously accepted models of transcription (e.g. the random 

association and disassociation of RNAPII on DNA and the slide-and-bind model (10)). 

ChIA-PET currently has a resolution on the order of kilobases and this will improve as 

the sequencing depth achievable by next-generation sequencing technologies improves. 

Computationally, mapping ChIA-PET data also offers a significant challenge. The 

distribution of ChIA-PET paired-end tags is currently compared against a control 

consisting of random ligations taken from the same solution and a “true” interaction 

determined by both the distance between “diTags” and the depth of coverage for a 

particular interaction compared to the control. As with all genome-wide, long range 

interaction technologies, determining statistically significant interactions becomes 

challenging as the number of interactions increases. In addition, because the span 

between diTags is one of the criteria used to determine the significance of interactions it 

is currently not possible to effectively examine ChIA-PET interactions between 

chromosomes. Hi-C, another method to study long-range interactions based on the 
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chromatin conformation capture family of assays, is primarily used to study large-scale 

DNA structure because the resolution of these experiments are typically on the order of 

megabases (11). Hi-C has been adapted to study inter-chromosomal interactions by 

adding an additional biotin pull-down step to the protocol to increase the signal-to-noise 

ratio (12). This method should also work with ChIA-PET, although no one has yet 

reported any efforts along these lines. Further advancing these technologies will require 

collaboration between bioinformaticists and wet-lab biologists to develop improved 

methodologies. However, even with long-range interaction assays still in their infancy 

and experiments being conducted in pilot phases, the information that we glean from 

these assays allows us to better understand how DNA folding plays a role in transcription 

and to study how particular transcription factors may be recruited to target sites. 

1.5 Understanding Transcription Through Data Integration 

 As described above, there are many new and exciting technologies that can be 

used to study transcription. However, with any new technology there must always be 

room for skepticism. One way to confirm that a technology may actually be identifying 

the features that it advertises is to integrate it with other, known data types. For example, 

an assay that is designed to identify promoters of active genes should overlap with other 

known signatures for promoters of active genes. In a similar manner, data integration can 

also be used to identify characteristics and trends of a biological system that would be 

missed by only examining a single experiment (e.g. the formation of TF complexes or the 

relationship between TF binding and mRNA abundance). As a bioinformaticist, 

recognizing and respecting the underlying biology behind various assays is vital to 
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designing an effective analytical strategy. In that vein, several different data types are 

described in this dissertation. 

 The identification of transcription factor binding sites, histone modifications, and 

chromatin structure are important prerequisites to discuss, particularly as they work 

together to initiate transcription. Proteins such as those comprising the RNA polymerase 

II (RNAPII) complex and other factors that can stabilize the RNAPII complex at the 

promoter region to enhance transcriptional efficacy, but first chromatin must be in an 

open conformation in order for transcription factors to bind. Histone modifications at the 

promoter such as H2A.Z, H3K4me3, and H3K27ac are hallmarks of genes that are poised 

to be actively transcribed or are being actively transcribed (13-15). These histone 

modifications mark regions of open chromatin where transcription factors and other 

proteins can actively bind. Conversely, transcription factors cannot bind as easily in 

regions where chromatin is wound very tightly, also known as heterochromatin. These 

regions are typically marked by H3K27me3 modifications, which are thought to be 

established through the actions of the Polycomb complex methylating lysine-27 of the H3 

histone subunits. These actions are in direct competition of the Trithorax group proteins, 

which are thought to be responsible for establishing euchromatin-associated histone 

marks by demethylating lysine 27 of H3 and by methylating lysine 4 of H3. In addition to 

identifying transcription factor binding sites and histone modifications, there are also 

protein complexes that help to maintain or change the structure of chromatin. Chromatin 

remodelers can act to regulate access of transcription factors and other proteins to 

chromatin by converting heterochromatin regions to euchromatin and visa-versa (16). 

Due to their unique binding patterns compared to traditional transcription factors and 
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their status as large, multi-subunit complexes, analyzing these types of factors offers a 

particular challenge. Other features associated with regions of open chromatin include 

DNase hypersensitive sites and the results from the Formaldehyde-Assisted Isolation of 

Regulatory Elements assay (FAIRE) (17). 

1.6 Dissertation Outline 

 With the prerequisites dispatched, our focus now turns to the organization of this 

dissertation. As stated, the dissertation is focused upon bioinformatics approaches to 

study transcription at multiple scales. There are six chapters, including this introduction. 

1.6.1 Chapter 2 

 Chapter 2 focuses on understanding the different reference DNA types that were 

set forth for scoring ChIP-Seq experiments and their downstream effects on calling 

significant regions, or peaks. Rozowsky et al (3) was the first paper to propose the use of 

a reference DNA type for scoring ChIP-Seq data, but it did not consider the spectrum of 

reference samples that could be used in ChIP-Seq including Input DNA, a mock IgG 

control, and MNase-digested DNA.  

 In addition to the rationale given in the chapter’s introduction, the reader should 

note that the experimental and computational work for this project was begun in the early 

days of short-read sequencing using the Solexa/Illumina technology. Analyzing ChIP-Seq 

data was a new challenge and the idea of using a reference DNA type to aid scoring had 

just been introduced. In the beginning, labs used a completely computational approach by 

generating a randomized background against which ChIP DNA could be scored. Like 

most purely computational approaches developed based on incomplete assumptions, 
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however, randomized background turned out to be a very poor choice because it does not 

take into account biases introduced by chromatin structure. Desiring a true experimental 

control, laboratories began to experiment with Input DNA or fractionated DNA that is 

prepared alongside ChIP DNA and sonicated but that never undergoes a chromatin 

immunoprecipitation step. It was thought that this would essentially produce a 

randomized background, as sonication was assumed to be a random process. Upon 

examining the Input DNA control mapped against a reference genome, however and to 

much surprise, stark peaks were observed in the Input DNA control. Through data 

integration and by designing a strategy combining experimental and computational 

approaches, my coauthor and I characterized this phenomenon. This work was the first to 

show that input DNA, in what had become the de facto standard reference for ChIP-Seq 

analysis conducted by the ENCODE Consortium, was actually biased towards a subset of 

deprotected chromatin near regions with proteins bound nearby. This bias manifests itself 

in high signals near 5’ ends of genes and other regions, which can have a direct effect on 

the peaks identified by ChIP-Seq peak calling algorithms. It also shows that input DNA 

as a reference type is particularly problematic for ChIP-Seq experiments targeting factors 

that bind in these regions such as RNA Polymerase II and chromatin remodeling 

complexes such as SWI/SNF (discussed in Chapter 3). In short, one must understand that 

the biases in the experimental control may not necessarily correspond to the biases 

inherent to the ChIP DNA depending upon the characteristics of the protein being queried. 

For this reason, effective ChIP-Seq analysis will likely never be fully reduced to the 

domain of a push-button, computational tool. 
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 The findings presented herein comprise a major reason why our lab switched from 

using input DNA as our preferred reference DNA type to a mock IgG control (which our 

paper also examined and discussed for the first time). For human data, the use of a mock 

IgG control instead of input DNA has become fairly standard practice. For ChIP-Seq in 

general, scoring against a reference sample to correct for the phenomena we observed has 

also become common and depending upon the antibody target, our observations have a 

profound effect on the biological interpretation of ChIP-Seq data. 

 This work was published in the Proceedings of the National Academy of Sciences 

in 2009 by Auerbach and Euskirchen, et al., and has been well-cited (18). 

1.6.2 Chapter 3 

 Chapter 3 takes the lessons that we learned from Chapter 2 and applies them when 

studying ChIP-Seq to a complex with very different properties than ChIP-Seq had been 

applied to previously: four subunits of the human SWI/SNF chromatin remodeling 

complex. In addition to the rationale given in the chapter’s introduction, the reader should 

note that the experimental and computational work for this project was begun in the early 

days of short-read sequencing using the Solexa/Illumina technology. The process of 

ChIP-Seq peak calling was still new and the best practices for determining a high 

confidence list were still under investigation. In addition, at the time most of the ChIP-

Seq assays being run by members of the ENCODE Consortium were targeted toward 

RNAPII. The RNAPII antibody used (8WG16) is considered to be one of the strongest 

ChIP-grade antibodies available and is not indicative of the data quality one should 

expect from a ChIP-Seq experiment using a different antibody. In addition, as discussed 

in Chapter 2 the control DNA types being used for scoring were biased towards promoter 
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regions. SWI/SNF is a general chromatin remodeler and represented one of the early 

efforts to apply ChIP-Seq to a non-promoter associated factor within the ENCODE 

Consortium. To attack this problem, we designed a set of criteria combining several 

parameters including but not limited to the q-value output by peak callers (which at the 

time was the sole method that many labs used to determine peak quality), the ratio of 

ChIP tags to control tags, and the number of tags present in each experiment. Data 

integration played a major role on several fronts, as well. Since ChIP-Seq was performed 

against four subunits of the SWI/SNF complex independently and each subunit may have 

roles outside of SWI/SNF, my coauthor (who conducted the experiments) and I devised 

one of the early strategies to examine ChIP-Seq data in the context of a protein complex. 

We introduce the concept of a ChIP-Seq “domain” in scoring, i.e. a region where a 

complex is likely to be bound in some form, and use this information to infer how 

chromatin remodeling works on a genome-wide scale in HeLa cells. Finally, as SWI/SNF 

is a chromatin remodeling complex with a bromodomain that binds to acetylated histones 

at promoter regions (16), our findings provide a genome-wide bridge between genomic 

and epigenomic factors that affect transcription. 

 This work was published in PLoS Genetics in 2011 by Euskirchen and Auerbach, 

et al (19). 

1.6.3 Chapter 4 

 One very interesting aspect of the work described in Chapter 3 was how subunits of 

the SWI/SNF complex can appear in disparate locations in 2-D space but can be brought 

into close proximities in 3-D space via DNA folding, possibly completing the complex. 

Applying this thought process to study the transcriptional machinery was a logical 
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extension. In Chapter 4, we analyze data generated from an RNAPII ChIA-PET 

experiment to hypothesize different models of transcription and how DNA folding affects 

the formation of protein complexes by integrating these data with other sources. As 

mentioned above, the transcription factory theory had been gaining traction in the field 

supported by other biological assays such as DNA fluorescent in situ hybridization 

(DNA-FISH). Several questions remained to be explored on a genome-wide scale, 

however, including possible models for transcription and how subunits are recruited for 

key protein complexes involved in transcription. In the case of the former question, we 

specifically examined whether genes are typically transcribed on a single-gene basis as 

opposed to being transcribed as part of a multi-gene transcription factory, how these 

different models affect the mRNA abundance, and whether transcription factories can act 

as essentially a eukaryotic operon. For the latter question, we examined whether subunits 

of known protein complexes for which ChIP-Seq data was publicly available are typically 

found near promoters or if subunits are actually being recruited to the promoter via DNA 

folding. This distinction is important for two reasons. First, DNA looping is how distal 

enhancers are thought to work, as the binding of distal enhancer proteins to promoter 

proximal proteins stabilizes the RNAPII complex, resulting in increased transcription 

efficacy. Second, given the limitations of the ChIP-Seq assay and its lack of spatial 

information, ChIP-Seq signal would appear at both proximal and distal sites for the same 

instance. By deciphering which proximal and distal regions are linked, it becomes 

possible to hypothesize whether a transcription factor is more likely to be found 

proximally or distally to promoters. 
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 In addition to the rationale given in the chapter’s introduction, the reader should 

note that the experimental and computational methods to study long-range interactions on 

a genome-wide scale are still in their infancy. Some whole-genome chromatin 

conformation capture methods such as Hi-C have proven useful to examine DNA folding 

on a macro level, but lack the resolution at this time to effectively study folding between 

individual factors. Conversely, although ChIA-PET can be used to examine all 

interactions involving a particular transcription factor or protein, the method falls victim 

to all of the limitations of a typical ChIP experiment. Computationally, the algorithms 

and statistics behind Hi-C and ChIA-PET are still under active development. 

 This project was particularly satisfying as a way to use bioinformatics to bridge 

data generated by the ENCODE consortium with systems biology and DNA folding, as 

well as learn more about how transcription works in 3-D space. We propose several 

models of transcription based on our findings and also look at recruitment of individual 

factors to form a protein complex at the promoter. Surprisingly, several subunits known 

to form protein complexes were actually completed by subunits recruited from distal sites. 

We observed this in SWI/SNF based on chromatin capture data, as described in Chapter 3, 

but this allowed us to quickly look at all transcription factors available as part of 

ENCODE. These findings will undoubtedly have a profound effect on modeling TF 

binding and the formation of protein complexes, as the spatial component would have 

been missing with a standard ChIP-Seq experiment. Whether used to predict new, 

putative enhancer sites computationally or to confirm predictions experimentally, we 

expect that this work lays the foundation for an exciting new type of analysis and will 

further future work in both the biological and computational arenas. 
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 This work was published in Cell in 2012 by Li, Ruan, Auerbach, and Sandhu, et 

al (20). 

1.6.4 Chapter 5 

 The penultimate chapter of this dissertation discusses Coupled Analysis of 

Polymerase Binding and Polymerase (CAPE), a Java program designed to identify 

transcripts with an unusual relationship between transcription factor binding at the 

promoter and mRNA abundance. Typically, the amount of RNA Polymerase II binding at 

the promoter is correlated to the normalized depth-of-coverage obtained from RNA-seq 

experiments. Some transcripts, however, deviate from this correlation for biologically 

relevant reasons. For example, a transcript that exhibits high levels of RNAPII binding 

and low levels of mRNA transcript abundance is a hallmark of a stalled or poised 

promoter. Transcripts with stalled promoters are often transcribed as a result of some 

external stimulus or change to the cell that requires a very quick response. In one manner, 

one can think of RNAPII stalling as similar to the use of different sigma factors in the 

bacterial RNA Polymerase complex. In bacteria, different sigma factors target different 

promoter recognition sites (21). By swapping sigma factors, a cell’s transcriptional 

program can quickly respond to conditions such as heat shock by controlling how many 

RNA polymerase complexes are actively transcribing heat shock genes (21, 22). 

Eukaryotic transcription is a bit more complicated, but by RNAPII becoming poised at 

promoters the transcriptional machinery is in position to quickly increase transcription 

levels of the affected transcripts. Transcripts present high abundance but with low 

RNAPII binding levels at the promoter are also interesting, as they can indicate an issue 
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with the annotation (e.g. the misannotation of the promoter region), an experimental or 

mapping anomaly, or a transcript that is transcribed by a complex other than RNAPII. 

 As high-throughput sequencing continues to become more accessible and as large 

consortia such as ENCODE/modENCODE and the Epigenetics Roadmap continue to 

release data sets to the public, certain matched experiments have become common. One 

such experiment pair is ChIP-Seq targeting RNAPII coupled with RNA-seq. RNAPII 

represents the ideal ChIP experiment due to the efficacy of the antibody and to the role of 

RNAPII during transcription. RNA-seq is a simple yet powerful assay to obtain transcript 

abundance. Together, this experiment pair can be used to study differences in 

transcriptional programs between organisms, between developmental stages within the 

same organism, or between cells exhibiting normal and diseased phenotypes (23). 

Despite the power inherent in this particular pairing of experiments, the community 

currently lacks a tool to quickly and simply summarize the results of these two 

experiments together. CAPE fills this niche. 

 CAPE is written in Java and is designed to run from the command-line of a 

computer for which version 1.6 or higher of the Java Virtual Machine is available. A 

conscious decision was made to avoid the trend of web services in this case, as the signal 

files produced by ChIP-Seq and RNA-seq experiments can be fairly large and uploading 

these files to a web service can become prohibitive. Given an annotation set, a list of 

mRNA abundance measurements such as reads per kilobase per million mapped reads 

(RPKM), and a ChIP-Seq signal track, CAPE calculates the mRNA abundance with 

respect to ChIP-Seq binding for each transcript, identifies transcripts with unusual 

relationships of binding relative to mRNA abundance, and produces a summary report. A 
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set of default metrics for determining unusual relationships between binding and 

transcription is provided, but CAPE also allows a user to override these default metrics to 

refine the analysis for his or her particular question or organism of interest. In addition to 

cataloguing this relationship for a single experiment, CAPE can also analyze multiple 

experiment pairs and identify transcripts in which the relationships between ChIP-Seq 

binding and mRNA abundance change. This is particularly applicable to analyses 

designed to examine changes during a developmental time course or to identify 

differences between organisms. In fact, CAPE will also automatically limit its 

comparison to transcripts from orthologous features if a list of orthologs is provided to 

the comparison tool. We expect that CAPE will be well-received by the community. 

 This work was submitted to Bioinformatics for review at the time of dissertation 

composition. 

1.6.5 Chapter 6 

 Chapter 6 concludes this dissertation with a summary and discussion of possible 

future directions. 
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Chapter 2: Understanding the Choice of Reference DNA Type 

in a ChIP-Seq Experiments and its Effects on Downstream 

Computational Analyses 

 

2.1  Statement of Prior Publication and Bioinformatics Contributions 

 This work is reprinted from a 2009 paper in the Proceedings of the National 

Academy of Sciences by Auerbach and Euskirchen, et al., and has been well cited [25]. 

No additional permissions were required. As the first comprehensive analysis of ChIP-

Seq reference DNA types used for peak scoring, this work exposed the effects of local 

chromatin structure on downstream scoring results. Peak scoring for ChIP-Seq was 

initially performed in silico using a randomized background. Desiring a biological control 

for scoring, the field began to use input DNA for this purpose expecting that it would 

produce a random distribution of reads; however, this paper shows that this is often not 

the case. As a consequence, peak-calling algorithms will produce biased results that 

depend upon the characteristics of the factors being ChIPped and the reference DNA type 

used for scoring. Understanding these biases is central to the proper interpretation of a 

ChIP-Seq experiment. Using a very early version of the PeakSeq algorithm, I designed 

and implemented the analysis strategy used in this paper, integrated our results against 

several other features from both published and unpublished sources, and interpreted the 

results. This included all processing and scoring of the data, identifying and pre-

processing external data sets for comparison, designing a strategy to score reference 
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DNA types against a “reference of references” (for example, identifying parameters that 

needed to be altered from those used for scoring traditional ChIP-Seq experiments), 

comparing our results against similar assays such as FAIRE, and interpreting the 

characteristics of each reference DNA type in a system-wide context. 

2.2 Abstract 

 Disruptions in local chromatin structure often indicate features of biological interest 

such as regulatory regions. We find that sonication of crosslinked chromatin when 

combined with a size selection step and massively parallel sequencing can be used as a 

method (Sono-Seq) to map locations of high chromatin accessibility in promoter regions. 

Sono-Seq sites frequently correspond to actively transcribed promoter regions as 

evidenced by their co-association with RNA Polymerase II ChIP regions, transcription 

start sites, histone H3 lysine 4 trimethylation (H3K4me3) marks, and CpG islands. The 

pattern of breakage by Sono-Seq overlaps with, but is distinct from, that observed for 

FAIRE and DNase hypersensitive sites. Our results demonstrate that Sono-Seq can be a 

useful and simple method for mapping many local alterations in chromatin structure. 

Furthermore, our results provide insights into the mapping of binding sites using ChIP-

Seq experiments and the value of reference samples that should be used in such 

experiments. 

2.3 Introduction 

 The accessibility of regulatory elements in chromatin is critical for many aspects of 

gene regulation. Nucleosomes positioned over regulatory elements inhibit access of 

transcription factors to DNA; deprotection of the DNA arises from local changes in 
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chromatin conformation. Previous methods for mapping chromatin accessibility include 

mapping DNase I hypersensitivity sites or FAIRE (Formaldehyde-Assisted Isolation of 

Regulatory Elements) regions and analyzing the DNA using microarrays or DNA 

sequencing [1-3]. These methods have mapped many open chromatin sites to promoters 

of actively transcribed genes as well as to enhancers. 

 The in vivo mapping of regulatory elements is often performed by chromatin 

immunoprecipitation (ChIP) of a factor of interest followed by analysis of associated 

DNA [4-6]. Chromatin complexes are preserved through cell fixation with formaldehyde, 

fragmentation of the chromatin, and isolation of protein-bound DNA regions using 

antibodies to a specific DNA-associated protein. DNA fragments are purified and used to 

probe DNA microarrays (ChIP-chip) or, more recently, identified by high throughput 

DNA sequencing (ChIP-Seq) thereby locating transcription factor binding sites (TFBSs) 

on a genome-wide scale [4-7]. In ChIP experiments, significant targets representing 

binding regions are found by analyzing signal levels produced by an experimental sample 

relative to a reference sample. Although several automated scoring algorithms exist for 

ChIP-Seq data [6-11], an appreciation of the characteristics and biases inherent to 

different reference DNA samples and preparation methods is important for understanding 

the significance of the results obtained. 

 In the work presented here, we examine the signal distributions of commonly used 

reference samples including sonicated chromatin and investigate the aggregate signals 

relative to annotated regions (Table 2.1). We show that even without 

immunoprecipitation, crosslinked chromatin fragments can be size-selected for novel 

chromatin regions and many of these regions are proximal to promoters. We investigate 
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the causes of these signals and develop this observation as a method for mapping these 

chromatin domains. 

Table 2.1 Data sources 

Library Size 
selection Cell conditions Sonication 

conditions 
Uniquely Mapped 

Reads 
Biological 
Replicates 

RNA Pol II  
(HeLa S3) 

100-350 
bp 

formaldehyde-
crosslinked 7 x 30 sec 29,060,928 3 

Sono-Seq (HeLa S3) 100-350 
bp 

formaldehyde-
crosslinked 7 x 30 sec 29,840,987 3 

Sono-Seq (HeLa S3) 350-800 
bp 

formaldehyde-
crosslinked 7 x 30 sec 19,729,371 3 

Naked DNA 100-350 
bp not crosslinked 1 x 30 sec 34,550,812 3 

Normal IgG  
(mouse, HeLa S3) 

100-350 
bp 

formaldehyde-
crosslinked 7 x 30 sec 28,960,961 2 

MNase (HeLa S3) 100-200 
bp not crosslinked not sonicated 20,924,734 2 

 

2.4 Results 

2.4.1 Sonicated chromatin fragments reveal peaks over promoter regions 

 While examining the signal tracks of reference DNA samples for ChIP-Seq, we 

observed the presence of “peak” regions that appeared to have greater signal relative to 

the genome as a whole (Figures 2.1, A.1 and A.2). Sonicated chromatin was prepared 

from nuclear lysates of formaldehyde-crosslinked HeLa S3 cells and either subjected to 

chromatin immunoprecipitation with a specific antibody to RNA polymerase II (ChIP 

DNA) or DNA was purified without immunoprecipitation (“Input” or “Sono-Seq” DNA) 

(Figure 2.2). Both preparations of DNA were size selected for 100-350 bp fragments and 

converted to libraries for sequencing on the Illumina Genome Analyzer II platform. 29.0 

M uniquely mapped reads were obtained for RNA polymerase II and 29.8 M reads for 

Sono-Seq. 

 The peaks in sonicated chromatin are often similar, albeit of lower magnitude, than 

those obtained from the Pol II ChIP-Seq experiment. For HeLa S3 cells 106,958 Sono-
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Seq DNA peaks are observed as compared with 49,377 peaks for Pol II ChIP-Seq with a 

total coverage for the peaks of 27.7 and 36.7 Mb, respectively. Filtering for strong targets 

(see Materials and Methods) reduced the data set to 27,773 peaks in Pol II and 21,762 

peaks in Sono-Seq DNA. Using these strong targets, 65.0% of Sono-Seq regions are 

within 1 kb of a Pol II region and 49.4% of Sono-Seq regions are within 2.5 kb of a 5 end 

of an Ensembl gene. To further investigate Sono-Seq characteristics we examined its 

aggregated signal over the proximal promoter regions of expressed and non-expressed 

Ensembl genes [12]. In general, Sono-Seq DNA displays elevated signal at the 5′ ends of 

Ensembl genes compared to background (see Materials and Methods; Figures 2.3A-C). 

Sono-Seq DNA enriched regions heavily overlap with those of Pol II (Figure A.3); 

however not all Sono-Seq regions co-occur with Pol II. Locations of Sono-Seq DNA 

peaks were intersected against Pol II peaks and we found 6,892 peaks where no 

corresponding Pol II peaks were identified within 1 kb. We found that some of these 

unique Sono-Seq peaks correspond to HeLa-derived small (< 200 nucleotides) RNAs 

[13] as shown in Figure A.4. 

2.4.2 Sono-Seq requires crosslinked chromatin 

 The signals from Sono-Seq DNA could either be due to regions of preferential 

breakage intrinsic to the DNA sequence or breaks that occur in regions made accessible 

by biological activity. To further investigate the source of Sono-Seq DNA signal, we 

prepared HeLa S3 genomic DNA from non-crosslinked, deproteinized cells and sonicated 

the DNA into fragments of 100-350 bp on average to produce “naked DNA” (Figure 2.2). 

Naked DNA did not show visible peaks either in signal tracks or over promoter regions 

and examination of its aggregated signal near transcription start sites did not reveal any 
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Figure 2.1 Signal map. Signal map showing Pol II ChIP DNA, Sono-Seq DNA (small and large fragment 

sizes), normal IgG, and naked DNA. All signals are in HeLa S3 cells. Signal levels between positions 
16,802,000-16,896,000 of chromosome 17 are shown. Tracks are scaled based upon the number of 

uniquely-mapped reads obtained for each sample type. Both TNFRSF13B and MPRIP are not expressed in 
HeLa S3 based on RNA-Seq data (14). Several regions of disagreement between Sono-Seq and Pol II 

signal are shown, such as A) a large Sono-Seq peak with a less pronounced Pol II peak, B) the absence of a 
Pol II peak and the presence of a Sono-Seq peak, and C) Pol II peaks without corresponding Sono-Seq 

peaks. 

 

 
Figure 2.2 Steps to prepare ChIP DNA, Sono-Seq DNA, and naked DNA. 
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Figure 2.3 Aggregation plots depicting average ChIP signal across a variety of genomic features. For 

plots E-J, proximal is defined as lying within ±2.5 Kb of an Ensembl gene. Values are given in “fold 
enrichment” compared to a background signal (see Materials and Methods). A value of 1.0 indicates 

enrichment equal to background. Signal was calculated in Pol II, two different size selections of Sono-Seq 
DNA, naked DNA, normal IgG, and MNase-digested DNA. Mappability is a measure of how well reads 
mapped to the features being compared (see Materials and Methods). A mappability of 1.0 indicates an 

equal mappability level as background. Panel B is a magnified view of the regions enclosed by the dotted 
box in panel A in which Pol II is removed and scales are altered to allow for better comparison between 

reference sample types. Vertical axis units are consistent between all plots. Horizontal axis units are given 
in nucleotides from the feature start site in plots A-H and in bins each representing 1/35th of the feature 

size in plots I-J. In all figures, position/bin 0 corresponds to the start of the target feature. 

enrichment at these regions (Figure 2.1). These results indicate that Sono-Seq peaks 

require crosslinked chromatin, presumably because crosslinking preserves the in vivo 

state of DNA.  

 As an additional control we prepared DNA according to the exact protocol as ChIP 
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DNA, but substituted affinity-purified IgG from a non-immunized animal for the 

antibody that recognizes Pol II. We call this data set “normal IgG”. Interestingly 

examination of the aggregated peak signals indicates that normal IgG signal is near 

baseline (0.9-fold) over TSSs (Figures 2.3A-C), lower than that of Sono-Seq DNA. We 

also prepared DNA in which chromatin from non-crosslinked cells was treated with 

micrococcal nuclease (MNase). MNase-treated DNA exhibits elevated signals over 

promoters analogous to Pol II and Sono-Seq DNA signals (Figures 2.3A-B). 

2.4.3 Sono-Seq DNA peaks reside over expressed promoters 

 Using HeLa S3 expression data determined from an RNA-Seq experiment [14], we 

examined Sono-Seq and Pol II ChIP aggregate signals over genes that are expressed in 

HeLa S3 cells as well as those that are not expressed. We define an expressed gene as 

having an average coverage of at least one-fold across each nucleotide in a gene. The 

remaining genes were classified as non-expressed. 10,993 genes are expressed and 

19,273 genes are non-expressed using these criteria. Aggregated signals from Sono-Seq 

DNA are enriched 4-fold over expressed genes (Figures 2.3A-B). MNase-treated DNA 

also gave a signal over 5′ ends of expressed genes as expected, indicating that open 

chromatin is present in these regions. We found that 31.8% of all Ensembl genes and 

67.9% of all expressed Ensembl genes in HeLa S3 possess a significant peak in Sono-Seq 

DNA proximal to the 5′ ends.  

 To ascertain relationships between peak significance and gene expression, we 

created rank-order lists for Pol II and Sono-Seq DNA peaks by sorting peaks first by tag 

count followed by fold-enrichment over the corresponding signal in naked DNA. We 

then calculated the percentage of peaks occurring in promoters of expressed and non-
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expressed genes as well as those occurring distal to promoter regions. The top of the list 

(i.e. the most significant peaks) contains a large percentage (90%) of peaks found in 5′ 

ends of expressed genes (Figure 2.4). Toward the bottom of the rank-order list, the 

percentage of enriched regions found proximal to 5′ ends decreases while the percentage 

of enriched regions found distal to 5′ ends of genes increases. The percentage of enriched 

reads proximal to 5′ ends of non-expressed genes remains consistent throughout the data 

set. 

 

 
Figure 2.4 Rank order plot. A rank-order plot depicting the percentage of Sono-Seq and Pol II enriched 

regions located proximal and distal to genes (see Materials and Methods). Regions most highly enriched by 
Sono-Seq typically lie proximal to the TSSs of expressed genes. Enrichment over promoter regions of non-

expressed genes remains constant whereas enriched regions lying distal to known promoter regions are 
ranked lower (i.e. have lower scores). 

 

2.4.4 Sono-Seq DNA signals are enriched over other markers associated with gene 

expression 

 To further explore Sono-Seq signals we compared the Sono-Seq peaks to several 

other published chromosomal features, including DNase I hypersensitive sites, H3K4me3 
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sites and CpG islands (Figures 2.3E-J). Using the ENCODE region data of Crawford et al. 

[2] we selected 2,060 DNase I hypersensitive sites from HeLa cells with a q-value < .05. 

Of these, 958 were proximal (within 2.5 kb) and 1,103 were distal (greater than 2.5 kb) to 

the TSSs of Ensembl genes. Aggregation of signals over proximal DNase I 

hypersensitive sites reveals Pol II signals increase more than 5-fold over these regions. 

Signal elevation over proximal DNase I hypersensitive sites is also evident for small-

fragment Sono-Seq DNA (2-fold). Signal is not enriched in naked DNA. 

 Mapping Sono-Seq DNA relative to distal DNase I hypersensitive sites reveals a 

different pattern. Pol II signal is modestly elevated over these distal regions (2.5-fold). 

Small-fragment Sono-Seq DNA, normal IgG, and naked DNA all show minimal signal 

elevation over distal DNase I hypersensitive sites. Thus, Sono-Seq DNA signals are 

preferentially located over proximal DNase I hypersensitive sites as compared to distal 

ones. 

 To further investigate the Sono-Seq signal at promoters with proximal DNase I 

hypersensitive sites, we examined the association of Sono-Seq peaks with H3K4me3 sites, 

which are also correlated to gene expression level and promoter localization [15]. For 

these analyses we aggregated Sono-Seq signals over two different genome-wide 

H3K4me3 ChIP-Seq data sets: one containing a total of 54,467 H3K4me3 sites from 

HeLa cells [16] and another containing a random sample of 100,000 H3K4me3 sites from 

CD4+ cells [17]. Aggregation of signals over either source of the H3K4me3 sites 

revealed that the Pol II and Sono-Seq DNA signals are significantly elevated at 

H3K4me3 sites (Figures 2.3G-H; Supp. Figure 2.5). For the H3K4me3 sites identified in 

HeLa S3 cells, separate aggregations were performed for sites located distal and proximal 
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to Ensembl genes. For proximal H3K4me3 sites, Pol II signal is elevated 4.5-fold and 

Sono-Seq DNA signal is elevated 2-fold. Normal IgG produced a lower enrichment 

signal (1.3-fold) whereas signal was not elevated in naked DNA. Enrichment over distal 

H3K4me3 sites identified in HeLa S3 cells drops to 3-fold and 1.5-fold for Pol II and 

Sono-Seq DNA, respectively. Other reference samples exhibit signals comparable to 

those observed over proximal H3K4me3 sites. 

 Finally, we also analyzed Sono-Seq signals relative to CpG islands, which are 

associated with promoter regions [18]. For this analysis we used a coordinate list of 

unique CpG islands represented on the Illumina Infinium HumanMethylation27 

BeadChip Assay (Illumina, San Diego, CA). The CpG islands on this array have a mean 

size of 1,388 bp and query 11,471 unique CpG islands. Of these regions, 7,101 sites lie 

within 2.5 kb of TSSs of expressed Ensembl genes whereas 4,029 lie within 2.5 kb of 

TSSs of non-expressed Ensembl genes. We observe signal enrichment over these CpG 

islands in Pol II, Sono-Seq (150-350 bp), and MNase-digested DNA. Other reference 

DNA types remain unenriched over these CpG islands (Figures 2.3I-J). 

 

 
Figure 2.5 Sono-Seq and FAIRE aggregation plots. A) Aggregation of signal from yeast Sono-Seq DNA 
(selected at 100-350 bp) over regions enriched in yeast FAIRE. Sono-Seq signal is depressed over regions 
enriched by FAIRE. B) Aggregation of FAIRE DNA signals over regions enriched in Sono-Seq. FAIRE 
signal appears to be enriched in regions flanking Sono-Seq sites. All data shown in this figure originate 

from S. cerevisiae chromosome 2. In all figures, position 0 corresponds to the start of the target feature and 
signal is given in fold-enrichment compared to background. Yeast FAIRE data from Hogan et al. were used 

for this analysis [19]. 
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2.4.5 Sono-Seq DNA signals show little increase over H3K27me3 sites 

 H3K27me3 histone modification sites represent a signature of closed-conformation, 

facultative heterochromatin and are established by Polycomb group proteins [17,20]. We 

compared Sono-Seq DNA signals to the signals from 100,000 H3K27me3 sites identified 

in CD4+ cells [17]. The ChIP-Seq signals for all sample DNA types, including Pol II, 

remain flat over H3K27me3 sites (Figure 2.3D). We also examined the sequences of 

these regions to determine if the observed lack of ChIP-Seq signal was real or an artifact 

arising from an inability to map reads to these locations. As shown in Figure 2.3D, the 

sequences in H3K27 trimethylation regions and other genome regions can be mapped 

equally well (i.e. the mappability line in the plots remains close to 1.0 at all times, 

representing complete mappability). Thus, sonicated chromatin peaks preferentially lie 

near sites of active chromatin and are absent in closed chromatin regions. 

2.4.6 Sono-Seq signal is depressed over FAIRE regions 

 We next determined whether Sono-Seq regions coincide with FAIRE regions 

because both protocols rely upon sonication of crosslinked chromatin. We performed this 

comparison in S. cerevisiae, in which FAIRE was first described [1]. Using data from 

Hogan et al. that was generated from S. cerevisiae chromosome 3 [19], we aggregated 

Sono-Seq signal over FAIRE sites and found that Sono-Seq signal is depressed (Figure 

2.5A). When aggregating FAIRE signal over Sono-Seq sites, we observe highly enriched 

FAIRE signal levels bordering Sono-Seq regions but depressed signal levels over the 

Sono-Seq regions themselves (Figures 2.5B and A.6). These findings indicate that Sono-

Seq is different from FAIRE and that Sono-Seq enriches regions that are protein-bound 

and exhibit local denaturation. 
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 Hogan et al. [19] also found that FAIRE sites are anti-correlated with MNase-

digested DNA signal. Our aggregation plots in HeLa S3 cells show that Sono-Seq and 

MNase-digested DNA signals exhibit trends similar to each other, further supporting that 

Sono-Seq and FAIRE experiments produce markedly different results. 

2.4.7 Sono-Seq DNA peaks are affected by fragment size 

 To further investigate the origin of the Sono-Seq DNA signals, we analyzed 

different fragment sizes. Instead of using only the small 100-350 bp size sample normally 

recommended for Illumina sequencing, we also analyzed a larger size fraction (350-800 

bp) that was prepared from the same sonicated extracts as the 100-350 bp fragments. As 

shown in Figure 2.3, the size of the fragments determines the presence and magnitude of 

the sonicated chromatin signals. The smallest fragments (100-350 bp) exhibit the largest 

signals whereas the largest fragments (350-800 bp) give smaller signals. Greater signals 

were also observed when qPCR was performed using electrophoretically separated small 

(100-500 bp) rather than large (1,000-6,000 bp) DNA fragments as template (Appendix 

C; Figure A.7). Thus size selection is a critical step in the preparation of Sono-Seq DNA 

and the characterization of the signal obtained. 

2.5 Discussion 

 We demonstrate that sonication of chromatin causes breaks in localized and 

specific regions of the genome. By comparing Sono-Seq signals to TSSs, Pol II-bound 

regions, histone H3K4me3 sites, CpG islands and promoter-proximal DNase I 

hypersensitive sites we show that many of these peaks, as evidenced by aggregated signal, 

are located within promoter regions. Further analysis reveals that higher Sono-Seq signals 

are observed over the promoters of expressed genes as compared to those with little or no 
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expression. These results suggest that the breaks preferentially occur near regions of open 

chromatin of expressed genes; presumably these promoters have undergone chromatin 

remodeling, permitting access to transcriptional machinery but also allowing breakage by 

sonication of deprotected DNA (Figure A.10). In addition, we show that Sono-Seq peaks 

are also found in intergenic regions where these signals are modestly enriched over 

features commonly associated with promoter activity of expressed genes such as CpG 

islands and H3K4me3 sites. Many distal regions enriched for Sono-Seq are enriched for 

Pol II (21.7%; Figure A.3). As we show that regions enriched for both Sono-Seq and Pol 

II are generally associated with 5′ ends of expressed genes, we speculate that some of 

these distal peaks may lie proximal to genes that have not yet been annotated. Although 

many Sono-Seq peaks overlap with Pol II-bound loci, a number of Sono-Seq peaks do 

not and may represent binding of various other factors. 

 The advent of ChIP-Seq permits mapping of DNA regulatory regions at high 

resolution and low cost and is rapidly replacing ChIP-chip for the mapping of 

transcription factor binding sites. However, there are important differences. For ChIP-

chip, immunoprecipitated fragments are labeled along their entire length and hybridized 

to a microarray in a mixture containing a differentially labeled reference DNA such that 

ratios of ChIP-DNA to reference DNA are typically recorded. In ChIP-Seq, breaks are 

generated in chromatin-bound DNA, short fragments isolated and the ends sequenced. 

The combined effect of examining one signal per sample and high resolution mapping of 

short fragment ends in ChIP-Seq reveals features of both the chromatin and the ChIP 

samples that have not been previously observed when ratios of ChIP to reference samples 

are analyzed. The implications of this are several-fold. First, reference DNA samples may 
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exhibit increased signals over 5′ ends of genes (Figures 2.3A-C). Second, we found that 

Sono-Seq DNA and normal IgG DNA are not equivalent. We expect that normal IgG 

DNA may be more useful as a reference sample because its treatment closely parallels 

that of a ChIP DNA sample and signal levels will not be dampened as much over 

transcribed regions, as would be the case when Sono-Seq DNA is used for scoring.  

 Fractionation of chromatin is non-random and may have an underlying biological 

basis depending upon the method by which it is prepared. Studies similar to ours have 

also demonstrated that chromatin fragments may be associated with annotated regions. 

One such method, FAIRE, has been shown to isolate regions correlated with nucleosome 

depletion, increased DNase I hypersensitivity, transcriptional start sites, and active 

promoters. Sono-Seq sites are different than FAIRE sites even though the Sono-Seq and 

FAIRE protocols share several common steps. Both protocols necessitate formaldehyde-

crosslinking of proteins to DNA and then sonication of the crosslinked DNA. The key 

difference between FAIRE and Sono-Seq is that in FAIRE phenol-chloroform extraction 

occurs before reverse-crosslinking, such that protein-protected DNA is trapped at the 

interface and the open regions of DNA are released into the aqueous phase. However in 

Sono-Seq the protein-DNA crosslinks are reversed prior to phenol-chloroform extraction 

such that any protein-crosslinked DNA would be retained during purification. Although 

both Sono-Seq and FAIRE are associated with active promoters, aggregate Sono-Seq 

signal is depressed over FAIRE regions (Figure 2.5A). Furthermore, Sono-Seq signal 

parallels MNase-digested DNA signal over promoter regions [Figure 3; Figure 2C of 

[19]], FAIRE signal is depressed over Sono-Seq regions, and Sono-Seq regions are 

bounded by high FAIRE signal (Figure 2.5B), all further differentiating Sono-Seq from 
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FAIRE. 

 We speculate that Sono-Seq enriches regions that are protein-bound with local 

denaturation and detects breaks from neighboring open chromatin sites. For Sono-Seq 

regions to be recovered they must have sensitivity to sonication, which may arise from 

regions that are undergoing chromatin remodeling or local denaturation (e.g. by Pol II), 

most likely in preparation for or during transcription. Interestingly, enrichment over distal 

DNase I hypersensitive sites was not observed; these regions may be smaller and not 

readily broken during sonication, or they may reside in areas where chromatin 

organization is relatively static. Regardless of the mechanism, our analyses illustrate the 

utility of Sono-Seq as an effective approach for detecting accessible chromatin regions 

and facilitating the annotation of the human genome particularly in the promoter regions. 

2.6 Materials and Methods 

2.6.1 Preparation of DNA for ChIP-Seq and Sono-Seq  

 Cell growth protocols are available in Supplementary Text. For RNA Pol II ChIP-

Seq, normal IgG ChIP-Seq and Sono-Seq, fixed HeLa S3 cells were washed in cold 

Dulbecco’s PBS (Invitrogen, Carlsbad, CA) and swelled on ice in 10 mL hypotonic lysis 

buffer (20 mM Hepes [pH 7.9], 10 mM KCl, 1 mM EDTA [pH 8.0], 10% glycerol, 1 mM 

DTT, 0.5 mM PMSF, and protease inhibitors). Cell lysates were homogenized with 30 

strokes in a Dounce homogenizer. Nuclear pellets were collected and lysed in 10 mL of 

RIPA buffer per 3 x108 cells (RIPA buffer: 10 mM Tris-Cl [pH 8.0], 140 mM NaCl, 1% 

Triton X-100, 0.1% SDS, 1% deoxycholic acid, 0.5 mM PMSF, 1 mM DTT, and protease 

inhibitors). Chromatin was sheared with an analog Branson 250 Sonifier (power setting 2, 

100% duty cycle for 7x 30 s intervals) to an average size of less than 500 bp as verified 
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on a 2% agarose gel. Lysates were then clarified by centrifugation at 20,000xg for 15 min 

at 4°C. For Sono-Seq, aliquots of clarified lysate were reserved for reversal of 

crosslinking, followed by RNase and proteinase K treatments. Sono-Seq DNA was 

further purified by phenol-chloroform extraction and ethanol precipitation. For RNA Pol 

II and normal mouse IgG ChIP samples, 12 g of either the mouse monoclonal 8WG16 

antibody (Covance MMS-126R) or normal mouse IgG (Santa-Cruz sc-2025) were added 

to 1x108 cells. Chromatin immunoprecipitations were conducted as previously described 

[21-22]. Libraries were constructed in a manner consistent with those from Rozowsky et 

al [8]. See Supplementary Text. 

2.6.2 Preparation of naked DNA for sequencing 

 HeLa S3 cells were collected by centrifugation, resuspended in digestion buffer 

(100 mM NaCl, 10 mM Tris-HCl [pH 8.0], 25 mM EDTA [pH 8.0] and 0.5% SDS) and 

digested overnight at 50C with 0.1 mg/mL proteinase K (Ambion, Austin, TX). The 

digest was extracted twice with phenol-chloroform, once with chloroform and ethanol 

precipitated. The DNA was recovered, treated with RNase (Qiagen) for 3 h at 37C, 

extracted once with phenol-chloroform, once with chloroform, ethanol precipitated and 

resuspended at 2.5 x 108 cell equivalents in 5 mL of 1x TE pH 7.5 (10 mM Tris, 1 mM 

EDTA). A 2.5 mL aliquot was sonicated once for 30 s with a Branson 250 Sonifier 

(power setting 2, 100% duty cycle) to an average size of less than 500 bp as verified on a 

2% agarose gel. 

2.6.3 Preparation of MNase-treated DNA for sequencing 

 HeLa S3 cells were resuspended in MNase buffer (10 mM Tris-HCl [pH 7.5], 10 

mM NaCl, 3 mM MgCl2, 1 mM CaCl2, 4% NP-40, and 1 mM DTT) and treated with 50 
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units of micrococcal nuclease (USB) at 37C for 1 h. The samples were treated with 

proteinase K for 2 h at 37C, extracted twice with phenol-chloroform, ethanol precipitated, 

treated with RNase A (Qiagen) and centrifuged through G50 sephadex spin columns. 

Each sample was treated with 30 units of calf intestinal alkaline phosphatase (NEB) for 2 

h at 37C. After a second ethanol precipitation, the samples were treated with 30 units T4 

polynucleotide kinase (NEB). 

2.6.4 Preparation of yeast Sono-Seq DNA 

 Saccharomyces cerevisiae strains CMY288-1B (BY background) and YJM339 

(clinical isolate) were grown in 500 mL of YPAD to mid-log phase (OD600=1.0). Cells 

were fixed with 1% formaldehyde for 15 min after which glycine was added to a final 

concentration of 125 mM. Cells were lysed with five 1-min bursts at 6.0m/s on a 

FastPrep-24 (MP Biomedicals). Chromatin was sonicated with a Branson 250 sonifier 

(Amplitude 50% for 5x 30 s intervals) to an average size of 450-500 bp. For each 

biological replicate, 250 µl of clarified lysate were processed to reverse crosslinks 

overnight, followed by a proteinase K treatment. The DNA was extracted three times in 

phenol:chloroform:isoamyl alcohol (25:24:1), and once in chloroform. After ethanol 

precipitation, DNA was resuspended in 1X TE [pH 8.0], RNase-treated and purified 

using a Qiagen MinElute PCR purification column. Finally, 100-350 bp Sono-Seq DNA 

was size-selected using a 2% agarose gel before Illumina library preparation. Sequencing 

libraries were generated as described above. Buffers are described in Aparicio et al [23]. 

2.6.5 Computational analysis of Illumina GA II data 

 Sequencing reads were analyzed using Illumina’s Genome Analysis Pipeline 

version 0.3. Reads were aligned to human genome build 18 using the Eland aligner and 



 35 

unique reads were used for ChIP-Seq scoring with PeakSeq [8]. Signal maps and 

aggregation plots were generated as described in the Supplementary Text.  

 Data are available in NCBI’s Gene Expression Omnibus [23] through accession 

numbers GSE12781 (Pol II and Sono-Seq) and GSE14022 (Naked DNA, DNA treated 

with MNase, large-fragment Sono-Seq, and normal IgG). Signal files and other data can 

be accessed at http://archive.gersteinlab.org/proj/Sono-Seq.  

2.6.6 Creation of ChIP-Seq mappability aggregations 

 A mappability profile for 30 nt reads was created and aggregations performed using 

the same strategies presented in Rozowsky et al. [8]. A mappability fraction of 1.0 for a 

given position means that a 30 nt read beginning at that position is fully mappable. Low 

ChIP signals from regions with high mappability indicate a true lack of reads from these 

regions. 

2.6.7 Creation of FAIRE signal files and enriched regions 

 Block normalized log2 normalized FAIRE data from yeast chromosome 3 tiling 

arrays from Hogan et al. were downloaded from the GEO (accession number GSE4721) 

[19,23]. Values for each probe were averaged across the four microarray experiments to 

produce a composite data set and the probe IDs converted to genomic positions. These 

positions along with the corresponding average score were used to create a FAIRE signal 

file by averaging the values from overlapping tiles at each nucleotide position. Regions 

with a composite average score of at least 0.6 were deemed enriched and used to create a 

list of discrete FAIRE sites. 
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2.6.8 Scoring and aggregating Sono-Seq DNA in yeast 

 A Sono-Seq DNA data set for yeast was created by pooling data from two 

replicates then scoring against a randomized background using PeakSeq [8]. An 

aggregation of FAIRE signal over Sono-Seq sites was then created using the method 

described above. A bin size of 10 bp was used for all yeast aggregations. To create the 

FAIRE over Sono-Seq plot, aggregation was performed over regions consisting of 400 bp 

from the endpoints of each Sono-Seq region. The average of the furthest ten bins from 

each endpoint (corresponding to a region 300-400 bp distal of each Sono-Seq region 

endpoint) was used to normalize the remaining points. 

2.6.9 Scoring Pol II and reference DNA samples against naked DNA and 

intersecting against promoters of Ensembl genes 

 PeakSeq was used to score Pol II and each reference DNA type against naked DNA 

[8]. Regions deemed to be enriched by PeakSeq were then intersected against promoter 

regions of Ensembl genes from Ensembl Release 50/NCBI36 using a C program 

leveraging the Bios library and coverage statistics were generated using the Active 

Region Comparer [24]. For this analysis, we define promoter regions of Ensembl genes 

to be 2.5 kb of the transcription start site and intersection as two sequences sharing at 

least one base position. 

2.6.10 Calculating percent feature composition and creating a rank-order plot for 

Sono-Seq DNA and Pol II DNA 

 Enriched regions for Pol II and Sono-Seq DNA were ranked in descending order 

according to sequence tag count and fold enrichment versus naked DNA. These peaks 

were then classified by their proximity to known promoter regions and a rank-order plot 
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produced (see Appendix A). 
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Chapter 3: Analysis of the Human SWI/SNF Chromatin 

Remodeling Complex through Data Integration 

 

3.1 Statement of Prior Publication and Bioinformatics Contribution 

 This work is reprinted from a 2011 paper in PLoS Genetics by Euskirchen and 

Auerbach, et al [91]. No additional permissions were required. This work represents one 

of the early attempts to ChIP members of a chromatin remodeling complex. 

Informatically this posed several new challenges. ChIP-Seq scoring algorithms had 

focused on factors with a more defined binding pattern (e.g. factors that bind proximal to 

promoter regions) rather than factors that are ubiquitous across the genome such as 

chromatin remodelers. From personal experience with several peak calling algorithms 

available at the time, many would call too many peaks or produce questionable peak calls 

based on the reference DNA biases discussed in Chapter 2. Additionally, there are 

approximately 288 possible subunit combinations and some members of the SWI/SNF 

chromatin remodeling complex are thought to have other roles outside the complex. 

These characteristics required a more specialized analysis than what was being done at 

the time. In consultation with my coauthor in regards to biological underpinnings, we 

designed a strategy to select high quality peaks based on total read count, the difference 

between the number of factor and input reads, and other characteristics in addition to the 

q-value returned by peak calling programs. At the time, few ChIP-Seq datasets were 

publicly available, those that were in the public domain were typically produced using 
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ideal antibodies (e.g. RNA Polymerase II), and bioinforamticists relied almost solely 

upon the q-value produced by peak-calling programs. This approach was insufficient for 

this project, however, as most peak callers at the time were designed around datasets with 

defined binding patterns near promoters and that produced a relatively small number of 

peak calls. I identified additional criteria to filter the ChIP-Seq peaks. In addition, I (with 

consultation from my coauthor, Ghia Euskirchen, regarding the underlying biology) 

employed an evidence-based approach to determine whether a SWI/SNF complex was 

present based on surrounding annotated features, the ChIP-Seq peaks called for each 

subunit, and what was known about SWI/SNF biology. This paper represents one of the 

early efforts in our lab to go beyond “off-the-shelf” peak calls and to design an approach 

to examine non-standard ChIP factors. The results of the above evidence-based approach 

were consistent with many targets/pathways one would expect given SWI/SNF biology 

(e.g. signaling pathways, cancer pathways). In addition to formulating the methodology 

and identifying these targets, I also conceived and implemented the analysis depicted in 

Figure 3.5 to examine the transcriptional efficacies of different SWI/SNF subunit 

combinations. Through this evidence-based approach that I designed and implemented, 

we were able to identify high-confidence targets of a multi-subunit protein complex that 

also made sense in a biological context. 

3.2 Abstract 

 A systems understanding of nuclear organization and events is critical for 

determining how cells divide, differentiate and respond to stimuli and for identifying the 

causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been 

implicated in a wide variety of cellular processes including gene expression, nuclear 
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organization, centromere function and chromosomal stability, and mutations in SWI/SNF 

components have been linked to several types of cancer. To better understand the 

biological processes in which chromatin remodeling proteins participate we globally 

mapped binding regions for several components of the SWI/SNF complex throughout the 

human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory 

elements integral to transcription (e.g. 5’ ends, RNA Polymerases II and III and 

enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins 

and DNA replication origins). Interestingly we also find that certain configurations of 

SWI/SNF subunits are associated with transcripts that have higher levels of expression 

whereas other configurations of SWI/SNF factors are associated with transcripts that 

have lower levels of expression. To further elucidate the association of SWI/SNF 

subunits with each other as well as with other nuclear proteins we also analyzed 

SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF 

factors are associated with their own family members as well as with cellular constituents 

such as nuclear matrix proteins, key transcription factors and centromere components 

implying a ubiquitous role in gene regulation and nuclear function. We find an 

overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and 

chromosome organization. Taken together the results from our ChIP and 

immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and 

genome function more broadly and through a greater diversity of interactions than 

previously appreciated. 

3.3 Author Summary 

 Genetic information and programming are not entirely contained in DNA sequence 
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but are also governed by chromatin structure. Gaining a greater understanding of 

chromatin remodeling complexes can bridge gaps between processes in the genome and 

the epigenome and offer insights into diseases such as cancer. We identified targets of the 

chromatin remodeling complex, SWI/SNF, on a genome-wide scale using ChIP-Seq. We 

also identify proteins that co-purify with its various components via immunoprecipitation 

combined with mass spectrometry. By integrating these newly-identified regions with a 

combination of novel and published data sources, we identify pathways and cellular 

compartments in which SWI/SNF plays a major role as well as discern general 

characteristics of SWI/SNF target sites. Our parallel evaluations of multiple SWI/SNF 

factors indicate that these subunits are found in highly dynamic and combinatorial 

assemblies. Our study presents the first genome-wide and unified view of multiple 

SWI/SNF components, and also provides a valuable resource to the scientific community 

as an important data source to be integrated with future genomic and epigenomic studies. 

3.4 Introduction 

 Chromosomes undergo a wide variety of dynamic processes including transcription, 

replication, repair and packaging. Each of these activities requires the recruitment and 

congregation of a particular set of factors and chromosomal elements. For example 

visualization of nascent mRNA in HeLa cells has led to a model of transcription units 

being clustered into “factories” thereby facilitating optimal engagement of RNA 

Polymerase II (Pol II) and coordination with other crucial holoenzyme complexes [1-3]. 

In addition to RNA Pol II and transcription factors, transcriptional assemblages include 

proteins critical to regulating chromatin. The accessibility of nuclear proteins to DNA is 

often controlled by ATP-dependent chromatin remodeling complexes, which are thought 
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to play a role in a number of different cellular transactions by reshaping the epigenetic 

landscape. 

 The SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling proteins 

were first discovered in Saccharomyces cerevisiae as components of a 2 MDa complex 

that repositions nucleosomes for vital tasks such as transcriptional control, DNA repair, 

recombination, and chromosome segregation [4-5]. Mammalian SWI/SNF is comprised 

of approximately ten subunits and the combinations of these subunits, some of which 

have multiple isoforms, enable multiple varieties of SWI/SNF complexes to exist both 

within a given cell and across cell types [6]. Among these subunits either of the two 

ATPases, Brg1 or Brm, is sufficient to remodel nucleosome arrays in vitro, however 

maximal nucleosome remodeling activity is achieved when the SWI/SNF subunits 

BAF155, BAF170 and Ini1 are present in a 2:1 stoichiometry relative to Brg1 [7]. 

Whereas the ATPases have an obvious catalytic function, the roles of the other SWI/SNF 

subunits are largely obscure. Several reports indicate that BAF155 and BAF170 provide 

scaffolding functions for other SWI/SNF subunits as well as regulating their protein 

levels [8-9]. SWI/SNF also contains -actin and the actin-related protein BAF53, 

suggesting a possible bridge to nuclear organization or signal transduction, e.g. through 

phosphatidylinositol signaling [10-11]. Phosphatidylinositol 4,5-bisphosphate has been 

shown to bind to Brg1 and promote binding to actin filaments [12]. Mutations resulting in 

loss of Ini1 function are associated with rare but aggressive pediatric cancers [13-14]. 

The SWI/SNF subunits Brg1 [15] and ARID1A [16-18] are likewise thought to have 

tumor suppressor roles based on mutations recovered from other tumor types. Curiously, 

Ini1 alone has a unique and largely undefined role in HIV-1 infection that includes 
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binding of Ini1 to HIV-1 integrase and the cytoplasmic export of Ini1 and its 

incorporation into HIV-1 particles [19-21]. 

 The role of SWI/SNF components in cancer and tumor suppression is poorly 

understood despite extensive study. Detailed investigations of individual loci have 

implicated SWI/SNF in various transcriptional pathways including the cell cycle and p53 

signaling [22], insulin signaling [23], and TGF signaling [24], as well as signaling 

through several different nuclear hormone receptors [25]. Although in vitro experiments 

and single-gene studies have been informative and have laid the foundation for 

understanding chromatin remodeling, a global analysis of targets of SWI/SNF is expected 

to yield a more extensive view into the biological roles of SWI/SNF components and 

their involvement in human disease. 

 In this study we present two complementary global analyses of SWI/SNF subunits 

to provide a more systematic view of SWI/SNF functions. First we performed ChIP-Seq 

with the ubiquitous SWI/SNF components Ini1, BAF155, BAF170 as well as the Brg1 

ATPase. Second, in a parallel set of studies we performed mass spectrometry 

identification of proteins that co-immunoprecipitate with SWI/SNF components. Using 

our ChIP-Seq results the resulting chromosomal locations were integrated with published 

annotations to yield a more complete understanding of SWI/SNF on a genome-wide scale. 

We find SWI/SNF components frequently occupy transcription start sites (TSSs), 

enhancers, CTCF regions and many regions occupied by Pol II. Further analyses of the 

SWI/SNF regions we identified by ChIP-Seq reveals that SWI/SNF factors target genes 

and signaling pathways involved in cell proliferation and cancer. Our investigation of 

SWI/SNF protein interactions detected not only the expected co-occurrences of 
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individual SWI/SNF factors with each other but also with cellular components such as 

nuclear matrix proteins, key transcription factors and centromere proteins implying a 

ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of 

both SWI/SNF-associated chromosomal regions and proteins in cell cycle and 

chromosome organization. Collectively our results suggest that SWI/SNF is at the nexus 

of multiple signal transduction pathways, essential chromosomal functions and nuclear 

organization. 

3.5 Results 

3.5.1 Genome-wide mapping of SWI/SNF subunits reveals many different co-

associations 

 We identified the targets of four SWI/SNF components, Ini1 (SMARCB1), Brg1 

(SMARCA4), BAF155 (SMARCC1) and BAF170 (SMARCC2), using ChIP-Seq. 

Chromatin complexes were isolated from HeLa S3 nuclei following independent 

immunoprecipitations with antibodies for each factor. Each of these antibodies was 

characterized by both immunoblot and mass spectrometry analyses (see Materials and 

Methods). Reads that mapped uniquely to the genome were retained (29-33 million reads 

per data set; Table 1) and significant binding regions were identified using the PeakSeq 

program with q-value < 0.05 [26]. The peaks were compared to a similarly-sized data set 

of uniquely mapped ChIP DNA reads obtained from control immunoprecipitation 

experiments using normal IgG (i.e. a control serum that is not directed to any known 

antigens). Using this approach we identified many Ini1-, Brg1-, BAF155- and BAF170-

associated regions (Table 1). 

 The majority of SWI/SNF binding occurs near (2.5 kb) protein-coding genes, a 
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distribution that is significant relative to a random target list (p < 1x10-16; Genome 

Structure Correction (GSC) test [27]; see Materials and Methods). Several examples of 

SWI/SNF positioning relative to genic regions are shown in Figures 3.1 and B.1. In order 

to further examine SWI/SNF locations with respect to gene-rich and gene-poor regions 

we obtained a set of histone H3K27me3 domains that were identified in HeLa cells 

(Table B.1; [28]) because this chromatin mark often occurs in gene-poor and repressed 

(i.e. heterochromatin) regions. Although most SWI/SNF-binding occurs outside 

H3K27me3 domains, we observed that SWI/SNF is occasionally found in 

heterochromatin regions, as shown in Figure B.2. In this example a 7.5 Mb 

heterochromatin region on Chr16 contains a single gene, the neuronal cadherin CDH8, 

that is repressed and lacks RNA Pol II, however several SWI/SNF binding regions are 

found nearby. 

 We have performed considerable analyses of the targets for the individual 

SWI/SNF factors, particularly with respect to elements representing several major classes 

of genomic features including promoters (Ensembl protein-coding genes), RNA Pol II 

sites [26], CTCF sites [28], and predicted enhancers [29]. All of these features were 

identified in HeLa cells (Tables 3.1, B.1 and B.2; see Materials and Methods). In 

comparisons between the individual target lists for Ini1, Brg1, BAF155 and BAF170 with 

promoters, RNA Pol II sites, CTCF sites and enhancers we found that each SWI/SNF 

factor is significantly overrepresented for each of these major classes of genomic 

elements (p < 1x10-16, GSC test, see Materials and Methods). To arrive at a single unified 

and more conservative list of SWI/SNF locations, we first took the union of all regions 

for Ini1, BAF155, BAF170 and Brg1, resulting in 69,658 SWI/SNF regions. We then 
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trimmed this list to a high-confidence set of 49,555 sites by eliminating those regions 

where either only a single SWI/SNF subunit was present or that those regions that did not 

co-occur with either promoters, RNA Pol II sites, CTCF sites or predicted enhancers. We 

used this list of 49,555 SWI/SNF regions for all subsequent analyses unless otherwise 

noted (Table B.3). The four major classes of genomic features mentioned above were 

overrepresented in both the 69,658 SWI/SNF regions as well as the more conservative list 

49,555 SWI/SNF regions (p < 1x10-16, GSC test). 

 We next examined the configurations of our 49,555 SWI/SNF regions (Figure 3.3A 

and Table 3.2). Ini1, BAF155 and BAF170 have been described as forming a ‘core’ 

based on their ability to stimulate remodeling activity of the Brg1 ATPase in 

reconstitution experiments [7]. Among our data 30,310 regions (61%) have two or more 

SWI/SNF components and 9,760 regions (20%) contain the core of Ini1, BAF155 and 

BAF170; for the purposes of this study we call this the ‘core set’. Among putative 

complexes comprised of two or more SWI/SNF subunits, we observed BAF155 was the 

subunit most common to each binding region. Only 770 SWI/SNF subunit co-

occurrences were recovered that lacked BAF155 as compared to 6,467 for BAF170 and 

14,824 for Ini1. This finding is consistent with several previous studies showing that 

BAF155 is important for SWI/SNF complex stability [8-9]. BAF155 may increase the 

stability of the complex during assembly, or BAF155 may be easier to detect by ChIP. 
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Figure 3.1 SWI/SNF regions co-occur with many diverse genomic elements. The ChIP-Seq regions and 

signal tracks displayed encompass a ~340 kb region on chromosome 6. The coordinates shown are in hg18 
and all regions were identified in HeLa cells as detailed in Table S1 and Materials and Methods. Insets A-D 
are shown both in the context of the 340 kb region and in magnified view. Inset A displays a ~10 kb region 
at the edge of an H3K27me3 domain. Inset B displays a ~10 kb region around the 5 end of FOXP4. Inset C 

displays a ~20 kb region around the 5 end of MDFI. Inset D shows an example of where lamin A/C and 
lamin B can both flank and overlap with each other. Annotations above the coordinate axis are for forward-

strand genes, and annotations below are for reverse-strand genes. Signal tracks are scaled consistently 
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based on number of reads. The vertical axis for each signal track is the count of the number of overlapping 
DNA fragments at each nucleotide position and is scaled from 0 to 40 for each track. 

 

 
Figure 3.2 SWI/SNF signals and target regions in the context of H3K27me3 domains. As shown in panel A 
SWI/SNF signals (blue) are sparse in H3K27me3 regions (yellow) along the entire length of chromosome 
16. An exception is shown in Panel B where SWI/SNF occurs around the CDH8 gene that is embedded in 

an H3K27me3 domain. CDH8 encodes a brain-expressed cadherin that is not expressed in HeLa cells using 
the data of Morin et al. 
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Figure 3.3 Venn diagrams showing overlaps for the SWI/SNF union target regions. Panel A displays the 

various combinations of all Ini1, BAF155, BAF170 and Brg1 targets in the 49,555 high-confidence union 
regions (see also Table 2). Panel B displays the various combinations of Pol II regions, 5 ends of Ensembl 

protein-coding genes, CTCF sites and putative enhancers occurring in the 49,555 SWI/SNF high-
confidence union target regions. Of the 49,555 high-confidence union regions, 4,800 (10%) do not contain 

any of these elements and are defined as ‘unclassified’ (Table 3.3). 

 
Table 3.1 Read counts and target regions identified by ChIP-Seq. 

Data set Number of 
uniquely 

mapped reads 

Total number of 
targets 

(PeakSeq)1 

Number of 
genic 

targets2 

Number of targets 
after filtering (high-
confidence union)3 

Ini1 33,360,976 49,458 32,725 
(66%) 

24,478 (49%) 

Brg1 30,037,219 12,725 7,823 (61%) 12,317 (25%) 
BAF155 28,800,740 46,412 28,221 

(61%) 
37,921 (77%) 

BAF170 29,090,374 30,136 18,847 
(63%) 

25,433 (51%) 

Pol II 29,060,928 23,320 18,305 
(78%) 

19,669 (40%) 

IgG 
control 

28,960,961 N/A N/A N/A 

1Uniquely mapped targets were identified by PeakSeq and further filtered using criteria more stringent than the default 
parameters. See Materials and Methods. 
2Genic regions were identified for the total number of targets determined by PeakSeq. Genic regions are defined as a 
window encompassing 2.5 kb up- and downstream of the 5’ and 3’ ends, respectively, using protein-coding genes from 
Ensembl build 52 based on hg18. 
3The high-confidence union list contains 49,555 targets and was formed by creating a union list of all SWI/SNF regions 
from those identified by PeakSeq and trimming this list to those SWI/SNF regions that co-occur with each other, Pol II 
regions, 5’ ends of protein-coding genes, CTCF sites or putative enhancers. For further details, see Materials and 
Methods. 
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Table 3.2 Combinations of SWI/SNF factors found in the high-confidence union regions. 

SWI/SNF Union Set 49,555 
Two or more subunits 30,310 
Three or more subunits 15,535 
Core Set: Ini1, BAF155 and BAF170 (may include Brg1) 9,760 
Ini1, BAF155, BAF170 and Brg1 4,750 

 
 

3.5.2 Genome-wide locations of SWI/SNF components suggest diverse roles in gene 

regulation 

 One of the primary functions of chromatin remodeling complexes is to assist in 

gene regulation. Among the SWI/SNF regions in our high-confidence union set of 49,555 

sites, 29% correspond to the 5’ ends of protein-coding Ensembl genes, 40% correspond 

to Pol II sites, 17% correspond to CTCF sites and 43% correspond to predicted enhancer 

regions (Figure 3.3B; Table 3.3). The various combinations of these four elements 

account for a total of 90% of the SWI/SNF union regions; 4,800 (10%) of the SWI/SNF 

regions are unclassified using the above elements. Similar trends were observed for the 

9,760 SWI/SNF “core” regions where Ini1, BAF155 and BAF170 all co-occur (Table 

3.3). None of these four particular SWI/SNF subunits or any combinations thereof 

exhibited a differential preference for one type of element (Table 3.4).  

 There are some differences between the SWI/SNF core and union regions. The 

SWI/SNF core regions are overrepresented for RNA Pol II (p < 9.9 x10-16; 

hypergeometric test) and 5’ ends (p < 6.5 x10-211; hypergeometric test) relative to all of 

the SWI/SNF high-confidence union regions; however the SWI/SNF high-confidence 
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union regions are overrepresented for enhancer regions relative to the Ini1-BAF155-

BAF170 core (p < 2.4 x10-67; hypergeometric test). Neither the SWI/SNF core nor the 

high-confidence union regions were over- or underrepresented for CTCF sites relative to 

each other (p > 0.05; hypergeometric test). 

 Enhancers are often characterized by long-range interactions. We examined the 

locations of SWI/SNF binding regions in the 150 kb CIITA region where numerous 

chromosomal looping interactions have been mapped at high resolution in HeLa cells 

using 3C (Chromosome Conformation Capture). Brg1 has been previously mapped at 

several sites in this locus in these cells [30]. Superimposition of these 3C data on our 

SWI/SNF ChIP-Seq data (Figure 3.4) reveals that all six of the 3C interacting regions in 

the CIITA locus (-50 kb, -16 kb, -8 kb, pIV, +40 kb and +59 kb) are bound by SWI/SNF 

components. Moreover certain individual SWI/SNF component binding regions that 

appeared initially as orphans may now be seen as part of a complete complex when 

joined with a distal element. For example Ini1 at pIV when joined with BAF155 and 

BAF170 regions at the -16 kb element forms a SWI/SNF core. Thus in the CTIIA locus 

SWI/SNF regions are often associated with 3C regions and many of the regions bound by 

individual factors may in fact be part of entire SWI/SNF complexes inside the nucleus. 

 Overall our ChIP-Seq results are summarized in Tables 3.1 to 3.3 and Figure 3.3 

and indicate that SWI/SNF likely contributes to gene regulation through many different 

avenues in light of its binding to promoters, enhancers and CTCF sites. Furthermore 

SWI/SNF may facilitate looping interactions among these various elements as it has been 

shown in vitro that SWI/SNF can interact simultaneously with multiple DNA sites and 

generate loops between them [31]. Interestingly we found a slightly higher presence of 
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the SWI/SNF core at TSSs and with Pol II than the SWI/SNF union regions with these 

elements (Table 3.3). Thus a complete core of Ini1, BAF155 and BAF170 may be 

required for effective promoter function whereas only a subset of these factors may be 

required for enhancer function. Alternatively a full SWI/SNF core may be more difficult 

to recover from a single enhancer element as compared to a more compact promoter 

region due to the enhancer’s presumed interaction with many different distal elements. 

 

 
Figure 3.4 SWI/SNF signals relative to 3C sites in the CIITA locus. A ~150 kb region surrounding the 

CIITA locus is shown with SWI/SNF signals. Chromosomal loops detected in Ni et al. [30] are displayed as 
brackets connecting regions that were shown to contact each other using 3C. In the absence of -interferon 

eight constitutive contacts have been observed by 3C in HeLa cells between the sites at: (–50:–8), (–
50:+59), (–8:+59), (pIV:+40), (–50:pIV), (–16:pIV), (–8:+40) and (–8:pIV). CIITA contains STAT1 

binding regions; for comparison, STAT1 data are also shown from ChIP-Seq signals and target regions 
obtained from -interferon-stimulated HeLa cells as we previously reported [26]. The Ini1 site at pIV, when 

joined with BAF155 and BAF170 regions at the -16 kb element, forms complete a SWI/SNF core. The 
vertical axis for each signal track is the count of the number of overlapping DNA fragments at each 

nucleotide position and is scaled from 0 to 40 for each track. 
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Table 3.3 Genomic elements found in SWI/SNF target regions. 

Genomic Elements SWI/SNF union set 
(49,555 regions 

total)1 

SWI/SNF core set 
(9,760 regions 

total)2 
CTCF, Pol II, Enhancers, 5' ends 
(any combination) 

44,755 (90%) 8,968 (92%) 

Unclassified 4,800 (10%) 792 (8%) 
RNA Pol II sites 19,669 (40%) 6,562 (67%) 
Putative Enhancers 21,228 (43%) 3,431 (35%) 
CTCF sites 8,542 (17%) 1,692 (17%) 
5' ends (within 2.5 kb) of Ensembl 
protein-coding genes 

14,291 (29%) 4,089 (42%) 

1This high-confidence union list is the same described in Table 1. For further details see Materials and 
Methods. 
2The core set is defined as those regions having a co-occurrence of Ini1, BAF155 and BAF170. 
 

3.5.3 RNA polymerases are extensively colocalized with SWI/SNF 

 As detailed above SWI/SNF regions are enriched for Pol II. To explore the 

prevalence of SWI/SNF with transcriptional machinery we asked whether the converse 

would also be true, namely if regions bound by RNA polymerases are enriched for 

SWI/SNF. Indeed Pol II regions are enriched for SWI/SNF binding regions (p < 1x10-16, 

GSC test). Although Pol II overlaps extensively with SWI/SNF it differs from SWI/SNF 

in its concordance with CTCF and enhancer regions (Table B.5). Pol II regions lacking 

SWI/SNF show a five-fold decrease in CTCF sites and a two-fold decrease in enhancer 

regions as compared to those Pol II regions containing SWI/SNF. 

 We further compared our SWI/SNF regions with binding intervals identified for 

RNA polymerase III (Pol III), which in addition to transcribing tRNA and other non-

protein coding RNAs has an emerging role in the formation of boundary elements [32-

33]. Pol III localization data were obtained from published ChIP-Seq studies using HeLa 

cells ([34-35]; Tables B.1 and B.6) and constitute 478 known and novel Pol III-associated 
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regions. Pol II is often associated with Pol III (Table 3.4; reviewed in [32]. Therefore we 

examined whether SWI/SNF was associated with Pol III binding regions independently 

of Pol II. Of the 478 Pol III regions, 253 Pol III intervals lack Pol II and among these 

39% (98/253) contain one or more SWI/SNF components. These results suggest that 

SWI/SNF association with Pol III can occur independently of Pol II. 

 Overall 65% (309/478) of Pol III regions and 84% (19,541/23,320) of Pol II regions 

have at least one SWI/SNF factor associated with them. The Ini1-BAF155-BAF170 core 

is found at 41% (195/478) of Pol III regions and 52% (12,079/23,320) of Pol II regions. 

From the colocalizations of SWI/SNF, Pol II and Pol III we see that there is substantial 

overlap among these factors yet each of these factors also has distinct characteristics. 

3.5.4 SWI/SNF components bind near many expressed regions 

 SWI/SNF is known to act as both an activator and repressor of transcription [36]. 

We examined the locations of four SWI/SNF components relative to transcribed regions 

in HeLa S3 cells using the RNA-Seq data of Morin et al. [37], Ini1, Brg1, BAF155 and/or 

BAF170 are present at or near the 5’ ends (± 3.5 kb) of 71 to 92% of active protein-

coding genes. As noted above, SWI/SNF occupancy in promoters is similar to that of Pol 

II and each of the factors is individually enriched in promoter regions (p < 1x10-16, GSC 

test). Although the majority of Ini1, Brg1, BAF155 and BAF170 target genes are 

expressed, an appreciable fraction of gene targets have little or no detectable mRNA in 

HeLa cells. A closer examination of the union regions where a SWI/SNF component is 

located in the promoter of an inactive gene reveals that 58% (2,063/3,565) of these 

promoters are co-associated with Pol II suggesting transcriptional stalling (reviewed in 

[38-39].  
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Table 3.4 Co-occurrence of RNA Pol II and Pol III with SWI/SNF high-confidence union regions. 

 

All RNA 
Pol III1 

All RNA 
Pol II2 

SWI/SNF, 
Pol II and 

Pol III3 

SWI/SNF 
and Pol III 

present; 
Pol II 

absent4 

Pol III 
present 

and 
SWI/SNF 

absent5 

Pol II 
present 

and 
SWI/SNF 

absent6 
RNA Pol III 478 182 (0.8%) 211 98 169 6 (~0.1%) 
RNA Pol II 225 (47%) 23,320 211 0 14 (8%) 3,779 

Ini1 274 (57%) 
18,674 
(80%) 201 (95%) 73 (74%) 0 0 

BAF155 235 (49%) 
16,175 
(69%) 176 (83%) 59 (60%) 0 0 

BAF170 248 (52%) 
12,790 
(55%) 179 (85%) 69 (70%) 0 0 

Brg1 75 (16%) 
7,303 
(31%) 68 (32%) 7 (7%) 0 0 

Core 195 (41%) 
12,079 
(52%) 160 (76%) 35 (36%) 0 0 

CTCF 49 (10%) 
2,448 
(10%) 14 (7%) 25 (26%) 10 (6%) 68 (<2%) 

Enhancer 22 (5%) 
4,527 
(19%) 4 (2%) 14 (14%) 4 (2%) 377 (10%) 

Protein-
coding7  198 (41%) 

18,305 
(78%) 111 (53%) 34 (35%) 53 (31%) 

3,052 
(81%) 

1There are a total of 478 Pol III regions genome-wide. 
2There are a total of 23,320 Pol II regions genome-wide. 
3SWI/SNF, Pol II and Pol III co-occur in 211 regions. Percentages shown are relative to these 211 regions. 
4Pol III co-occurs with 98 SWI/SNF regions in the absence of Pol II. 
5Of the total 478 Pol III regions 169 lack SWI/SNF. 
6Of the total 23,320 Pol II regions 3,779 lack SWI/SNF. 
7Regions within 2.5 kb of an Ensembl protein-coding gene. 
 

 Considering that SWI/SNF components bind near many expressed regions and that 

SWI/SNF factors occur in a multitude of configurations (Figure 3.3 and Table B.3), we 

examined transcript expression levels for all possible combinations of Ini1, Brg1, 

BAF155 and BAF170 occurrences. Using the RNA-Seq data of Morin et al. [37], we 

examined transcript expression levels corresponding to each of these configurations 

(Figure 3.5). We see that the highest levels of transcription are associated with the 

following four configurations: 1) the complete core of Ini1, BAF155 and BAF170; 2) the 
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complete core plus Brg1; 3) Ini1 and BAF155 only and 4) Brg1, BAF155 and BAF170. 

Although BAF155 is the subunit that is common to all of the configurations associated 

with the highest levels of transcription, it does not appear to be the sole driver of 

transcriptional activity. Compared against each other, all three components of the core 

complex taken individually have nearly indistinguishable profiles. Despite the 

involvement of Brg1 in two of the four configurations with the highest expression levels, 

most other configurations involving Brg1 are restricted to profiles associated with the 

lowest expression levels. One inference from these data is that certain combinations of 

SWI/SNF subunits are likely synergistic in promoting transcription whereas other 

combinations may be inhibitory or unstable. 

 We also examined SWI/SNF occurrences relative to 48,403 non-canonical small 

RNAs from HeLa cells (<156 bp; Table B.1) where most (83%; p < 1x10-16, GSC test) of 

these small RNAs are near protein-coding genes [40]. Approximately one third (30%) of 

this entire small RNA set is within 1 kb of a target from our high-confidence union list of 

49,555 SWI/SNF regions. The incidence of small RNA-SWI/SNF co-associated regions 

was nearly equivalent in protein-coding genes and intergenic regions. From this we 

surmise that SWI/SNF may contribute to gene regulation of a variety of transcripts, many 

of which are newly annotated and of unknown function. 
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Figure 3.5 Violin plots of expression values across all possible SWI/SNF subunit occurrences. Violin 

plots display the probability density function plotted against the adjusted depth (i.e. expression) values 
from Morin et al [37]. Transcript counts for each category are given in Table S7. We find that some 
combinations of subunits are associated with transcripts with higher expression levels while other 

combinations are associated with transcripts with lower expression levels. 

3.5.5 SWI/SNF targets genes involved in nuclear function and cancer pathways 

 Prior research has shown that a variety of signaling cascades are linked to 

SWI/SNF [25]. To gain further insights into potential actions of SWI/SNF components 

we examined the underlying Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) designations of their gene targets to determine significantly 

overrepresented annotations and pathways (Tables 3.5 and B.8). SWI/SNF gene targets 

were associated with ‘Pathways in cancer’ and several specific cancers types, e.g. chronic 

myeloid leukemia and pancreatic cancer. A number of signaling pathways and cellular 

processes that are “hallmarks of cancer” [41] were also overrepresented among the gene 

targets of Ini1, Brg1, BAF155 and BAF170. These include the Wnt, ErbB, p53, MAPK, 
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and insulin signaling pathways, and processes endemic to oncogenesis and cancer 

progression such as DNA repair, the cell cycle and apoptosis. From these analyses we 

surmise the recruitment of SWI/SNF components is likely to influence the molecular 

basis of cancer through several potential mechanisms. 

 The SWI/SNF-enriched pathways are highly interconnected. Using the 49,555 

SWI/SNF targets we identified a total of 24 KEGG signaling or biochemical pathways 

(Figure 3.6, yellow nodes). Interestingly, these pathways partition into three groups 

(Figure 3.6, panels A-C). Two of the groups (Figure 3.6A and 3.6B) comprise sets of 

pathways exhibiting at most one degree of separation, e.g. ‘inositol phosphate 

metabolism’ and ‘amino sugar and nucleotide sugar metabolism’. The third group (Figure 

3.6C) consists of three pathways that are unrelated to any other pathways in the KEGG 

database. As displayed in Figure B.2 directly related pathways such as ‘p53 signaling’ 

and the ‘cell cycle’ have shared components and many of the genes encoding these 

components are occupied by SWI/SNF factors. Thus, our results demonstrate that 

SWI/SNF is involved in many closely related signaling pathways and cellular processes 

and may help serve to coordinate expression of genes involved in these processes. 
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Figure 3.6 Network of overrepresented and other related KEGG pathways identified using SWI/SNF ChIP-Seq union regions. The KEGG pathways 

identified as overrepresented using the 49,555 SWI/SNF ChIP-Seq union regions are shown as yellow nodes and each of their related, KEGG-designated 
pathways are also displayed. Pathways related to the overrepresented pathways but that are not overrepresented themselves are shown as gray nodes. Red edges 
connect yellow nodes. Three of the nodes, spliceosome, ribosome and RNA degradation, are distinct and unrelated to other pathways according to the KEGG 

database. From this analysis three groups of pathways emerged: A) pathways related to signal transduction, glycan and carbohydrate metabolism, cell growth and 
death and other cellular processes B) nucleotide and amino acid metabolism and C) genetic information processing.
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Table 3.5 Significant pathways and biological processes associated with SWI/SNF union ChIP-Seq regions. 

Overrepresented categories for the SWI/SNF union regions1 Benjamini-corrected 
p-values 

KEGG hsa05200:Pathways in cancer 4.7 x 10-8 
KEGG hsa05212:Pancreatic cancer 4.9 x 10-3 
KEGG hsa05222:Small cell lung cancer 1.7 x 10-3 
KEGG hsa05211:Renal cell carcinoma 2.5 x 10-3 
KEGG hsa05220:Chronic myeloid leukemia 3.4 x 10-4 
KEGG hsa05215:Prostate cancer 8.9 x 10-3 
KEGG hsa05210:Colorectal cancer 1.7 x 10-3 
KEGG hsa05016:Huntington's disease 2.1 x 10-4 
KEGG hsa05010:Alzheimer's disease 1.4 x 10-3 
KEGG hsa04010:MAPK signaling pathway 1.3 x 10-5 
KEGG hsa04012:ErbB signaling pathway 2.6 x 10-3 
KEGG hsa04115:p53 signaling pathway 3.4 x 10-4 
KEGG hsa04310:Wnt signaling pathway 7.8 x 10-3 
KEGG hsa04910:Insulin signaling pathway 8.9 x 10-3 
KEGG hsa04070:Phosphatidylinositol signaling system 7.9 x 10-3 
KEGG hsa04120:Ubiquitin mediated proteolysis 8.4 x 10-7 
KEGG hsa03040:Spliceosome 8.6 x 10-10 
GO:0051056 regulation of small GTPase mediated signal transduction 1.8 x 10-3 
GO:0007049 cell cycle 3.4 x 10-34 
GO:0006260 DNA replication 4.5 x 10-10 
GO:0051301 cell division 4.1 x 10-18 
GO:0006281 DNA repair 5.6 x 10-20 
GO:0006915 apoptosis 8.8 x 10-9 
GO:0051276 chromosome organization 1.5 x 10-11 
GO:0016568 chromatin modification 2.1 x 10-17 
GO:0006357 regulation of transcription from RNA polymerase II 
promoter 

6.1 x 10-7 

GO:0034470 ncRNA processing 2.4 x 10-15 
GO:0001701 in utero embryonic development 1.5 x 10-5 
1Overrepresented terms were determined using DAVID tools for Ensembl genes corresponding to the 
49,555 SWI/SNF union regions for Benjamini corrected p-values <0.01. A complete list is available in 
Table B.7. 

 

3.5.6 SWI/SNF components associate with proteins involved in multiple aspects of 

gene regulation and are nodes in a highly integrated network 

 The genomic binding data demonstrates that SWI/SNF localization is coupled with 

a broad range of functional elements, suggesting that SWI/SNF may also be found with a 

broad range of associated proteins. To further examine the scope of SWI/SNF’s roles in 

the nucleus we analyzed proteins associated with SWI/SNF subunits using co-

immunoprecipitation followed by mass spectrometry. The SWI/SNF components Ini1, 
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BAF155, BAF170, Brg1, Brm and ARID1A were immunoprecipitated from HeLa S3 

nuclei, the resulting proteins were gel-separated and peptides were generated for analysis 

by mass spectrometry (See Materials and Methods; Table B.9). In addition to the factor-

specific antibodies, parallel immunoprecipitations were performed using non-specific 

IgG antibodies. Proteins identified in these “control IgG” immunoprecipitations were 

excluded as potential SWI/SNF co-purifying factors.  

 We identified a total of 101 proteins that were specifically associated with at least 

one of the SWI/SNF components assayed (Figure 7, turquoise edges; Table B.10). Of the 

non-SWI/SNF subunits detected, 5 of these interactions were found previously in HeLa 

cells (e.g. estrogen receptor alpha [42], and 96 were new to this study. Interestingly one 

of the novel interactions we observed in HeLa cells, BAF155 with NUF2, has been 

previously observed in yeast between the yeast homolog of BAF155 (SWI3) and NUF2 

[15]. Using the 101 nodes that we identified as proteins co-purifying with SWI/SNF in 

our undirected approach we ascertained overrepresented GO categories (Table 3.6). 

Several of these designations such as ‘cell cycle’ and ‘chromosome organization’ 

coincide with the categories obtained from GO and pathway analyses of SWI/SNF ChIP-

Seq targets, suggesting the possibility of highly interactive network structures. 

 Many of the proteins that were novel to this study reinforce and expand upon other 

published reports of SWI/SNF characterizations. For example SWI/SNF components 

have been localized by immunofluorescence to mitotic kinetochores and spindle poles 

[43], and Brg1-deficient mice show dissolution of pericentromeric heterochromatin 

domains [44]. From our immunoprecipitations BAF155 and BAF170 were associated 

with a number of kinetochore and centrosomal proteins (e.g. BUB1B, CENPE and NUF2, 
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Figure 8, green circles). The role of SWI/SNF in the maintenance of kinetochore and 

spindle function is unknown. We detected a variety of transcription factor activators and 

repressors (e.g. NFB1, NFB2, RelA, PML and NFX1) as well as DNA repair (ERCC5 

and RAD50) and cell cycle (e.g. CCNB3 and CDCA2) proteins (Figure S3). Some of the 

SWI/SNF interacting proteins themselves interact with one another. For example we 

detected several different proteins integral to estrogen and insulin signaling (Figure 7; 

Table B.10). We also identified proteins associated with only one SWI/SNF factor; these 

may either be interactions with a specific SWI/SNF component or an inability to detect 

the protein in the immunoprecipitations. 

  We developed an expanded network of SWI/SNF associations by including proteins 

that were found by others to co-purify with SWI/SNF subunits (Figure 7, black edges). 

Only those factors that showed a one-degree separation with a SWI/SNF component in 

HeLa cells are displayed and all interactions are annotated in Table B.10. SWI/SNF 

interacting proteins are associated with numerous UniProt keywords (Figure 8; [45]). 

Overall these results suggest a role for SWI/SNF components in a wide array of nuclear 

processes and diseases. Some of these processes may take place in nuclear substructures. 

Higher order chromatin structure is facilitated by the nuclear lamina and tethering of 

genes to the nuclear periphery is one epigenetic mechanism of gene regulation [46-47]. 

Intriguingly we and others have detected SWI/SNF components with various nuclear 

envelope-associated proteins (Figure 7 and Table B.10) including lamin A, EMD 

(emerin) and BAF/BANF1 (Barrier to Autointegration Factor, which although similar in 

name is not a SWI/SNF subunit). Two of the nuclear membrane proteins, SYNE1 and 

C14orf49, that we isolated in association with BAF155 are part of LINC complexes that 
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link the nucleoskeleton and cytoskeleton [48-49]. 

Table 3.6 Over-represented annotations from proteins identified as co-purifying with SWI/SNF in this 
study. 

Overrepresented categories for SWI/SNF co-associated 
proteins1 

Benjamini-
corrected 
p-values 

GO:0007049 cell cycle 3.8 x 10-4 
GO:0000279 M phase 2.8 x 10-4 
GO:0015630 microtubule cytoskeleton 8.4 x 10-4 
GO:0006323 DNA packaging 7.9 x 10-3 
GO:0000793 condensed chromosome 8.1 x 10-3 
GO:0051276 chromosome organization 9.9 x 10-3 
GO:0006333 chromatin assembly or disassembly 1.0 x 10-2 
GO:0005813 centrosome 1.2 x 10-2 
GO:0034728 nucleosome organization 1.5 x 10-2 
GO:0005815 microtubule organizing center 2.2 x 10-2 
GO:0016584 nucleosome positioning 2.8 x 10-2 
GO:0000777 condensed chromosome kinetochore 2.9 x 10-2 
Overrepresented terms were determined using DAVID for Ensembl genes corresponding to the 101 
proteins we identified as co-associated with a SWI/SNF factor as determined by IP-mass spectrometry. We 
considered Benjamini-corrected p-values <0.05. A complete list is available in Table B.8. 

3.5.7 A fraction of SWI/SNF regions are associated with the nuclear lamina 

 Numerous studies point to a high degree of functional organization in cell nuclei 

[46]. Emerging nuclear organization models would benefit greatly from a catalogue of 

processes and chromatin characteristics mapped to particular genomic elements. For 

example, the nuclear lamins are thought to influence chromatin organization, DNA 

replication and transcription [47,50]. Our immunoprecipitation results demonstrating that 

SWI/SNF components are associated with lamin A/C (Figure 3.7 and Table B.10) along 

with immunoprecipitation, immunolocalization and cell fractionation experiments from 

others demonstrating an association between SWI/SNF and nuclear lamina (e.g. emerin 

Figure 3.7; [51]) prompted us to investigate whether SWI/SNF and the lamins can be 

located to the same genomic sequences. 

 We isolated lamin A/C and lamin B ChIP DNA from HeLa S3 nuclei and 
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performed ChIP-chip on tiling arrays covering the ENCODE pilot regions (see Materials 

and Methods and Table S1). Most of the 1,770 lamin A/C regions mapped to H3K27me3 

domains (76%; 1,337/1,770) whereas the 1,270 lamin B regions were less commonly 

associated with H3K27me3 (29%; 372/1,270). Comparing regions where signal was 

detectable for the SWI/SNF, lamin A/C and lamin B experiments revealed that SWI/SNF 

has a much higher overlap with lamin B than lamin A/C. We found that 38% (297/784) 

of SWI/SNF sites are within 100 bp of a lamin B region whereas only 5% (41/784) of 

SWI/SNF sites are within 100 bp of a lamin A/C region (Table 3.7). For both lamin types 

the colocalization with SWI/SNF regions is significant relative to random target lists 

(lamin B, p < 1x10-16; lamin A/C, p < 1 x 10-15; GSC tests). SWI/SNF-lamin B 

intersecting regions contained approximately the same proportion of CTCF sites in the 

ENCODE regions as did all SWI/SNF sites in the ENCODE regions (p > 0.05 

hypergeometric test; Table 3.7). Enhancers are underrepresented in the SWI/SNF-lamin 

B regions relative to all SWI/SNF locations in the ENCODE regions (p < 1.9 x 10-36; 

hypergeometric test). The SWI/SNF-lamin B regions are overrepresented for Pol II (p < 

2.9 x 10-39; hypergeometric test) and 5’ ends (p < 7.3 x 10-37; hypergeometric test) 

relative to all SWI/SNF locations in the ENCODE regions. 

 In crosslinked chromatin SWI/SNF is detected primarily with lamin B, but as noted 

from the above mass spectrometry experiments, in solubilized, non-cross-linked cells 

SWI/SNF is detected with lamin A/C and not lamin B (Figures 3.1 and 3.7). We interpret 

these results to indicate that SWI/SNF, lamin A/C and lamin B co-associate in different 

nuclear contexts but are all part of a broader interacting network with specific sub-

associations. 
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Figure 3.7 Network of proteins that have been shown to co-purify with SWI/SNF factors. 158 proteins 

have been shown to co-purify with SWI/SNF factors in HeLa cells, either by our IP-mass spectrometry 
experiments or in other studies. Interactions are annotated in Table B.10. As indicated in the figure key, 

pink circles denote SWI/SNF components; the larger pink circles are SWI/SNF factors used as bait in this 
study. Blue edges denote interactions detected in this study. Yellow edges indicate interactions between 

SWI/SNF factors themselves that were detected in this study. Black edges indicate interactions from other 
published sources. As noted in Table B.10, the studies used a variety of biochemical methods and 

SWI/SNF factors were either bait or prey. Non-SWI/SNF factors are color-coded according to UniProt 
keywords [45]. 
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Table 3.7 Co-occurrence of SWI/SNF factors and lamins in the ENCODE regions. 

Factor or Feature  Lamin A/C1 Lamin B2 SWI/SNF3 
Ini1 22 (54%) 186 (63%) 598 (76%) 
Brg1 6 (15%) 75 (25%) 204 (26%) 
BAF155 31 (76%) 216 (73%) 588 (75%) 
BAF170 23 (56%) 155 (52%) 394 (50%) 
CTCF 7 (17%) 60 (20%) 146 (19%) 
Enhancers 8 (20%) 32 (11%) 289 (37%) 
RNA Pol II 23 (56%) 214 (72%) 335 (43%) 
5’ Ends 15 (37%) 186 (63%) 274 (35%) 
5' Ends, expressed 12 (29%) 128 (43%) 93 (12%) 
5' Ends, not expressed 4 (10%) 66 (22%) 191 (24%) 
 
1A total of 41 SWI/SNF regions intersect a lamin A/C region. 
2A total of 297 SWI/SNF regions intersect a lamin B region. 
3There are 784 SWI/SNF high-confidence union regions that were used for comparison with lamin ChIP-chip array 
data. 

3.5.8 Association of SWI/SNF with DNA replication origins 

 SWI/SNF and the lamins have each been implicated in DNA replication (see above; 

[52-53]). One of the proteins we detected as associated with SWI/SNF is the replication 

protein RepA and another regulator of DNA replication, geminin, has been found to co-

purify with SWI/SNF in HeLa cells (Figure 3.7, red circles; [54]). We investigated 

whether there might be a relationship among SWI/SNF, lamins and DNA replication 

origins. We obtained a set of 282 DNA replication origins identified in HeLa cells for the 

ENCODE regions ([55]; Table B.1). Of these 282 replication origins, 90 (32%) occur 

within 100 bp of a SWI/SNF region (p < 1x10-16, GSC test), 86 (31%) occur at the 5’ 

ends of protein-coding genes and 151 (54%) occur within 100 bp of a lamin B region. In 

contrast to lamin B, only 17% (48/282) of the replication origins were near a lamin A/C 

region. These results are consistent with nuclear staining patterns observed in mouse 3T3 

cells showing colocalization between lamin B and sites of DNA replication whereas the 

same colocalization patterns were not observed for replication foci and lamin A [52].  

 Of the 86 replication origins in promoter regions, 88% (76/86) intersected a lamin 
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B region and most (78% or 67/86) were within a 100 bp of a SWI/SNF region. These data 

indicate that SWI/SNF components are located near many DNA replication origins, 

particularly those located in promoter regions. The coincidence of chromatin remodeling 

factors, promoters, lamins and replication origins at the same subset of genomic regions 

suggests that these loci may be particularly favorable for the formation of both DNA and 

RNA polymerase assembly and chromatin tethering. As shown in Figure 3.1 the interplay 

among these elements as well as with Pol II, CTCF and heterochromatin regions is 

complex and interwoven, such that each may share many different supporting and 

counteracting roles. 

3.6 Discussion 

 SWI/SNF performs a crucial function in gene regulation and chromosome 

organization by directly altering contacts between nucleosomes and DNA. In the work 

presented here we undertook a two-pronged approach (ChIP-Seq and IP-mass 

spectrometry) to move towards a more thorough understanding of these functions. Our 

ChIP-Seq analyses demonstrate that SWI/SNF components overlap extensively with 

important regions that require tight control of the dynamics of nucleosome occupancy 

such as promoters, enhancers and CTCF sites. Not only does the SWI/SNF complex 

change the accessibility of DNA but it also acts in concert with an extensive host of 

cooperating factors, thereby facilitating combinatorial control among various genomic 

elements. In addition to our ChIP-Seq results, the diversity and number of proteins that 

co-purify with SWI/SNF as identified in our mass spectrometry experiments further 

supports SWI/SNF’s involvement with a variety of functionally distinct complexes. 

 RNA polymerases II and III are extensively colocalized with SWI/SNF components. 
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Studies of transcription in HeLa cells have estimated that the number of active RNA II 

polymerases exceeds the number of transcriptionally active sites by at least one order of 

magnitude, leading to the proposal of “transcription factories” [1-3]. The number of RNA 

Pol II transcription factories in HeLa cells has been estimated between 5,000 and 8,000 

where each factory can be typified by several looped loci, their resulting transcripts and 

distal elements such as enhancers. We infer that SWI/SNF regions are prevalent in 

transcriptional assemblages and their associated regulatory loops, given that >90% of our 

high-confidence union targets are associated with genic or regulatory regions and that 

65% of Pol III and 84% of Pol II regions colocalize with at least one SWI/SNF factor 

(Tables 3.4, B.5 and B.6). 

 Interestingly we observed that SWI/SNF components often occur independently of 

each other and in various configurations across the genome, and similarly our mass 

spectrometry data point to heterogeneity of SWI/SNF complexes. We speculate that 

several mechanisms may underlie these various configurations and their associated 

genomic features, including 1) synergism or antagonism of the individual SWI/SNF 

factors in influencing expression (e.g. Figure 3.5); 2) failure to detect individual subunits 

due to epitope masking as a consequence of variation with local environments; 3) the 

capture of incomplete complexes that may in fact be completed upon superposition of 

genome-wide 3C data once such data become available (e.g. Figure 3.4); 4) the existence 

of SWI/SNF sub-complexes that deviate from the conventional composition of SWI/SNF 

assemblies (e.g. [56]) or 5) the capture of intermediates in a multistep assembly or 

remodeling process. This last view is consistent with a model of stochastic assembly that 

may occur through intermediate interactions and that has been described for several other 
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large, multifactor complexes such as RNA polymerases and associated transcription 

factors [57], spliceosomes [58], and DNA repair complexes [59].  

 As shown in Figure 3.6 SWI/SNF occurs throughout many interconnected 

pathways. The assembly of functional SWI/SNF complexes at many locations in the 

genome may require the activation of one or more of these related pathways. 

Consequently some of the SWI/SNF associated regions we observed may reflect 

constitutive binding of partially assembled complexes that may be poised to receive 

additional signal inputs for subsequent regulatory activity. Indeed it has been shown that 

SWI/SNF components are present at regulatory regions even in the absence of 

stimulatory conditions or tissue-specific cofactors. For example Brg1 is present 

constitutively at the interferon-inducible genes IFITM3 [60] and CIITA [30] in 

unstimulated HeLa cells, which is consistent with our own finding of Brg1 and Ini1 at 

IFITM3 and various combinations of BAF155, BAF170, Ini1 and Brg1 at different 

elements in CIITA. In solution SWI/SNF factors are associated constitutively with RelB 

(HEK293 cells, [61]), RelA, NFkB1 and NFkB2 (HeLa cells, this study), the 

glucocorticoid receptor (T4D7 cells, [62]) and estrogen receptor alpha (HeLa cells, this 

study and [42]; SW13 cell extracts, [63]). The prevalence of SWI/SNF and the high 

degree of connectivity of its overrepresented pathways implies that SWI/SNF may assist 

in many related processes and may even facilitate crosstalk across many constituents of 

the transcriptional machinery. Notably SWI/SNF binds in the genes of its own subunits 

(Table B.19) suggesting that SWI/SNF may contribute to auto- and cross-regulation of its 

subunit levels. Loss-of-function of a particular subunit, as may occur in certain cancers, 

could initiate oscillations and alter the relative abundance of the levels of the other 
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SWI/SNF subunits through a variety of feedback and feed-forward loops. Aberrant 

SWI/SNF expression has been proposed to result in new combinatorial assemblies of 

SWI/SNF, some of which may deleterious [64]. 

 The gene attributes revealed by our ChIP-Seq data substantiate that SWI/SNF is 

proximal to targets that comprise sets of fundamental biological processes. Many of the 

functional categories we found to be significantly overrepresented have disease 

implications, especially as related to cancer (Figure B.2). For example failures in DNA 

repair and unchecked cell cycle activity are common characteristics of pre-cancerous 

cells, and our SWI/SNF analyses identified the p53 and MAPK signaling pathways, 

which are well known for maintaining checkpoint functions. Growth dysregulation 

particularly in the context of hormone signaling is another common cancer phenotype. 

Extracellular growth signals are transduced from the cell membrane to the nucleus by the 

ErbB, insulin and phosphtidylinositol signaling pathways, all of which we recovered as 

overrepresented (Table 3.5). The existence of phosphoinositide signaling in the nucleus 

and the ability of Brg1 to act as an effector for phosphatidylinositol 4,5-bisphosphate 

(PIP2) raises the prospect of several levels of control of this signaling pathway with 

respect to SWI/SNF [65], a hypothesis that can be examined in future studies.  

 Several of the overrepresented pathways we identified through our ChIP-Seq 

analyses share proteins detected in SWI/SNF co-purification experiments, thereby 

providing a resource to explore potential, highly-interactive network structures. For 

example we found that genes with products critical for ‘nucleotide excision repair’ were 

enriched using our SWI/SNF union list (Figure 3.6). Within this pathway the excision 

repair protein ERCC5 co-purified with both BAF155 and BAF170 in our IP 
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(immunoprecipitation)-mass spectrometry experiments. The excision repair protein, XPC, 

associates with SWI/SNF in response to UV irradiation in HeLa cells, and BRCA1 and 

ATR also cooperate with SWI/SNF in DNA repair (Figure 3.7; Table B.10; [66]). Thus 

we speculate SWI/SNF may participate in DNA repair through both transcriptional 

regulation as well as recruitment to regions undergoing repair. 

 Our study uses two strategies to attempt to comprehensively collect a SWI/SNF 

interaction network. We limited our network to a single model system, HeLa cells, 

because many attributes of SWI/SNF have been documented in these cells and it has been 

noted that SWI/SNF associations vary by cell type [67]. We extensively collated 

SWI/SNF protein interactions described in the literature. This undertaking was necessary 

because many of the proteins described in the literature as co-associated with SWI/SNF 

factors are not represented in interaction databases such as BioGRID, Molecular 

Interactions Database (MINT), IntAct, Human Protein Reference Database (HPRD), 

Nuclear Protein Database (NPD) and Interologous Interaction Database (I2D). Therefore 

we attempted to comprehensively collect such information to overcome these limitations. 

In total 158 SWI/SNF interacting proteins have been described in HeLa cells (Figure 3.8 

and Table B.10), which is similar to the number of SWI/SNF interacting proteins that 

have been described in other cell types [67]. Published molecular associations that were 

not discerned here might be due to interactions that are: 1) transient or of low affinity, 2) 

dependent on a specific set of biochemical conditions or 3) undetectable due to masking 

by the presence of more abundant protein(s) of similar size. In working with protein 

interaction data, similar degrees of overlap have been noted when comparisons are made 

across data sets [68-69] and even in a well-studied model such as yeast, mass 
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spectrometry analyses have found a plasticity of complexes and many previously 

undetected interactions [70-72]. From the ChIP-Seq and ChIP-chip results we expected 

that CTCF and lamin B may be among the proteins that co-associate with SWI/SNF, 

however neither of these factors was recovered in any of the non-directed experiments 

(Table B.10), including a CTCF immunoprecipitation-mass spectrometry experiment 

performed in HeLa cells. In addition to the above considerations one possibility is that 

CTCF or lamin B may associate more strongly with one of the SWI/SNF factors not 

studied, e.g. BAF53A or one of the BAF60 subunits.  

 SWI/SNF is most often described in a chromatin remodeling context however data 

derived from a variety of sources suggests that SWI/SNF has other facets. It is possible 

that not all of SWI/SNF’s functions involve DNA localization and therefore other types 

of global experiments, such as the IP-mass spectrometry, are valuable as first steps 

towards recognizing previously unknown roles. Unlike cytoplasmic compartments, 

nuclear compartments are not separated by a physical barrier but rather are functional 

assemblies that are typically organized around sets of molecules engaged in common 

functions. Data from both ChIP-Seq and IP-mass spectrometry illuminate the sectors in 

which SWI/SNF operates and the integration of these two methods is better than each 

alone for furnishing a broad comprehension of SWI/SNF action. For example ChIP-Seq 

enables the global identification of SWI/SNF chromosomal elements except for those 

regions with highly repetitive sequence such as human centromeres (Figure 3.2A). In this 

respect IP-mass spectrometry is complementary to ChIP-Seq because it strongly suggests 

that SWI/SNF occurs at kinetochores as evidenced by its co-purification with CENPE, 

NUF2, BUB1B and CLASP2 (Figures 3.7 and 3.9). In addition to kinetochore proteins 
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the SWI/SNF co-purification experiments also uncovered proteins from other 

substructures including centrosomes, microtubules, the nuclear periphery and PML 

nuclear bodies, the latter of which is characterized by cryptic foci of PML (promyelocytic 

leukemia protein) and has been implicated in a variety of diseases [73]. The ChIP-Seq 

and IP-mass spectrometry data are synergistic as well. Notably both methods found an 

overrepresentation of regions or proteins enriched for ‘cell cycle’ and ‘chromosome 

organization’. One possible inference from these studies is that SWI/SNF is well 

positioned to integrate signals across multiple signaling pathways both by its presence in 

a variety of cellular structures and its role in gene regulation through chromatin 

remodeling. 

 A fraction of SWI/SNF complexes co-associate with elements of the nuclear 

periphery where they are well situated to contribute to the nuclear organization and 

position-dependent gene expression (Figure 3.7; [51]). We found that in crosslinked cells 

SWI/SNF localizes more widely with lamin B than lamin A whereas in non-crosslinked 

cells SWI/SNF co-purifies with lamin A. As mentioned above lamin B may have escaped 

detection in SWI/SNF protein interaction studies. A related possibility is that SWI/SNF 

may exist in different nuclear pools that have varying solubilities and associations, such 

that recovery of particular SWI/SNF complexes depends upon the proteins with which 

SWI/SNF is associated. For example lamins A and B are known to have different 

nucleoplasmic mobilities and localization patterns [50,52]. Immunolocalization 

experiments in HeLa nuclei have revealed that the A/C- and B-type lamins form distinct 

meshworks with occasional points of intersection [50], which is consistent with the 

interspersed patterns of lamin A/C and B that we detected (Figure 3.1). Hence it is 
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reasonable to expect that SWI/SNF associated with lamin A would behave differently 

than when associated with lamin B. We surmise that in a chromatin context the dominant 

association of SWI/SNF with the nuclear lamins occurs in regions where lamin B is 

present. The purification of SWI/SNF with lamin A may indicate other biological roles, 

such as cell cycle progression or nuclear assembly [74-75]. 

 Gaining a more detailed understanding of SWI/SNF’s activities in or near various 

heterochromatin environments will be central to comprehending nuclear events over the 

cell cycle as well as during development. Among the numerous molecular and epigenetic 

factors that have been found to affect heterochromatin formation or maintenance, the 

heterochromatin protein 1 alpha (HP1, also known as CBX5; Figure 3.7) and Polycomb 

complexes (PcG) are of particular relevance to SWI/SNF [76-78]. Polycomb complexes 

promote gene silencing by catalyzing the trimethylation of H3K27 in its target regions, 

and SWI/SNF antagonizes this epigenetic silencing [79]. It is tempting to speculate that 

SWI/SNF found near the edges of H3K27me3 domains (Figure 3.1A and 3.1C) may be 

contributing to the establishment or maintenance of boundary elements. SWI/SNF may 

also engage in heterochromatin dynamics through its interaction with HP1, which is often 

located in the centromeric regions (reviewed in [80]). Curiously HP1 interacts with the 

lamin B receptor [81] thus providing a potential bridge between heterochromatin and the 

inner nuclear membrane. Both H3K27me3 and lamin B are associated with spatially 

regulated genes whose conversion between active and inactive states depends on access 

to their regulatory regions, as may be conferred by SWI/SNF.  

 The work presented here provides new insights into the scope of SWI/SNF’s 

influence in gene regulation and nuclear organization. The integration of numerous 
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studies is beginning to reveal the complexities contributing to the regulation of any given 

locus. Contemporary models of transcriptional control propose that a series of factors 

transiently associate with a regulatory region before a decisive event tilts these 

intermediate reactions towards a productive outcome [57,82]. SWI/SNF may contribute 

to such intermediate reactions or trigger switches between inactive and active states. The 

capacity for SWI/SNF to preserve many aspects of homeostasis also makes it vulnerable 

to being ensnared for aggressive cell proliferation. Our work demonstrates that SWI/SNF 

in particular and perhaps chromatin remodeling proteins in general will contribute unique 

insights to our understanding of gene regulation and disease mechanisms through the 

integration of target regions, spatial positioning and functional annotations. For example 

the co-occurrence of SWI/SNF with centrosomes, microtubules, kinetochores and the 

nuclear periphery may suggest that a pool of SWI/SNF is sequestered by these structures 

during mitosis to assist in the post-mitotic reformation of chromosomal territories. Our 

collective findings help inform a comprehensive view of SWI/SNF function as well as 

form a valuable compendium for future studies of nuclear functions as related to 

chromatin remodeling. 

3.7 Materials and Methods 

3.7.1 Chromatin immunoprecipitations 

 Suspension HeLa S3 cells were cultured by the National Cell Culture Center 

(Biovest International Inc., Minneapolis, MN) in modified minimal essential medium 

(MEM), supplemented with 10% FBS at 37°C in 5% CO2, to a density of 6 x105 

cells/mL. Cells were fixed with 1% formaldehyde at room temperature for 10 min. 

Fixation was terminated with 125 mM glycine (2 M stock made in 1x PBS). 
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Formaldehyde-fixed cells were washed in cold Dulbecco’s PBS (Invitrogen) and swelled 

on ice in a 10-mL hypotonic lysis buffer [20 mM Hepes (pH 7.9), 10 mM KCl, 1 mM 

EDTA (pH 8.0), 10% glycerol, 1 mM DTT, 0.5 mM PMSF, and Roche Complete 

protease inhibitors, Cat#1697498]. To isolate nuclei, whole cell lysates were 

 

 

 
Figure 3.8 Histogram showing the frequencies of UniProt keywords for proteins that co-purify with 
SWI/SNF factors. Keywords shown were retrieved from the UniProt database [45] for proteins that co-

purify with a SWI/SNF factor, as annotated in Table B.10. 
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Figure 3.9 Illustration showing overrepresented GO ‘cellular component’ categories for SWI/SNF 

co-purifying proteins. Overrepresented GO ‘cellular component’ categories are displayed for proteins we 
detected by IP-mass spectrometry. Centrosomal proteins are shaded brown, chromosomal proteins are blue, 

kinetochore proteins are orange and cytoskeletal proteins are green. Genes encoding starred proteins are 
targets of SWI/SNF as identified by ChIP-Seq. Based on these annotations SWI/SNF is associated with 

multiple cellular components. 

 

homogenized with 30 strokes in a 7 mL Dounce homogenizer (Kontes, pestle B). Nuclear 

pellets were collected by centrifugation and lysed in 10 mL of RIPA buffer per 3 x 108 

cells [RIPA buffer: 10 mM Tris-Cl (pH 8.0), 140 mM NaCl, 1% Triton X-100, 0.1% SDS, 

1% deoxycholic acid, 0.5 mM PMSF, 1 mM DTT, and protease inhibitors]. Chromatin 

was sheared with an analog Branson 250 Sonifier (power setting 2, 100% duty cycle for 7 

x 30-s intervals) to an average size of less than 500 bp, as verified on a 2% agarose gel. 

Lysates were clarified by centrifugation at 20,000 x g for 15 min at 4°C. 

 Clarified nuclear lysates from 1 x 108 cells were agitated overnight at 4°C with 20 

µg of one of the following antibodies: 1) anti-Ini1 (C-20), Santa Cruz Biotechnology, sc-

16189; 2) anti-BAF155 (H-76), Santa Cruz Biotechnology, sc-10756; 3) anti-BAF170 

(H-116), Santa Cruz Biotechnology, sc-10757; 4) anti-Brg1 (G-7), Santa Cruz 
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Biotechnology, sc-17796; 5) anti-lamin A/C (H-110), Santa Cruz Biotechnology, sc-

20681; 6) anti-lamin B antibody, EMD Biosciences, NA12; or 7) normal IgG, Santa Cruz 

Biotechnology, sc-2025. Antibody incubations were followed by addition of either 

protein A (Millipore #16-156) or protein G agarose beads (Millipore #16-266). Beads 

were permitted to bind to protein complexes for 60 min at 4°C. Immunoprecipitates were 

washed three times in 1x RIPA, once in 1x PBS, and then eluted in 1xTE/1%SDS. 

Crosslinks were reversed overnight at 65°C. ChIP DNA was purified by incubation with 

200 µg/mL RNase A (Qiagen #19101) for 1 h at 37°C, with 200 µg/mL proteinase K 

(Ambion AM2548) for 2 h at 45°C, phenol:chloroform:isoamyl alcohol extraction, and 

precipitation with 0.1 volumes of 3M sodium acetate, 2 volumes of 100% ethanol and 1.5 

µL of pellet paint (Novagen #69049-3). ChIP DNA prepared from 1 x 108 cells was 

resuspended in 50 µL of Qiagen Elution Buffer (EB). Three biological replicates were 

prepared per antibody. 

3.7.2 Construction and sequencing of Illumina libraries 

 ChIP-Seq libraries were prepared and sequenced as previously described [26,83]. 

Biological replicates for each factor were converted into separate and distinct libraries. 

To summarize, ChIP DNA samples were loaded onto Qiagen MinElute PCR columns, 

eluted with 15 µL of Qiagen buffer EB, size-selected in the 100-350 bp range on 2% 

agarose E-gels (Invitrogen) and gel-purified using a Qiagen gel extraction kit. DNA was 

end-repaired and phosphorylated with the End-It kit from Epicentre (Cat# ER0720). The 

blunt, phosphorylated ends were treated with Klenow fragment (3 to 5 exo minus; NEB, 

Cat# M0212s) and dATP to yield a protruding 3-‘A’ base for ligation of Illumina 

adapters (100 RXN Genomic DNA Sample Prep Oligo Only Kit, Part# FC-102-1003), 
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which have a single ‘T’ base overhang at the 3 end. After adapter ligation (LigaFast, 

Promega Cat# M8221) DNA was PCR-amplified with Illumina genomic DNA primers 

1.1 and 3.1 for 15 cycles by using a program of (i) 30 s at 98 °C, (ii) 15 cycles of 10 s at 

98°C, 30 s at 65°C, 30 s at 72°C, and (iii) a 5 min extension at 72°C. The final libraries 

were band-isolated from an agarose gel to remove residual primers and adapters. Library 

concentrations and A260/A280 ratios were determined by UV-Vis spectrometry on a 

NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific). Purified and 

denatured library DNA was capture on an Illumina flowcell for cluster generation and 

sequenced on an Illumina Genome Analyzer II following the manufacturer’s protocols 

[84]. 

3.7.3 Identification of proteins by mass spectrometry 

 Immunoprecipations were performed using the same conditions as for ChIP 

experiments except the HeLa S3 cells were not crosslinked. In addition to the ChIP 

antibodies described above we also used anti-Brm, Abcam Cat# ab15597 and anti-

BAF250a (PSG3), Santa Cruz Biotechnology, sc-32761. Complexes were resolved on 

BioRad 4-20% precast Tris-HCl gels (Cat# 161-1159) such that a single gel was used for 

each specific antibody and normal IgG immunoprecipitation pair. Gels were silver 

stained using Pierce SilverSNAP stain for mass spectrometry (Cat# 24600) and each lane 

was excised into 10-12 molecular weight regions. Gel slices were destained, dried in a 

Savant speed-vac and digested overnight at 42C with Sigma’s Trypsin Profile IGD kit for 

in-gel digests (Cat# PP0100). Following the overnight incubation the liquid was removed 

from each gel piece and volume reduced by drying to approximately 10 µL. The 

individual gel slices were analyzed separately.  
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3.7.4 Mass spectrometry 

 The samples were subjected to nanoflow chromatography using nanoAcquity 

UPLC system (Waters Inc.) prior to introduction into the mass spectrometer for further 

analysis. Mass spectrometry was performed on a hybrid ion trap LTQ Orbitrap mass 

spectrometer (Thermo Fisher Scientific) in positive electrospray ionization (ESI) mode. 

The spectra were acquired in a data dependent fashion consisting of full mass spectrum 

scan (300-2000 m/z) followed by MS/MS scan of the 3 most abundant parent ions. For 

the full scan in the Orbitrap the automatic gain control (AGC) was set to 1x106 and the 

resolving power for 400 m/z of 30,000. The MS/MS scans were done using the ion trap 

part of the mass spectrometer at a normalized collision energy of 24 V. Dynamic 

exclusion time was set to 100 s to avoid loss of MS/MS spectral information due to 

repeated sampling of the most abundant peaks. 

 Sequence data from MS/MS spectra was processed using the SEQUEST database 

search algorithm (Thermo Fisher Scientific). The resulting protein identifications were 

brought into the Scaffold visualization software (Proteome Software) where the 

information was further refined resulting in improved protein id conformation. Scaffold 

search criteria were set at 98% probability and required at least 2 unique peptides per ID. 

3.7.5 Determination of enriched regions in SWI/SNF ChIP-Seq data 

 All ChIP-Seq data sets (Ini1, Brg1, BAF155, BAF170, and Pol II) were scored 

against a normal IgG control using PeakSeq [26] with default parameters (q-value < 0.05) 

to determine an initial set of enriched regions. These lists were then filtered by removing 

those regions that did not meet all of the following requirements: 1) the q-value from 

PeakSeq was further restricted to a q-value of < 0.01; 2) a minimum of 20 sequencing 
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reads per peak from the specific antibody ChIP; 3) an enrichment of 1.5-fold of the 

specific antibody relative to the normal IgG control; and 4) an excess of at least 10 of the 

specific antibody reads relative to the normal IgG control reads. Enriched regions 

satisfying these criteria comprised our initial list of enrichment sites for each factor 

(Tables 1 and S11-S16). Among these data sources, Pol II and the normal IgG control 

have been published as part of prior studies and are available in GEO (accession numbers 

GSE14022 and GSE12781, respectively) [26,83]. Data for Ini1, Brg1, BAF155 and 

BAF170 can be accessed through GEO series GSE24397. 

3.7.6 Generation of a SWI/SNF union list from ChIP-Seq results 

 After obtaining our initial list of enriched regions for each factor subjected to 

chromatin immunoprecipitation, we generated a union list of SWI/SNF component 

targets. Using the method described in Euskirchen et al. [85], we formed the union of Ini1, 

BAF155, BAF170, and Brg1 enriched regions as identified by ChIP-Seq and merged any 

unioned regions that were separated by ≤ 100 bp. Each union region was then classified 

by whether it intersected with one or more of BAF155, BAF170, Ini1, and Brg1. The 

resulting list consists of 69,658 SWI/SNF union regions (Table S2). 

3.7.7 Determination of the ‘high-confidence’ and ‘core’ SWI/SNF regions from the 

ChIP-Seq union regions 

 We compared our ChIP-Seq target lists for the 69,658 SWI/SNF union regions 

against genomic features at which chromatin remodeling is expected to play a prominent 

role: RNA polymerase II sites [26], 5’ ends of Ensembl protein-coding genes, CTCF sites 

[28], and regions predicted to be enhancers in HeLa cells [29]. We also compared 

individual SWI/SNF component lists against each other. Only those SWI/SNF regions 



 83 

which intersect another SWI/SNF component or which intersect at least one of the above 

genomic features were retained for the ‘high-confidence’ union list. For gene promoter 

regions, we define overlap as a target region with at least 1 shared bp within ± 2.5 kb of 

the annotated transcription start site (TSS). SWI/SNF region intersections were calculated 

both for all genes in the Ensembl 52 database build using annotations from NCBI36 

(human genome build hg18) as well as for a subset of genes that Ensembl identifies as 

protein-coding. The resulting target list consists of 49,555 ‘high-confidence’ SWI/SNF 

union regions (Table S3). Union regions containing all three of the BAF155, BAF170, 

and Ini1 subunits are designated as the 9,760 ‘core’ SWI/SNF regions (Table 3). 

3.7.8 Generating co-occurrence tables 

 To determine the co-occurrences of features of interest we used a similar 

intersection strategy as was used for determining the high-confidence SWI/SNF regions. 

For all pairwise comparisons, one of the two data sets was extended by 100 bp on each 

side of the region and then intersected against the other, non-extended dataset. We 

required an overlap of at least 1 bp to deem two regions as associated. Using a Perl script, 

the intersection results for all comparisons were combined to form the co-occurrence 

table. The same procedure was followed to generate SWI/SNF-centric (Tables S2 and S3), 

Pol II-centric (Table S5) and Pol III-centric (Table S6) co-occurrence tables. 

3.7.9 Determination of expressed regions 

 Using the HeLa RNA-Seq data of Morin et al. [37], we subdivided each list by the 

expression status of the corresponding gene targets. Expressed genes were defined as any 

Ensembl gene with an associated Ensembl transcript having an adjusted depth of ≥1, 

representing an average coverage of 1x across all bases in the transcript. A total of 9,711 
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expressed protein-coding genes satisfied these criteria. 

 

3.7.10 Comparison of expression levels associated with different SWI/SNF sub-

complexes 

 We created a series of lists based upon the combinations of SWI/SNF components 

that could co-occur using the 49,555 high-confidence SWI/SNF regions derived from 

Table S3. Using the RNA-Seq data of Morin et al. [37], we intersected each list against 

the 5 ends of transcripts queried by that study and recorded the corresponding adjusted 

depth for any transcript with a 5 end within ±2.5 kb of a SWI/SNF region. Morin et al. 

treats adjusted depth as a measurement of transcription level for the corresponding 

transcript. For each list, these measurements were used to build a series of violin plots 

showing the probability distribution of transcription levels associated with different 

compositions of SWI/SNF subunits. Note that each SWI/SNF region from table S2 can 

only be assigned to one list (e.g. a region containing BAF155, BAF170, and Ini1 is not 

also assigned to the list of regions containing BAF155 and BAF170). 

3.7.11 Pathway analyses of SWI/SNF factors 

 Overrepresented GO categories [86] and KEGG pathways [87] were determined 

using DAVID tools [16]. Figures S2 and S3 were drawn using KGML-ED [88]. 

3.7.12 ChIP-chip experimental procedures and array scoring  

 The ENCODE tiling arrays (NimbleGen Systems Inc., Madison, WI) interrogate 

the regions from the pilot phase of the ENCODE project [89] and tile the non-repetitive 

forward strand DNA sequence with 50-mer oligonucleotides spaced every 38 bp 

(overlapping by 12 bp) for a total of approximately 390,000 features. For array 
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hybridizations ChIP DNA samples from 1 x 108 cells were labeled according to the 

manufacturer’s protocol by Klenow random priming with Cy5 nonamers (lamin A/C or 

lamin B ChIP DNA) or Cy3 nonamers (normal IgG ChIP DNA). Biological replicates, 

defined as ChIP DNA isolations prepared from distinct cell cultures, were each 

hybridized to separate microarrays. Each lamin data set consists of three biological 

replicates. ChIP DNA labeling and array hybridizations were conducted by the 

NimbleGen service facility (Reykjavik, Iceland). Briefly, arrays were hybridized in Maui 

hybridization stations for 16-18 h at 42°C, and then washed in 42°C 0.2% SDS/0.2x SSC, 

room temperature 0.2x SSC, and 0.05x SSC. Arrays were scanned on an Axon 4000B 

scanner. 

 For each pair of arrays the files (in .GFF file format) corresponding to the two 

channels for ChIP DNA (635 nm) and reference DNA (532 nm), were uploaded to the 

Tilescope pipeline for normalization and scoring [90]. Data were scored with the 

following TileScope program parameters: quantile normalization of replicates, iterative 

peak identification, window size= 500, oligo length=50, pseudomedian threshold=1.0, p-

value threshold=4.0, peak interval=1000, and feature length=1000. Regions called by 

Tilescope were then filtered and corrected for multiple hypothesis testing by false 

discovery rate (FDR). To generate our set of background regions for FDR analysis, we 

randomly shuffle the probe values within each replicate, ensuring that the same probes 

are swapped for each replicate. This shuffled data set is then used as input to Tilescope 

and the scores compared against the lamin A/C and the lamin B data sets. The final lists 

of enriched regions for lamin A/C and lamin B have a final FDR of 0.1. Target 

coordinates were converted to hg18 using the UCSC ‘liftOver’ utility 
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(http://genome.ucsc.edu/cgi-bin/hgLiftOver). Lamin A/C and lamin B data are available 

through GEO series GSE24382 and Tables S17 and S18. 

3.7.13 Comparison of features across the ENCODE regions 

 To facilitate comparisons between sequencing and array data we retained only 

those regions that could be queried by both platforms. To this end, we first identified 

sequences represented on the ENCODE tiling array that possess less than 25% 

mappability in ChIP-Seq experiments using 30 bp reads. Any enriched regions in the 

lamin A/C and the lamin B data sets that were entirely contained within these regions of 

low mappability were removed from our lists, as corresponding signal levels are unlikely 

to be detected accurately via ChIP-Seq. Mappability was determined using a 30 bp read 

length and reported in 100 bp windows according to [26]. The end result is a list of lamin 

A/C and lamin B enriched regions identified by ChIP-chip in areas of the genome that 

can be queried by ChIP-Seq. Accordingly, regions that are not represented on the 

ENCODE tiling arrays were also removed from our SWI/SNF ChIP-Seq experiments for 

this comparison. Because our ChIP-Seq data covers the entire genome, we began by 

restricting our enriched SWI/SNF regions only to those that occur in the ENCODE pilot 

regions. We further refined our ChIP-Seq data set by discarding any SWI/SNF regions 

that occur in a region of the tiling array for which a signal level of 0 was observed via 

ChIP-chip. Once our SWI/SNF, lamin A/C, and lamin B lists were limited to those 

regions that could be queried by both platforms, we intersected the remaining lamin 

regions and the SWI/SNF regions using the same method that generated the all features 

table for enhancers, Pol II, and other elements, as described above. Similar procedures 

were followed for intersections with DNA replication origins identified in the ENCODE 
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regions using tiling arrays [55]. 

3.7.14 Evaluating enrichment of SWI/SNF components with respect to other 

genomic features 

 To determine whether SWI/SNF components, core regions, and union regions are 

enriched for factors such as enhancers, small RNAs, lamin A/C and B, CTCF sites, Pol II 

regions, Pol III sites, 5 ends and DNA replication origins, we used the genome structure 

correction test (GSC). This test determines the significance of observations where there 

“exists a complex dependency structure between observations” and was specifically 

designed for large-scale genomic studies [27]. Given two lists of genomic regions to 

compare and a list of coordinates defining the overall sample space (i.e. the length of 

each chromosome), a p-value for the significance of the overlap of the two lists is 

calculated and we report this value where noted. 

3.7.15 Data deposition 

 All data produced for this study can be accessed through GEO and accession 

numbers for individual series are provided in the relevant sections. Alternatively, data 

from the lamin ChIP-chip experiments and the Ini1, Brg1, BAF155, and BAF170 ChIP-

Seq experiments can be accessed through GEO using the SuperSeries accession number 

GSE24398. 
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Chapter 4: Exploring the Topological Basis for Transcription 

Regulation and the Formation of Protein Complexes By 

DNA Folding Using Chromatin Interaction Analysis 

 

4.1 Statement of Prior Publication and Bioinformatics Contribution 

 This work was published in Cell in 2012 by Li, Ruan, Auerbach, and Sandhu, et al 

[33] and is reprinted with permission. This paper focuses on two analytical goals: the 

formulation of models to describe how transcription works in three-dimensional cellular 

space and how the subunits of several known protein complexes are recruited to RNAPII 

sites. Using the nascent method ChIA-PET against RNAPII, we were able to identify 

RNAPII binding sites while retaining spatial information to match up regions of DNA 

that are in close proximities in the cell. We find that for several factors signal is actually 

higher in sites distal to the promoter, indicating that some subunits are likely being 

brought to promoter sites via DNA folding to complete known protein complexes. This 

finding would be missed using a standard ChIP-Seq assay and challenges negative 

conclusions drawn solely from the use of simple proximity tests. We also propose three 

models for transcription based upon the number of interacting regions and show that the 

larger the number of interactions, the larger the transcriptional abundance we observe. In 

addition to contributing to the refinement of the ChIA-PET interaction calling algorithm 

and the formulation of the transcription models, I conceived and implemented all of the 

analysis related to the binding patterns of different protein complex subunits using ChIP-

Seq and other data, identified and integrated relevant ChIP-Seq data sets from the public 
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domain, and processed/analyzed the RNA-seq data used throughout the paper. Beyond 

performing the subunit analyses and directing which data sets and methods would be 

most appropriate for our project goals, I also led most analyses on the K562 and HeLa 

cell lines as well as analyses using ENCODE. My colleagues at the Genome Institute of 

Singapore focused their analysis efforts on the MCF7 cell line while analysis of the 

HCT116 and NB4 cell lines was a joint effort. 

4.2 Summary 

 Higher-order chromosomal organization for transcription regulation is poorly 

understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with 

Paired-End-Tag sequencing (ChIA-PET), we mapped long-range chromatin interactions 

associated with RNA polymerase II in human cells and uncovered widespread promoter-

centered intragenic, extragenic, and intergenic interactions. These interactions further 

aggregated into higher-order clusters, wherein proximal and distal genes were engaged 

through promoter-promoter interactions. Most genes with promoter-promoter interactions 

were active and transcribed cooperatively, and some interacting promoters could 

influence each other thereby implying combinatorial complexity of transcriptional 

controls. Comparative analyses of different cell lines showed that cell-specific chromatin 

interactions could provide structural frameworks for cell-specific transcription, and 

suggested significant enrichment of enhancer-promoter interactions for cell-specific 

functions. Furthermore, genetically-identified disease-associated noncoding elements 

were found to be spatially engaged with corresponding genes through long-range 

interactions. Overall, our study provides insights into transcription regulation by three-

dimensional chromatin interactions for both housekeeping and cell-specific genes in 
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human cells. 

4.3 Introduction 

 A fundamental question in biology is how genes and regulatory regions are 

organized and coordinated for transcription regulation. While operons, in which one 

promoter transcribes multiple genes in a single unit, are common in bacteria [1], and 

bicistronic transcript structures have been described in worms and flies [2][3], eukaryotic 

genes are thought to be individually transcribed from their own promoters. However, 

evidence from in situ fluorescence studies in the last decade suggests that transcription is 

not evenly distributed and is instead concentrated within large discrete foci in mammalian 

nuclei, raising the possibility that genes are organized into “transcription factories” [4] 

containing RNA polymerase II (RNAPII) and other components for transcription. 

However, this theory lacks evidence with molecular and structural details. Thus, the 

question of how the regulation of genes is coordinated for transcription in mammalian 

cells remains largely open. 

 Mammalian genomes are known to be organized intensively into higher-order 

conformation inside the micron-sized nuclear space. Consequently, three-dimensional 

(3D) organization must have a role in the mechanisms for transcription regulation and 

coordination [5]. Chromosome Conformation Capture (3C) and similar techniques [6] 

along with traditional in situ techniques have demonstrated that chromatin interactions 

can regulate transcriptional and epigenetic states [7]. However, such analyses are either 

limited to certain specific domains or of low resolution and lack functional details. 

Therefore, a global and high-resolution map of functional chromatin interactions is likely 

to uncover underlying principles of the higher-order genomic architectures regulating 
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transcription. 

 Recently, we developed Chromatin Interaction Analysis by Paired-End-Tag 

sequencing (ChIA-PET) for genome-wide investigation of chromatin interactions bound 

by specific protein factors [8]. By immunoprecipitation of a factor of interest along with 

associated DNA fragments and followed by diluted proximity ligation of distant DNA 

fragments tethered together within individual chromatin complexes, we elucidated the 

association of regulatory information through nonlinear arrangements. We demonstrated 

that long-range chromatin interactions occur between the transcription factor Estrogen 

Receptor α (ERα) bound regions and their target promoters. To globally investigate how 

all active promoters dynamically interact with their corresponding regulatory regions 

in vivo, we used ChIA-PET to analyze genome-wide chromatin interactions associated 

with RNAPII. Our results provide insights into the 3D interplay of active promoters as 

well as regulatory regions and suggest an architectural model in which related genes in 

mega-base range are organized for efficient and potentially cooperative transcription. 

4.4 Results 

4.4.1 Organizational Complexity of RNAPII-Associated Chromatin Interactions 

 We analyzed five different human cell lines (MCF7, K562, HeLa, HCT116, and 

NB4) using ChIA-PET with a RNAPII antibody (8WG16) that recognizes the initiation 

form of the protein. The cell lines originated from a wide range of lineages, and provided 

a broad representation of human cells. In our pilot analysis, about 20 million uniquely 

mapped paired-end reads were generated for each of the ChIA-PET experiments (Table 

S1A available online), which resulted in two genome-wide datasets: the ChIP-enriched 

RNAPII binding sites and the RNAPII-bound long-range chromatin interactions. Both 
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intrachromosomal and interchromosomal interaction data were obtained, and the vast 

majority of chromatin interactions identified by ChIA-PET were intrachromosomal 

(Table S1B). Twenty-five intrachromosomal and seven interchromosomal interactions 

were validated either by 3C, DNA-FISH, or both (Figure C.1 and inset of Figure 4.1C). 

 To present an inclusive view of the RNAPII-associated human chromatin 

interactome, we combined the ChIA-PET sequence reads from the six pilot experiments 

into one dataset for analysis (Table S1). Using embedded nucleotide barcode controls and 

statistical analyses, we assessed the data quality, filtered out the technical noise, and 

identified high-confidence binding sites and interacting PET clusters (Experimental 

Procedures). From the combined pilot dataset, we identified 14,604 high-confidence 

(FDR < 0.05) RNAPII binding sites as well as 19,856 high-confidence intrachromosomal 

interaction PET clusters (Table S3). The majority (83%) of RNAPII binding sites in the 

combined dataset were proximal to 5′ Transcription Start Sites (TSS) of genes 

(Figure 4.1A). There were also distinct but relatively weaker enrichments of peaks at the 

3′ Transcription End Sites (TES) of genes. Similar patterns were seen in all the individual 

experiments. Of the total RNAPII binding sites, 9,487 (65%) were involved in chromatin 

interactions and these sites showed higher RNAPII occupancy than those not involved in 

interactions (Figure 4.1B), indicating that most highly-enriched RNAPII binding sites are 

involved in looped chromatin conformations. 

 Three basic types of interactions were identified around gene promoters in the 

combined pilot dataset: intragenic (promoter to gene internal regions, 938, 5%), 

extragenic (promoter to distal regulatory elements such as enhancer, 6,530, 33%), and 

intergenic (promoter-promoter of different genes, 8,282, 42%). There was also a 
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subcategory composed of intermediate enhancer-enhancer interactions (4,106, 20%). 

Some interactions (2,341, 12%) were standalone duplex interactions between two 

interacting anchor regions, whereas most (17,515, 88%) were further aggregated into 

1,544 interaction complexes. 

 We speculated that the isolated RNAPII binding at promoter sites, which are not 

involved in interactions, may reflect the basal promoter function for gene transcription, 

and thus were termed “basal promoters.” By contrast, RNAPII-associated interactions 

might constitute a structural basis for complex regulatory mechanisms. These basic 

interactions further aggregated into complex architectures that we classified as “single-

gene” or “multigene” complexes depending on the number of genes involved 

(Figure 4.1C). The single-gene models consisted of single or multiple enhancer 

interactions with only one gene promoter, whereas the multigene models included 

intergenic promoter-promoter interactions and could also include intragenic and 

extragenic enhancer-promoter interactions. Moreover, several such complexes, distantly 

separated on a chromosome or on different chromosomes, further converged to form 

higher-order multigene interaction complexes (Figures C.1B, C.1D, C.1F, and C.1G). 

Many chromatin complexes had genomic spans of 150 kb–200 kb, and a few complexes 

spanned several megabases. Although there were only 1,328 multigene complexes in this 

combined pilot dataset, 11,723 genes were engaged in these complexes for an average of 

8.8 genes per interaction complex (Figure 4.1D), indicating that promoter-promoter 

interactions were widespread and may play a significant role in transcription regulation. 

 To understand how these looping structures influence transcription, we 

characterized these RNAPII-associated chromatin models (basal promoters, single-gene 
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and multigene complexes) for structural features (genomic property), functional output 

(transcription activity), and epigenomic marks (chromatin state). 

 

 
Figure 4.1 Characterization of RNAPII Binding Peaks and Chromatin Interactions. (A) RNAPII 

binding profile around gene body. (B) Violin plots for intensities of RNAPII peaks involved (red, mean 
intensity = 281) and not involved in interactions (blue, mean intensity = 141). (C) RNAPII-associated 

chromatin models: basal promoter (BP) with RNAPII binding but no chromatin interaction, single-gene 
(SG) complex with intra- and/or extragenic interactions and multigene (MG) complex with multiple genes 
in the interaction clusters. p, promoter; g, gene; and e, enhancer. The dotted curve for possible intragenic 

loop, and the solid curve for potential loop of enhancer-promoter and promoter-promoter interactions. Data 
tracks are: 1 and 2, strand specific RNA-Seq data of MCF7 and K562; 3, RNAPII binding peaks and ChIA-
PET data. Inset (bottom): DNA-FISH and 3C-qPCR validations of the extragenic interaction at the KLF4 
locus, where the KLF4promoter and enhancer are ∼1 Mb apart. Genomic locations used for 3C bait, test 
and control sites are indicated. The same locations were also used for DNA-FISH. The numbers (n) of 
nuclei counted and the fold change (x) in the number of instances showing close proximity (≤1 µm) are 

indicated. 3C-qPCR mean values and standard error of means (SEM) from three independent experiments 
are shown. (D) Distribution of chromatin models (BP, SG, MG) and the numbers of genes engaged in the 

models. Also see Figure C.1, Table S1, Table S2, and Table S3. 

4.4.2 Distinct Genomic Properties of Single- and Multigene Interaction Models 

 To determine the genomic characteristics of RNAPII-associated chromatin 

structures, we mapped several genomic descriptors that were known to associate with the 

expressivity of the human genome [9], including GC content, gene density, SINE/LINE 

density, gene length, and the intron/exon ratio. In our analyses (Figure 4.2, Figure C.2A), 
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the multigene complexes were significantly enriched with higher GC content, higher gene 

and SINE density, and lower LINE density as compared to the single-gene interaction 

complexes and the regions of basal promoters, suggesting that multigene complexes were 

located in open chromatin and highly transcribed regions. In addition, genes in the 

multigene complex regions were relatively shorter than other gene categories, which is 

yet another property of highly expressed genes [10]. Conversely, genomic loci associated 

with the single-gene complexes lay in the regions with lower gene and SINE density. 

Moreover, the genes engaged in the single-gene complexes were significantly longer and 

had higher intron/exon ratios than the genes of other chromatin models (Figure 4.2B). 

These observations suggest that genes with enhancer-promoter interactions in single-gene 

complexes were more likely to be tissue-specific or developmentally regulated, in line 

with the previous findings that genes in gene-poor regions associated with several distant 

regulatory elements, tended to be longer and had a higher noncoding to coding ratio than 

housekeeping genes [10][11]. 

4.4.3 Interacting Genes Show Correlated Expression 

 To investigate the functional output of genes involved in the different chromatin 

models, as defined by transcriptional activity, we focused our analyses on MCF7 cells, as 

it is a well-characterized human cancer cell model with complementary datasets 

including RNA-Seq (Experimental Procedures), time-course microarray gene expression 

[8], and GRO-Seq datasets [12]. 

 Consistent with the combined pilot dataset, 90% binding sites in MCF7 cells were 

found proximal to known gene promoters and 97% genes with RNAPII present at their 
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Figure 4.2 Genomic Properties of Promoter-Centered Chromatin Models. (A) Aggregation plots 

showing enrichment of genes, SINE and LINE elements around the TSS of genes in different chromatin 
models. Unique RefSeq TSSs were used for analyses. Red curve stands for multigene (MG) model, blue for 
single-gene (SG) model, gray for basal promoter (BP) model, and black dotted line for the rest of the genes 

(R). 

(B) Box-plots showing distribution of percentage GC content of GC isochore around different models, gene 
length, and intron/exon ratio of RefSeq genes involved in the models. Triple asterisks (∗∗∗) signifies p-
value < 2.2E-16. Red box stands for MG, blue for SG, and gray for BP. Open box is for R (rest of genic 

regions) as background. Also see Figure C.2. 

promoters had detectable transcriptional activity by RNA-Seq (Figure 4.3A). The 

interactive RNAPII binding sites that were distal to gene promoters included intra- and 

extragenic regulatory elements such as enhancers. Approximately 45% of the extragenic 

distal regulatory sites had detectable RNA signals that could represent possible 

noncoding RNA (ncRNA) transcripts. 

 For genes associated with the three chromatin models, we analyzed the 

transcription levels measured by RNA-Seq reads. As shown in Figure 4.3B, in general, 

RNAPII binding at promoter sites correlated well with the expression level of the 
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corresponding genes. Interestingly, the genes involved in the single-gene and the 

multigene models showed higher correlation between RNAPII binding and RNA-Seq 

signal (Pearson's correlation coefficient: PCC: 0.46 and 0.45 respectively) as compared to 

basal promoter genes (PCC: 0.24). Moreover, we observed that genes linked by complex 

chromatin interactions, especially those in multigene complexes, had significantly higher 

expression levels than basal promoter genes (Figure 4.3C). This high expression appeared 

to be limited to genes interacting at the RNAPII anchor sites, as compared to genes 

located in the intervening chromatin loops. These data indicated that promoter-promoter 

interactions in multigene complexes were associated with higher transcriptional activity, 

which is consistent with our observations of their associated genomic features. 

 Next, we characterized the expression patterns of genes present in the interacting 

regions using microarray data derived from 84 human tissues [13]. We found distinct 

representation of tissue-specific and housekeeping genes in the three chromatin models 

(Figure 4.3D, Figures C.3A and C.3B). Most genes in single-gene complexes with 

enhancer-promoter connectivity were tissue-specific, consistent with growing evidence 

that the expression levels of developmental and tissue-specific genes are largely 

modulated through cis-remote regulatory elements and trans-protein factors [14][15], and 

consistent with their genomic features (less gene density, longer gene body and higher 

intron/exon ratio) as previously described. Conversely, genes involved in multigene 

complexes as well as the basal promoter genes were characterized as both tissue-specific 

and housekeeping categories. These observations were also supported by normalized 

CpG content and GC-skew at their promoter regions (Figures C.3C and C.3D). 

 As promoter-promoter interactions cluster multiple genes, they could provide an 
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ideal topological framework for potential transcriptional coordination of both tissue-

specific and housekeeping genes. This observation agrees with the evidence that “ridges,” 

which are domains of highly transcribed genes, contain both housekeeping and tissue-

specific genes [9]. Since large numbers of genes are found in multigene complexes, we 

propose that promoter-promoter interactions could serve as a dominant mechanism for 

transcription regulation of both housekeeping and tissue-specific genes in mammalian 

genomes. 

 Next, we sought to determine whether genes with promoter-promoter interactions 

were more likely to be transcriptionally coordinated. RNA-Seq data showed that most of 

the paired genes with promoter-promoter interactions were expressed together at high 

levels (Figure 4.3E; Figure C.3E). To further assess the coordinated transcription of 

paired genes across different conditions, we performed Pearson's correlation analysis 

using estrogen-induced time course of GRO-Seq data [12] that measured transcription 

initiation rates of estrogen responsive genes, and observed significant transcriptional 

correlation (Figure 4.3F; p-value < 2.2E-16). Interestingly, the correlation was even 

greater for ERα-mediated gene pairs derived from our earlier data [8], suggesting 

stronger correlation of transcription for genes involved in multigene complexes mediated 

by specific transcription factors. Similar correlation was also observed from other gene 

expression datasets (Figures C.3F–C.3I). As expected, housekeeping genes and genes 

belonging to the same GO classes showed even higher correlation than the rest (Figures 

C.3J and C.3K). Altogether, our analyses indicated that a significant proportion of gene 

pairs involved in promoter-promoter interactions tended to be transcribed cooperatively. 
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Figure 4.3 Transcriptional Activities in RNAPII-Associated Chromatin Models in MCF7 Cells.(A) 
Pie charts of RNAPII binding peaks proximal (blue) or distal (red) to TSS of genes (left), RNA-Seq data 
for genes with RNAPII peaks near TSS (middle), and RNA-Seq enrichment around intergenic RNAPII 

peaks (right). (B) Correlation of RNAPII binding in basal promoter (BP), single-gene (SG) and multigene 
(MG) models with gene transcription levels measured by RNA-Seq. The RNAPII enrichment heatmap 

shows binding intensity centered on TSS (±5 kb) along with corresponding gene transcription intensity. (C) 
Bar plots of expression levels of genes in the three models (BP, SG, and MG). RNA-Seq mean values 
(RPKM) and standard error of means (SEM) from genes in the corresponding models are shown. MG 

complexes also contain “anchor genes” (TSS proximal to interacting anchors) and “loop genes” (distant 
from anchors, residing in loop regions). The remaining genes (R) not bound by RNAPII were included as a 
control. Double asterisks (∗∗) indicate significant differences between the mean expressions of genes from 
SG and MG models (p-value < 4.02E-08). (D) Expression breadth (number of tissues a gene is expressed 
in) of genes present in three different chromatin models. p-value is calculated using the nonparametric test 

of Kruskal-Wallis. (E) Contour plot of log-transformed RNA-Seq RPKM values for cotranscription of 
interacting genes involved in MG models in MCF7 cells. (F) Distribution of PCC values for RNAPII- and 

ERα-bound interacting gene pairs, randomly rewired gene pairs, and randomly picked gene pairs from 
control regions with the same genomic span and gene density distribution as the multigene complex regions. 

Also see Figure C.3. 

4.4.4 Multigene Complexes Provide Structural Framework for Cotranscription 

 Correlated expression of interacting genes suggests that the multigene interaction 

complex might provide a molecular basis for the postulated “transcription factory” [4]. 

To elucidate the link between the multigene complexes revealed by ChIA-PET and 

transcription factories, we performed 3D DNA-FISH experiments using probes 

representing distinct multigene complexes in combination with RNAPII-IF staining in 

MCF7 nuclei (Experimental Procedures). All experiments on four genomic loci randomly 

chosen from multigene complexes revealed a significant association of the multigene 
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complex loci with RNAPII foci (Figure 4.4A-B), adding further evidence to support our 

view that multigene complexes could provide a structural framework for cotranscription. 

 Furthermore, gene families were significantly over-represented (p-value < 0.006) in 

the multigene complexes (Figure C.3L), such as HIST, ZNF, KRT, HOXC, etc. (Table 

S4). Taking the HIST1H family as an example, the 58 genes of this family located on 

chromosome 6 formed three multigene complexes, and these three complexes converged 

into a higher-order super-complex, suggesting that all HIST1H genes were organized in a 

single chromatin architecture for coordinated transcription (Figure 4.4C). All HIST1H 

genes were actively transcribed in both MCF7 and K562 cells, and were highly 

coregulated across different tissues and cellular conditions (Figure 4.4D). Interestingly, 

HFE, a gene was not a part of the HIST1H family but was located in the middle of the 

first HIST1H multigene complex, was not anchored at the interaction sites and was not 

expressed. Similarly, the genes located in the intervening loop regions between the three 

HIST1H interacting complexes were relatively less active and much less coordinated for 

coregulation across different tissues and cellular conditions. This case exemplifies the 

model where multigene complexes organize genes with similar functions across genomic 

space for coordinated expression. 

4.4.5 Multigene Complexes Support Synergistic Transcription Regulation 

 To further investigate the likelihood that the multigene complex structure might 

provide a topological framework for transcriptional coregulation of interacting genes 

involved in such topology, we designed a set of perturbation experiments to test this. 

After comparing the RNAPII and ERα ChIA-PET data from MCF7 cells, we found that 

the RNAPII-bound multigene complex at the GREB1 locus partially overlaps with the 
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ERα-bound chromatin loops, suggesting that this interaction complex, in part, is 

associated with ERα. Therefore, we performed siRNA experiments to knockdown the 

 
Figure 4.4 Transcriptional Coordination in Multigene Chromatin Complexes.(A) Colocalization of 

multigene loci with RNAPII foci. Shown are the nuclear images of RNAPII IF-staining with four 
randomly-selected multigene loci (MG1-4) and 2 control loci. Representative gene loci are MED20, 

SYVN1, HIST1, and PLEC1. (B) Quantitative analysis of nuclei (n = 476) and alleles showing overlap of 
MG loci and RNAPII foci. Percentage overlaps from MG loci and those from control loci are significantly 
different. (C) Super multigene complex of the histone gene family. Three distant clusters (C1, C2, C3) of 
HIST1H genes converge together in a super-MG complex. Shown are RNA-Seq, RNAPII and ChIA-PET 
tracks in MCF7 and K562 cells. (D) Cotranscription of HIST1H genes in the super-MG complex in (C). 

Correlation matrix derived from publicly available microarray data of 4,787 samples (Supplemental 
Information). The rows and columns correspond to genes in each complex and the intervening regions. (E) 
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RNAPII-bound multigene complex at the GREB1locus. Shown are the ERα- and RNAPII-bound chromatin 
interactions. Highlighted promoters are anchored by RNAPII, but not by ERα. The bottom panel shows 

relative interaction frequency by 3C-qPCR data for the perturbation experiments using siERα knockdown 
and estrogen induction. (F and G) Time course RT-qPCR following estrogen (E2) induction after siControl 
(solid) and siERα (dashed) transfections of MCF7 cells. Colors of the curves correspond to genes shown in 
(E). A secondary axis (red, right side) is used for GREB1 expression to accommodate its high expression 

level. Expression data of genes involved in the GREB1 multigene complex are in (F), and the data for 
genes outside of the complex are in (G). RT-qPCR mean values and standard deviations (SD) from two 

independent experiments are shown. Also see Figure C.4 and Table S2. 

protein level of ERα in MCF7 cells, and monitored the alteration of chromatin 

interactions and gene transcription in the GREB1 multigene complex. Several chromatin 

interaction loops at this locus were disrupted by siERα transfection as tested by 3C 

experiments (Figure 4.4E). In addition to GREB1, which had a strong response to 

estrogen induction and reduction by siERα knockdown (Figures C.4A–C.4D), we 

observed that the other genes in this complex such as E2F6, KCNF1 and ATP6VC12 also 

had various levels of response to induction by estrogen and reduction by siERα 

knockdown (Figure 4.4F). Interestingly, these genes did not directly interact with ERα at 

their promoter regions, but indirectly associated with ERα through RNAPII-bound 

chromatin loops. As a control, this effect was not seen in the nearby genes such as 

NOL10 and HPCAL1 that were in other RNAPII interaction complexes and also did not 

interact with ERα (Figure 4.4G). Similar results were observed at another interaction 

locus centered on the GPR68 and CCDC88C genes (Figure C.4E). Thus, these results 

indicate that a specific stimulus (estrogen) could lead to coactivation of genes organized 

primarily through RNAPII-bound multigene complexes, and perturbation at one gene 

locus (loss of ERα binding in this case) in a multigene complex could alter the 

transcriptional states of other interacting genes within the same complex. Although genes 

in close genomic distances with each other had been reported to be correlated in 

expression levels [16], our data suggests that the conjoint expression can be mediated 
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through chromatin interactions. The functional significance of such coregulation needs 

further investigation. 

4.4.6 Epigenomic Marks Associated with Chromatin Interaction Sites 

 To study the association of transcription factors (TFs) with the RNAPII interactions, 

we examined the enrichment of 20 different TFs in K562 cells at the RNAPII interaction 

sites from the three chromatin models in our K562 ChIA-PET dataset (Figures 4.5A and 

4.5B, Figures C.5A–C.5D). General TFs such as E2F4 and E2F6 (Figure 4.5A, 

Figure C.5A) directly bound at TSS sites (Figure 4.5B for a specific example). By 

contrast, specific TFs such as JunD and Max preferentially bound to distal regulatory 

sites and marked potential enhancers (Figure C.5B). Several chromatin remodeling 

factors and chromatin organization proteins such as INI1, BRG1, CTCF, and RAD21 

associated primarily with non-TSS sites, suggesting that they may mediate long-range 

interactions with enhancer regions (Figure 4.5A, Figure C.5C). This hypothesis is 

consistent with other observations that INI1 and BRG1, two subunits of the SWI/SNF 

complex, were involved in transcriptional looping [17]. A common observation among 

all the factors was that interaction sites in the multigene complexes consistently showed 

elevated levels of factor enrichment, suggesting that the cooperative binding of factors in 

gene-rich domains leads to higher transcriptional activity, or these transcriptionally active 

open chromatin domains might converge to distinct specialized transcription factories, 

each enriched with general and specific TFs. 

 We further explored the histone modification data available from the ENCODE 

Consortium. Collectively, we found high enrichment of active histone modification 

marks coupled with a lack of repressive marks in RNAPII interaction sites, confirming 
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that the RNAPII interaction sites mapped by our ChIA-PET data were located in 

promoter and distal regulatory regions engaged and/or poised for high transcription levels 

(Figure C.5D). Interestingly, the enrichment of active marks was highest in the multigene 

complexes, indicating that these might constitute transcriptional hubs. Our observations 

matched previous findings that the enrichment of active histone modifications positively 

correlated with RNAPII occupancy [18]. 

 We observed similar histone modification profiles in MCF7 cells (Figure 4.5C) 

using data that we generated previously [19]. In particular, we applied the log ratio of 

H3K4me3/H3K4me1 signal as a quantitative measurement of the likelihood that a 

genomic locus can act as a promoter or enhancer. Most non-interacting RNAPII sites 

proximal to TSS in basal promoter model showed high log ratios (Figure 4.5D, plot 1; 

median = 2.4; > 90% of the binding regions have log ratios > 0), whereas most of the 

RNAPII interaction sites distal to TSS in the single-gene complex model and the 

multigene complex model (conventional enhancer sites) showed low H3K4me3/me1 log 

ratios (Figure 4.5D, plot 4 and 6; median < −0.72), confirming that this log ratio could 

reflect relative capacities of promoters and enhancers. Surprisingly, examination of 

RNAPII interaction sites proximal to known TSSs in the multigene complexes 

(Figure 4.5D plot 5) revealed two peaks in the histogram of the log ratios, suggesting a 

mixture of enhancer and promoter elements in the promoter regions. Detailed profiles of 

H3K4me3 and H3K4me1 marks around the center (±5 kb) of those RNAPII interaction 

sites showed distinct characteristics of promoter-like, enhancer-like sub-groups 

(Figure 4.5D, heatmap). Moreover, enhancer-like RNAPII interaction sites, on average, 

showed lower transcriptional activity than the promoter-like RNAPII sites (Figure C.5J). 
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Thus, a large portion of interacting promoters may also have potential enhancer functions. 

We observed the same inverse correlation of H3K4me3/me1 log ratio at the TSS 

proximal and TSS distal RNAPII sites for K562 (Figure 4.5A), indicating that this 

observation is a general phenomenon applicable to all cell types. 

4.4.7 Interacting Promoters Possess Combinatorial Regulatory Functions 

 To examine potential enhancer activity of promoters, we performed luciferase 

reporter gene assays, a commonly used method for promoter and enhancer 

characterization [20]. In these assays, approximately 500 bp fragments of the expected 

promoter regions were cloned upstream of a luciferase reporter gene construct either in a 

proximal position as the driving promoter or in a distal position as a presumed enhancer, 

and the constructs were transfected into MCF7 cells (Experimental Procedures, Figures 

C.5E–C.5I). As shown in Figure 4.5E, the two interacting loci INTS1 and MAFK were 

26 kb apart, and our RNA-Seq data suggested that both genes were active in MCF7 cells. 

However, the normalized log ratio of H3K4me3/me1 was 0.36 for the INTS1 promoter 

and 1.13 for the MAFK promoter, suggesting that the INTS1promoter may have enhancer 

properties. To test this, we cloned the INTS1 promoter fragment in both orientations 

upstream of the MAFK promoter flanking the luciferase gene. The luciferase reporter 

gene assay showed at least 7-fold enhancement of luciferase expression from the MAFK 

promoter activity by the INTS1 promoter fragment, indicating that a bona fide promoter 

can act as an enhancer to augment the activities of other promoters. 

 In another example (Figure 4.5F), the promoter of CALM1 interacts with an 

enhancer element 15 kb upstream and connects to the promoter of C14orf102 further 

upstream in 65 kb. Both RNA-Seq data and the H3K4me3/me1 log ratio indicated that 



 111 

the CALM1 promoter was strong, whereas the C14orf102 promoter was weak and 

enhancer-like. The luciferase reporter gene assay showed marginal enhancement to the 

CALM1 promoter reporter gene activity by the native CALM1 enhancer and the 

C14orf102 promoter individually. However, the combined CALM1 enhancer and the 

C14orf102 promoter together led to a significant ∼3-fold enhancement of reporter 

expression from the CALM1 promoter. This result further validates the enhancer function 

by interacting promoters and elucidates a possibility of combinatorial effect among 

interacting elements in multigene interaction complexes for transcription regulation. 

 Next, we asked whether promoters with enhancer activity act specifically on their 

target genes. We swapped the promoter elements in the two examples of INTS1-to-

MAFK and C14orf102-to-CALM1 for additional reporter genes assays (Figure 4.5G). 

Intriguingly, when placed upstream to the CALM1 promoter, the INTS1promoter showed 

remarkable enhancement of CALM1 promoter activity. Similarly, the combined construct 

of C14orf102 promoter and CALM1 enhancer also increased MAFK promoter activity 

significantly. Meanwhile, a TATA box deleted promoter and other control promoters 

(either active or inactive), taken from the nearby genes that are not involved in a 

promoter-promoter relationship, did not show cooperative enhancement to MAFK and 

CALM1 promoter activities (Figures C.5H and C.5I). Thus, these results suggest a 

common property for promoters with enhancer capacity that could influence other 

promoters. 

 In addition, we also tested the combination of inserting the enhancer-like promoter 

fragment in the position proximal to luciferase gene and the strong promoter in the distal 

position in the reporter gene construct. Of the 20 such luciferase experiments, we  
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Figure 4.5 Epigenomic Profiles of Chromatin Interactions and Combinatorial Regulation of 

Interacting Promoters. (A) Enrichment profiles of TFs and histone modifications centered on RNAPII 
peaks (±1250 bp) of interacting loci of the three models in K562 cells. Solid lines represent “TSS” 
proximal regions and dotted lines depict “non-TSS” regions. y axis: sliding median for ChIP-Seq 

enrichment in the region. (B) Examples of TF enrichment at RNAPII interacting loci in K562 cells. (C) 
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Histone modification marks and open chromatin mark (FAIRE) associated with chromatin interaction sites 
in MCF7 cells. The width of the open boxes in the log ratio track reflects the region where the H3K4me3 
and H3K4me1 data were used for the log ratio calculation. (D) Histograms of normalized H3K4me3/me1 

log ratio at RNAPII sites proximal to TSS (TSS) and distal to TSS (non-TSS) of genes in the three 
chromatin models in MCF7 cells. Two peaks are seen in plot #5 (blue curve for enhancer-like, and the red 

for promoter-like). The heatmap shows detailed H3K4me3 and H3K4me1 enrichments around RNAPII 
interaction sites (±5 kb) proximal to TSS. Four distinct clusters of RNAPII sites are promoter-like (red), 
enhancer-like (green), heterogeneous (yellow) and weak signals (gray). (E–G) Reporter gene assay of 

interacting promoters in MCF7 cells. RNA-Seq, H3K4me3, H3K4me1, H3K4me3/me1 ratio, and RNAPII 
ChIA-PET data tracks are shown. Numbers on the right side for each track indicate the highest peak 

intensity. The mean values and standard deviations (SD) of the luciferase activities from at least three 
independent experiments are shown. (E) Promoter-promoter interaction at the INTS1-MAFK locus. The 

arrow boxes indicate the aligned promoter regions, which were cloned in reporter gene constructs for 
luciferase assay. (F) Promoter-enhancer-promoter interactions at the C14orf102-CALM1 locus. RNA-Seq 
data showed that CALM1 was highly expressed, whereasC14orf102 only marginally transcribed (enlarged 

RNA-Seq track of the C14orf102 locus). (G) Swap assay of DNA fragments from different multigene 
complexes. The dotted arrow lines show the swap of elements cloned in the distal positions in the reporter 

gene constructs for luciferase assay. Also see Figure C.5 and Table S2. 

observed that the weaker promoters conveyed significant enhancer function to their 

stronger interacting partners in luciferase activity rather than the reverse (Figure C.5K). 

In the case of interacting pair INTS1 (enhancer-like promoter) and MAFK (strong 

promoter), the strong promoter MAFK did not demonstrate significant enhancer activity 

(Figure C.5L). Thus, at promoter sites, there is an inverse relationship between enhancer 

and promoter functions. 

4.4.8 Cell-Line Specificity of Long-Range Chromatin Interactions 

 To elucidate the cell-line specificity of chromatin interactions, we saturated the 

coverage of chromatin interactions through deep sequencing of more MCF7 and K562 

ChIA-PET replicates (Experimental Procedures). The saturated libraries are highly 

reproducible for interactions, and thus highly reliable for inter-cell line comparative 

analysis. These libraries exhibit the same pattern of genomic descriptors as the pilot 

libraries (Figures C.2B and C.2C). With comprehensive ChIA-PET and RNA-Seq 

datasets, we performed comparative analysis between the two cell lines and identified 

cell-line specific genes and chromatin interactions (Figure 4.6A). Most of the genes 
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specifically expressed in their respective cells also showed cell-specific interactions 

(Figure 4.6B), implying that cell-specific chromatin interactions provide the structural 

basis for cell-specific transcription. Gene Ontology (GO) analysis revealed significant 

enrichment of erythroid related GO terms such as response to stimulus and blood 

circulation for genes with specific expression and chromatin interactions in K562 cells, 

whereas GO terms such as ectoderm development and related biological process were 

enriched in MCF7 cells (Figure 4.6C, Figure C.6A). As expected, the genes common in 

both cell lines showed enrichment of housekeeping functions like metabolism, cell-cycle 

and signal transduction (Figure C.6B). 

 Among the chromatin interactions specific to K562 cells, we captured many 

previously characterized interactions including the α- and β-globin loci ([21][14]. 

Figure 4.6D shows extensive interactions identified by ChIA-PET data between the α-

globin gene locus and the DNase hyper-sensitive (DHS) sites present in the gene body of 

the C16orf35 gene. Additionally, we found that the α-globin locus in K562 extended its 

interactions to the neighboring domains, which were constitutively active in both K562 

and MCF7 cells, whereas the interactions to α-globin genes are K562-specific, suggesting 

a complex chromatin architecture for spatiotemporal regulation of both constitutive and 

cell-specific transcription. Similarly, the β-globin gene locus also displayed previously 

known K562-specific interactions with the nearby locus control region (Figure C.6C). 

 GREB1 is a well characterized MCF7-specific gene. As expected, we found 

abundant chromatin interactions associated with RNAPII at this locus in MCF7, but not 

in K562 cells (Figure 4.6E). In addition to recapitulating the previously identified ERα-

associated interactions [8], RNAPII interaction data showed an additional interaction site 
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on the far most upstream (left in Figure 4.6E) side of this complex. A strong H3K4me1 

mark on this site suggested that this is potentially an enhancer site for a transcription 

factor other than ERα. Intriguingly, a significant RNA-Seq peak was also identified at 

this site, indicating a possible enhancer RNA transcript, a new class of noncoding RNA 

species [22]. 

4.4.9 Long-Range Enhancer-Promoter Interactions and Disease-Associated 

Noncoding Elements 

 Our data showed that the enhancer-promoter interactions were significantly 

enriched over other types of interactions for cell-specific genes (Figure 4.7A) when 

compared to genes commonly expressed in both cell lines. This finding supported the 

general view that distant-acting enhancers tend to be specifically involved in tissue-

specific genes, and was consistent with our analysis in Figure 4.3D. Although potential 

enhancer sites can be identified using high throughput approaches [23], it is still 

challenging to connect enhancers to their target genes that are hundreds of kilobases 

away. Moreover, many remote enhancers could be embedded in intronic regions of other 

distantly located genes [24], making it notoriously difficult to relate enhancers to their 

specific target genes. In this study, we identified tens of thousands enhancer-promoter 

interactions (Table S1C) including approximately 1000 ultra-long-distance (500 kb to 

megabases) events. We observed that ≥ 40% of enhancers do not interact with their 

nearest promoters and instead jump over to their target promoters, bypassing several 

intervening genes (Figure 4.7B,Figure C.7). 
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Figure 4.6 Cell-Specific Chromatin Interactions. (A) Contour plots of RNA-Seq data (log RPKM, left) 
and chromatin interactions (log PET counts, right) in MCF7 and K562 cells, showing common and cell-

specific gene expression and chromatin interactions. (B) Contour plots of interaction data (log PET counts) 
for genes specifically and commonly expressed in MCF7 and K562 cells. (C) Enrichment of cell-specific 
GO terms in genes and chromatin interactions specific in MCF7 and K562 cells. The p-value of 0.01 is 

marked as dotted line. (D) An example of K562-specific chromatin interactions. α-globin genes (in dotted 
line box) interact with distantly located (∼20 kb) DHS sites (highlighted in yellow), which are known to 
interact with α-globin genes. In sharp contrast, the α-globin genes in MCF7 cells are not expressed and 

have no interactions with the DHS sites. (E) An example of MCF7-specific chromatin interactions around 
the GREB1 locus. The far left highlighted yellow is a RNAPII interaction site that is not overlapped by 

ERα-bound interactions in this region. It is also the bait site for independent 3C validation of interactions in 
this region. Tracks included in (D) and (E) are RNA-Seq data, interaction loop view, RNAPII ChIA-PET 

peaks and interaction PETs, ChIP-Seq density profile of H3K4me1 and H3K4me3, and the ERα-ChIA-PET 
in (E). The numbers on the right of each track are the highest density value. 3C-qPCR mean values and 
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standard error of means (SEM) from three independent experiments are shown. Also see Figure C.6 and 
Figure C.7. 

 An interesting example is the SHH gene that was expressed in MCF7 but not in 

K562 cells (Figure 4.7C). SHH is important in development and related to certain cancers 

[25]. Transcription of SHH is controlled by its enhancer which is located 1 Mb away and 

embedded in the intronic region of LMBR1; point mutation in this enhancer site is known 

to cause preaxial polydactyly, a common congenital limb malformation in mammals [25]. 

We found abundant interaction data between the SHH promoter and the previously 

characterized SHH enhancer site in the LMBR1 intronic region in MCF7 cells, but no 

interaction data in K562 cells (Figure 4.7C), which correlated well with their SHH 

transcription status. This is consistent with earlier observations [26]. 

 In another interesting example, we identified two major interaction sites located 

∼600 kb and ∼1 Mb downstream from the IRS1 gene promoter. IRS1 is known to 

participate in type-2 diabetes (T2D) mellitus, and is found specifically expressed in 

MCF7 cells (Figure 4.7D). A recent GWAS study uncovered a cluster of SNPs that is 

genetically associated with high risk to insulin resistance, T2D, and coronary artery heart 

disease [27]. This high risk locus is found located in one of the IRS1 enhancer sites 

(Figure 4.7D). Thus, our data provides experimental evidence to suggest that this disease-

risk locus could be physically connected with the IRS1 promoter, potentially serving as a 

critical long-range enhancer to regulate the expression of IRS1, in a similar manner as the 

SHH locus. Other examples of long-range and cell-specific enhancer-promoter 

interactions in MCF7 and K562 are shown in Figure C.7. Taken together, these results 

suggest that ChIA-PET interaction data may better inform the association of a SNP with a 

gene involved in a disease process by providing evidence for direct physical interactions. 
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4.5 Discussion 

 Through genome-wide mapping, we comprehensively analyzed RNAPII-associated 

long-range chromatin interactions. Our most interesting finding was the extensive 

promoter-promoter interactions among proximal and distant genes from 5 human cell-

lines, which indicated that this mechanism is common in cells. Our work with reporter 

gene and siRNA knockdown assays provided experimental evidence that many promoters 

in the multigene complexes can cooperatively regulate the activity of other promoters 

with which they interact. Our observations thus blurred the conventional definition of 

promoter and regulatory elements for transcription. With such promoter-promoter 

interactions, we speculate that genetic error at one particular promoter might also 

propagate to other promoters and hence could lead to pleiotropic consequences 

depending on the interaction network within a cell type. Intriguingly, the multigene 

complexes illustrated in this study are, in principle, akin to the bacterial operon as a 

mechanism for coordinated transcriptional regulation of related genes, suggesting the 

possibility of a chromatin-based operon mechanism (chro-operon or chroperon) for 

spatiotemporal regulation of gene transcription in eukaryotic nuclei. However, the 

“chroperon” expression is not dependent on the linear arrangement of the genes, but is 

highly dynamic and can adopt a multitude of cassette configurations because of the 

combinatorics permitted by the looping interactions. Alternatively, these interactions 

could reflect stochastic movement of proximal and distant active genes to localized 

transcription factories. 

 An important question is how these multigene complexes are organized. A likely 

model is that a suite of protein factors for modulating gene expression in a functional  
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Figure 4.7 Long-Range Enhancers and Disease-Associated Noncoding Elements.(A) Percentage 
difference of enhancer-promoter (EP) and promoter-promoter (PP) interactions in cell-specific versus 

common genes from MCF7 and K562 cells. The representation of EP interactions is significantly increased 
in cell-specific interactions, while the representation of PP interactions is decreased, when compared to 
interactions that are common to both cell lines. (B) Proportional distribution of 4 classes of enhancers 
observed in two cell lines based on locations in relation to gene coding regions. “Intragenic proximal” 

enhancers locate inside of gene-body (mostly introns) and interact with the nearby promoters. “Extragenic 
proximal” enhancers locate outside of gene body and interact with the nearby promoters. “Intragenic distal” 
enhancers locate inside of gene body (mostly introns), bypass nearby genes and interact with faraway gene 
promoters in long-distance. “Extragenic distal” enhancers locate outside of gene body, bypass nearby genes 

and interact with faraway gene promoters in long-distance. (C) Long-range interactions between SHH 
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(highlighted in yellow, left) and its enhancer located about 1 Mb away in an intron of LMBR1 (highlighted 
yellow, right). The SHH expression is specifically seen in MCF7 cells. (D) Long-range interactions 

between IRS1 promoter and two enhancers as well as strong IRS1expression are seen in MCF7, but not in 
K562 cells. The dotted line box indicates the enhancer region that contains SNPs associated with insulin 

resistance, type-2 diabetes (T2D) and coronary artery heart disease identified by a GWAS study. The 
interactions of enhancer located 1.1 Mb away to IRS1 promoter (highlighted in yellow) is validated by 
DNA-FISH (right). The BAC clones and genomic segments used for DNA-FISH are indicated at the 

bottom. Tracks included in (C) and (D) are RNA-Seq density profile, interaction loop view, RNAPII peaks, 
ChIA-PET interaction PETs, ChIP-Seq density profile of H3K4me1 and H3K4me3 marks. Also see 

Figure C.7 and Table S5. 

regulatory cassette may result in optimal stoichiometry when aggregated in 3D space. 

This clustering also draws the regulated genes into a common spatial domain, similar to 

how the nucleolus is organized. The interacting regions can be established and/or 

maintained by potential chromatin bridging proteins such as cohesins [28] and CTCF [29], 

and this process might be facilitated by chromatin remodeling proteins [17], all of which 

are enriched at the interacting sites defined by RNAPII ChIA-PET data. 

 Long-range chromatin interactions including enhancer-promoter interactions are 

increasingly being recognized as an important mechanism to regulate many important 

genes. However, methods to identify such long-range relationships have been technically 

challenging. High-throughput approaches such as ChIP-Seq and DNase-Seq are efficient 

in identifying potential regulatory sites, but lack the ability to interrogate the connectivity 

between the prospective enhancers and their target gene promoters. In this study using 

RNAPII as the protein target for ChIA-PET analysis, we identified a comprehensive 

repertoire of distant regulatory elements directly interacting with gene promoters. Many 

of them act through ultra-long-range chromatin interactions. Such distal enhancer-

promoter relationships are particularly difficult to be identified by other approaches. As 

demonstrated in the cases of SHH and IRS1, long range interactions derived from ChIA-

PET data could provide the connectivity of GWAS-identified high-risk loci to their target 

genes, and thus offer possible mechanistic explanations to the function of disease-
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associated noncoding elements. Further investigation of spatial architectures revealed in 

this study will enhance our understanding of transcription regulation in normal and 

diseased conditions of human cells. 

 

4.6 Experimental Procedures 

4.6.1 Cell Culture 

 Five cell lines, namely MCF7 (ATCC# HTB-22), K562 (ATCC# CCL-243), 

HCT116 (ATCC# CCL-247), HeLa (ATCC# CCL-2.2), and NB4, were grown under 

standard culture conditions and harvested at log phase. 

4.6.2 ChIA-PET 

 Harvested cells were cross-linked using 1% formaldehyde followed by 

neutralization with 0.2M glycine. Chromatin was isolated and subjected to the ChIA-PET 

procedure [8]. The ChIA-PET sequence reads were analyzed using ChIA-PET Tool [30]. 

The data are available from NCBI/GEO (ID: GSE33664). Control and reproducibility 

analyses are described in Figure C.8. 

4.6.3 RNA-Seq Data 

 MCF7 mRNA was isolated following the protocol described in Ruan et al. [31] for 

strand-specific RNA-Seq analysis by SOLiD sequencing platform. The rest of the RNA-

Seq datasets for other cell-lines were retrieved from the ENCODE data repository site 

(http://genome.ucsc.edu/ENCODE/). 

4.6.4 ChIP-Seq Data 

 The ChIP-Seq data were retrieved from [19], [32] and the ENCODE data repository 
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site (http://genome.ucsc.edu/ENCODE/). 

4.6.5 RNAPII IF Stain and DNA-FISH 

 MCF7 cells were fixed using 4% formaldehyde followed by permeabilization with 

0.04% Triton-X. After blocking with donkey serum, cells were incubated with primary 

antibody (8WG16) overnight followed by Cy3 conjugated secondary antibody for 1 hr. 

IF-stained cells were post-fixed and subjected to dehydration by 70, 80, 100% ethanol 

series, rehydration with 2× SSC and denaturation in 2× SSC/50% formamide at 80°C for 

40 min. Biotin-16-dUTP and digoxigenin-11-dUTP labeled DNA probes were hybridized 

to cells at 37°C overnight in a humid chamber. Slides were washed, stained with DAPI, 

mounted and visualized by a Carl Zeiss LSM confocal microscope. 

4.6.6 Quantitative Chromosome Conformation Capture Analysis 

 Targeted 3C products were analyzed by qPCR. The 3C-qPCR protocol was adapted 

and modified from the previous publication [8]. 

4.6.7 Luciferase Reporter Gene Assay 

 Dual luciferase assays were performed as described [20]. Testing fragments were 

cloned into pGL4.10-basic vector. Constructs were transfected into MCF7 cells, and 

luciferase activities were measured following standard protocols. 

4.6.8 Statistical Analysis 

 All the statistical tests were conducted with the R statistical package (http://www.r-

project.org/). More details are available in Extended Experimental Procedures (online). 
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Chapter 5: CAPE - Coupled Analysis of Polymerase Binding 

and Expression By Comparing ChIP-Seq and RNA-seq 

5.1 Abstract 

Motivation: Next-generation sequencing assays such as RNA-seq RNA polymerase II 

(RNAPII) ChIP-Seq enable researchers to study transcription on a genome-wide scale 

across different time points, samples, and organisms. As next-generation sequencing has 

become more affordable, researchers are generating many paired (i.e. from the same cell 

line, tissue, or conditions) RNA-seq and RNAPII ChIP-Seq data sets as a “natural 

experiment” to elucidate transcription by relating DNA binding to mRNA abundance; 

however a specialized tool to quickly analyze such paired experiments does not exist. We 

present CAPE (Coupled Analysis of Polymerase and Expression), a multiplatform tool to 

analyze these paired experiments. CAPE categorizes transcripts based on mRNA 

abundance and RNAPII binding, compares orthologous features between different 

replicates, samples, or organisms, and summaries the results. 

 

Availability and Implementation: CAPE is implemented in Java 1.6. Binaries, source 

code, and other supplemental documentation are available from our website 

(http://cape.gersteinlab.org). 

5.2 Introduction  

Next-generation sequencing (NGS) and short-read technologies have enabled new 

assays to study transcription. By using an antibody designed to target a particular protein 
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of interest, Chromatin Immunoprecipitation (ChIP)-based assays can identify 

transcription factor binding sites on a genome-wide scale (Johnson et al., 2007). The 

typical output from a ChIP-Seq experiment includes a “signal map” that corresponds to 

the localization of a transcription factor as well as a list of high-confidence binding sites 

derived from a peak calling program (Pepke et al., 2009). The RNA-seq assay uses NGS 

to measure transcript abundance by sequencing RNA-derived cDNA to produce a “signal 

map” of transcript abundance as well as a quantitative, normalized measure of 

transcription for each transcript such as Reads Per Kilobase Per Million Mapped Reads 

(RPKM) (Pepke et al., 2009; Mortazavi et al., 2008; Wang et al., 2009). Combining the 

results of these assays allows researchers to elucidate the relationship between 

transcription factor binding and mRNA abundance on a genome-wide scale. 

Relating the level of RNAPII binding near a transcript’s promoter region to 

mRNA abundance is a very useful technique to quickly identify whether a transcript is 

being actively transcribed, is inactive, or if RNAPII is poised for transcription, allowing 

researchers to understand more about a cell’s transcriptional program on a genome-wide 

level. As the popularity of RNA-seq and ChIP-Seq has grown and been supported by 

several large consortia, many matched (i.e. produced from the same organism, sample, 

cell line, or conditions) ChIP-Seq and RNA-Seq datasets have been deposited into public 

databases such as the UCSC Genome Browser, modMine, and GEO (Barrett et al., 2011; 

Contrino et al., 2012; Rosenbloom et al., 2012). In fact, the Roadmap Epigenomics, 

ENCODE, and modENCODE consortia have made 162 RNAPII ChIP-Seq tracks 

available, 116 of which have matching expression data. The deposition rate of this 

particular experiment pair should only continue to increase. RNAPII is often used to 
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calibrate and evaluate ChIP-Seq protocols, as the RNAPII antibody is very robust and 

produces very strong, clean results. Additionally, RNAPII ChIP-Seq is almost always 

paired with RNA-seq experiments because RNA-seq is straightforward and unlocks the 

relationship between RNAPII binding and mRNA abundance with minimal additional 

work. This relationship can be compared across different organisms or samples to explore 

variation in transcriptional programs. Many ChIP-Seq-related tools currently focus on 

punctate signals rather than the broader signals of RNAPII ChIP-Seq and do not integrate 

RNA-seq. Because the number of matched experiments in public databases should only 

continue to grow, a specific tool for polymerase analysis is both necessary and timely.  

 In this manuscript, we present the Coupled Analysis of Polymerase binding and 

Expression (CAPE), a multiplatform program that integrates the information provided by 

RNAPII ChIP-Seq and RNA-seq to identify transcripts that are likely active, inactive, or 

where RNAPII is stalled and poised for future transcription. CAPE also allows for the 

comparison of transcript states between different samples or organisms given a list of 

orthologs, allowing researchers to fully unlock the information contained in their RNAPII 

ChIP-Seq and RNA-seq experiments and facilitate comparative analyses. 

5.3 Description 

 CAPE has been specifically designed with the output from RNAPII ChIP-Seq, 

and RNA-seq in mind. CAPE is comprised of three components: an analysis module 

(CAPE-analyze), a comparison module (CAPE-compare) and a Java library of data 

structures and functions (AnnotationLibrary). A sample workflow for transcript analysis 

is shown in Figure 1. 
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CAPE-analyze produces a straightforward text report listing summary information 

for each transcript as well as its likely state while CAPE-compare allows for the 

comparison of orthologous transcripts between different samples or organisms. Given a 

ChIP-Seq signal file (Kent et al., 2010), a file containing transcript annotations, and an 

RNA-seq quantification file from Cufflinks (Trapnell et al., 2010), RSeqTools (Habegger 
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et al., 2011), or provided as part of the annotation file, CAPE-analyze will parameterize 

the average promoter size by analyzing signal aggregation around TSSs (see Users 

Guide), thereby enabling CAPE to analyze both compact and sparse genomes. CAPE 

determines the amount of RNAPII ChIP-Seq signal present in the promoter and the 

transcript body, then calculates two different metrics. The first, stalling index, is the ratio 

of promoter signal to body signal and is most appropriate for RNAPII ChIP-Seq or GRO-

Seq experiments that target both initiation and elongation phases (Core et al., 2008). The 

second metric compares the relative level of ChIP-Seq signal in the promoter to the 

mRNA abundance for the transcript determined by RNA-seq using either percentile-

based or absolute cutoff values. CAPE-analyze produces a summary table containing the 

metrics and classifications for each transcript. 

5.3.1 CAPE-compare 

 Researchers often want to quickly compare sets of matched experiments, for 

example when comparing different samples of a developmental timecourse, orthologous 

transcripts between different organisms, or samples with diseased and normal phenotypes. 

CAPE-compare allows quick comparison of multiple CAPE-analyze reports, producing a 

summary table and, in the case of two or three samples, an R script to produce Venn 

diagrams and an additional summary data in HTML. CAPE-compare will compare all 

common transcripts if comparing samples from the same organism or a tab-delimited 

ortholog list can be provided to allow comparison between organisms or to limit the 

transcripts considered. Several example use cases showing the applicability of CAPE-

analyze and CAPE-compare in addition to sample input and output can be found at the 

CAPE website (http://cape.gersteinlab.org). 
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5.3.2 AnnotationLibrary 

 AnnotationLibrary is a collection of data structures and classes used by CAPE-

analyze that we are making publicly available to the developer community. Further 

development and extension of AnnotationLibrary is openly encouraged and full Javadoc 

documentation is available at the CAPE website. 

5.4 Discussion and Conclusion 

 In summary, CAPE allows researchers to quickly and easily analyze paired RNAPII 

ChIP-Seq and RNA-seq experiments to explore transcription genome-wide between 

different samples or organisms. As shown in our use cases, CAPE-analyze can be used to 

identify transcripts with unusual relationships between RNAPII binding and gene 

expression, identifying features for further analysis. A transcript with a stalled promoter, 

for example, may be lying in wait for an external stimulus before transcription 

commences. Transcripts with these unusual relationships are often the most interesting. 

One can easily imagine such transcripts playing a role in disease or during organism 

development. In fact, one of our use cases identifies the differences between human, 

worm, and fly embryo transcripts using publicly available data from the ENCODE and 

modENCODE consortia. We expect that CAPE will prove increasingly useful to the 

genomics community. 

5.5 Acknowledgements 

CAPE uses the following external libraries: Google Guava, Apache Commons 

Math, Apache Commons CLI, VennDiagram, and the Broad Institute’s BigFile. Please 

see the Users Guide (Appendix D). 
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Chapter 6: Summary and Future Directions 

 This dissertation presents several strategies and methods to analyze data from 

ChIP-Seq and related technologies, how to effectively integrate such data with those from 

other technologies to study transcription at multiple scales, and describes a tool to aid 

researchers in quickly discerning the relationship between RNA Polymerase II binding 

and mRNA abundance between samples. First, I describe in Chapter 1 the characteristics 

of different reference DNA types used for scoring ChIP-Seq data, how these 

characteristics can affect the downstream results from ChIP-Seq peak calling, and 

through the integration of different data sources hypothesize why peaks are present in 

cross-linked, sonicated DNA. This work also disproved early assumptions about ChIP-

Seq reference DNA types, particularly that a simulated randomized background track was 

an adequate approximation of an experimental control. 

 After discussing the ChIP-Seq assay as well as considerations that may affect peak 

calling when choosing a reference sample in Chapter 2, Chapter 3 uses ChIP-Seq to 

explore the binding sites of four subunits of the human SWI/SNF chromatin remodeling 

complex and examines their interrelationships with each as well to other genomic 

features. Despite many RNAPII and histone mark datasets being deposited in public 

repositories, the bridge between genomic and epigenomic control of transcription was 

understudied. Chromatin remodelers can bridge this gap, as they can control the access of 

transcription factors to DNA and in the case of SWI/SNF, bind to acetylated histones 

typically present in promoter regions. Moreover tight control of nucleosome positioning 

is important for many different aspects of nuclear function. To underscore this point, I 
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integrated SWI/SNF regions with a diversity of data types including lamin-associated 

regions, replication origins and regions associated with RNA Pol III-based transcription. 

Bioinformatically, the analysis for this project was particularly challenging, as ChIP-Seq 

analysis had focused primarily upon single factors at the time that this work was 

conducted. Some subunits are also thought to have functions outside of the SWI/SNF 

complex, further complicating analysis. To solve this problem, my coauthor and I 

introduce the concept of a multi-factor domain in ChIP-Seq scoring when analyzing 

multiple members of a protein complex as well as provide a roadmap for scoring and 

analyzing non-standard factors (e.g. factors that do not only bind predominantly near 

promoter regions of expressed genes).  

 Chapter 4 extends upon the theme of ChIP-Seq to study transcription by describing 

long-range interaction analysis of RNAPII via ChIA-PET. By studying how DNA folds 

to bring components of the transcriptional machinery into close contact with each other, 

we were able to propose several different models of transcription in the nucleus and 

describe characteristics for each model. These models include basal transcription (i.e. a 

RNAPII peak at the promoter with no other interactions), the single-gene model where a 

promoter interacts with a distal region that may enhance transcription, and the multi-gene 

model where promoters of multiple genes and multiple distal regions share common 

interactions. Through the integration of our data with several other ChIP-Seq data sets 

from the same cell lines, I also showed that some complexes have subunits that are 

typically found in regions distal to promoters and are brought into close proximity with 

other subunits at the promoter via DNA folding. 

 Finally, Chapter 5 presents Coupled Analysis of Polymerase Binding and 
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Expression (CAPE). CAPE is a Java program designed to analyze the large number of 

paired RNAPII ChIP-Seq and RNA-seq experiments by cataloguing transcripts based on 

the observed relationship between RNAPII binding and mRNA abundance. The program 

is constructed to handle comparisons from multiple samples, whether these samples come 

from the same organism or from different, related organisms. I expect that CAPE will 

prove very useful for identifying and comparing variations in transcriptional programs 

between samples. This may take the form of comparing disparate organisms given a list 

of orthologs, exploring transcription at different developmental time points within the 

same organism, or identifying differences between diseased and normal states. CAPE is 

provided as publicly available, open-source software. 

 In the future, I envision that transcription factor binding assays such as ChIP-Seq 

will continue to play a major role in understanding how biological systems function. New 

assays are already being developed that can identify transcription factor binding sites at 

single-nucleotide resolution. The various DNA reference samples discussed in Chapter 1 

will have to be re-evaluated in light of these new assays to see if their characteristics and 

biases remain consistent with their ChIP-Seq counterparts. New strategies for data 

integration will also become necessary as laboratories continue to ChIP new, non-

standard factors and as they try to discern the interactions between subunits of a protein 

complex. As more experiments of this type become available in the public repositories, 

tools can be developed to simulate the binding of protein complex subunits and 

probabilistic methods designed to predict whether ChIP-Seq peaks from two related 

subunits are likely to form a complex. As described in Chapter 4, long-range interaction 

assays are still in their infancies. Current efforts are being made on the experimental side 
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to increase the resolution of these experiments while saturating the set of possible 

interactions obtained. The latter will pose a particular problem for statistical analysis, as 

current approaches to calling ChIA-PET interactions breakdown when a large number of 

possible interactions are obtained. Additionally, improved statistical methods and 

interaction calling will allow the field to confidently analyze interactions between 

different chromosomes. I expect that this type of analysis will prove particularly 

interesting when viewing transcriptional regulation on a system-wide level. Finally, 

CAPE represents a useful tool for comparing RNAPII binding levels to mRNA 

abundance for a set of transcripts, but as with any tool there are always possible 

improvements. At present, CAPE uses a single, accepted measurement to represent 

mRNA abundance, but it can be extended to instead use the RNA-Seq signal track data in 

much the same way that CAPE uses ChIP-Seq signal data. This will allow for 

comparisons between components of a transcript such as exons and introns. More 

specific still, this would allow CAPE to compare first exons against other exons from the 

same transcript, first exons against other first exons in the same sample, or even first 

exons between orthologous transcripts from different organisms. In short, I expect the 

data deluge in the biological sciences to continue unabated and as such, all tools and 

methods will need to continue to evolve to meet analytical needs as larger, more complex 

questions are explored. 
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Appendix A: Supporting Documentation for Chapter 2 

 

A.1 Supporting Materials and Methods 

A.1.1 Growth of cells for ChIP-Seq, Sono-Seq, MNase digestion, naked DNA and 

qPCR 

 For RNA Polymerase II ChIP-Seq, normal IgG ChIP-Seq and Sono-Seq, HeLa S3 

cells were grown in suspension in Joklik's modified minimal essential medium (MEM), 

supplemented with 10% FBS to a density of 6 x105 cells/mL. Cells were fixed with 1% 

formaldehyde at room temperature for 10 min and the fixation was terminated by the 

addition of glycine to a final concentration of 125 mM. The cells were washed in 

Dulbecco’s PBS (Invitrogen), snap frozen as cell pellets in liquid nitrogen, and provided 

to us by the National Cell Culture Center (Biovest International Inc., Minneapolis, MN). 

For the preparation of the MNase-treated cells and naked DNA samples, HeLa S3 cells 

were grown in SMEM (Invitrogen), supplemented with glutamine, 10% FBS (Invitrogen), 

and antibiotics (penicillin-streptomycin) and harvested without crosslinking at a density 

of 5 x105 cells/mL. For qPCR, HeLa cells were grown in MEM supplemented with 10% 

fetal bovine serum (Atlanta Biologicals), 100 U/mL penicillin and 100 g/mL 

streptomycin. 107 cells were trypsinized, fixed in 10 mL MEM supplemented with 1% 

formaldehyde for 10 min at room temperature, and quenched by the addition of glycine to 

a final concentration of 125 mM. 

A.1.2 Construction and sequencing of Illumina libraries  

 DNA samples were run though Qiagen MinElute PCR columns, eluted with 15 l of 



 137 

Qiagen buffer EB and size-selected on 2% agarose E-gels (Invitrogen). Band-isolated 

fragments were gel-purified using a Qiagen gel extraction kit. Libraries were prepared 

according to DNA Sample Kit instructions (Illumina Part# 0801-0303) but substituting 

kit enzymes with those available from other suppliers. Briefly, DNA was end-repaired 

and phosphorylated with the End-It kit from Epicentre (Cat# ER0720). The blunt, 

phosphorylated ends were treated with Klenow fragment (3 to 5 exo minus; NEB, Cat# 

M0212s) and dATP to yield a protruding 3-'A' base for ligation of Illumina's adapters, 

which have a single 'T' base overhang at the 3 end. After adapter ligation (LigaFast, 

Promega Cat#M8221) DNA was PCR-amplified with Illumina genomic DNA primers 

1.1 and 2.1 for 15 cycles using a program of 1) 30 s at 98C 2) 15 cycles of [10 s at 98C, 

30 s at 65C, 30 s at 72C] and 3) a 5 min extension at 72C. For the Sono-Seq DNA with 

large inserts of 350-800 bp, the extension time for the 15 cycles was increased to 1 min. 

The final libraries were band isolated from an agarose gel to remove residual primers and 

adapters. Library concentrations and A260/A280 ratios were determined by UV-Vis 

spectrometry on a NanoDrop ND-1000 spectrophotometer (NanoDrop, Wilmington, DE). 

Purified library DNA was captured on an Illumina flowcell for cluster generation and 

sequenced on an Illumina Genome Analyzer II following the manufacturer's protocols. 

A.1.3 Preparation of DNA for qPCR 

 Formaldehyde-fixed HeLa cell pellets were resuspended in cell lysis buffer (25 mM 

HEPES [pH 7.9], 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT, 0.1% NP-40) supplemented 

with EDTA-free protease inhibitor cocktail (Roche, Indianapolis) and 0.5 mM PMSF at a 

concentration of 107 cell equivalents/mL and incubated on ice for 10 min. After 

centrifugation, the crude nuclear pellet was resuspended in nuclear lysis buffer (50 mM 
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HEPES [pH 7.9], 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxycholate, 0.1% SDS) supplemented with EDTA-free protease inhibitor cocktail and 

0.5 mM PMSF at a concentration of 107 cell equivalents/mL. Chromatin was sheared at 

4C, 10 x 30 s at 30+ s intervals on a Branson Microtip Sonifier 450 set at constant duty 

and an output level of 4. After centrifugation for 10 min at 16,000xg, chromatin was 

sonicated for an additional 0 to 5 min at 10 s intervals in 0.5 mL aliquots using a cup horn 

on a Misonix sonicator 4000 set at level 6. The sonicated chromatin was treated with 

RNase A (Invitrogen, Carlsbad, CA) for 10 min at room temperature and decrosslinked 

by boiling for 10 min. After an additional centrifugation for 10 min at 16,000xg, DNA 

was extracted with phenol:chloroform:isoamyl alcohol (25:24:1) (Ambion, Austin, TX) 

and purified through Qiagen PCR purification columns (Qiagen Inc. Valencia, CA). DNA 

was resolved by agarose gel electrophoresis and 100-500 bp and 1000-6000 bp sized 

DNA bands were excised and purified again through Qiagen PCR columns. The 

concentration and purity of the DNA was measured by A260 and A280 UV-Vis 

spectrometry on a NanoDrop ND-1000 spectrophotometer. 

A.1.4 Quantitation by real-time PCR  

 For chromatin size selection experiments samples were assayed by quantitative 

PCR to assess the enrichment of genomic regions in either the 100-500 bp or 1000-6000 

bp chromatin samples. PCR reactions contained 2 l DNA template, 3 l of 3.3 mM primer 

pairs, and 5 l of 2X EvaGreen reaction mix (FluoProbes Interchim, France). Quantitative 

PCR was performed on an Applied Biosystems 7500 Fast unit using a 10 min soak at 

95oC, followed by 40 cycles of 5 s at 95C, 5 s at 55C and 20 s at 72C. Ct values were 

determined at threshold of 0.01. For each amplification product, the relative enrichment 
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in the 100-500 bp sample versus the 1000-6000 bp sample was determined using the 

formula relative enrichment = a*1.9Ct(1000-6000bp)-Ct(I100-500bp), where a was the 

constant associated with the ratio of the DNA concentration of the 100-500 bp and 1000-

6000 bp samples and Ct is the threshold cycle. 

A.1.5 Creation of ChIP-Seq and reference DNA sample aggregation plots 

 Uniquely-mapped reads were extracted from the corresponding standard Eland 

output files for each factor/reference DNA type, signal maps created, and aggregation 

plots created. A Python script was then used to create a signal map file in sgr format 

using a sliding window approach. The size of the sliding window used for each data set is 

shown in Table A.1. For each list of features, coordinates were obtained and converted to 

build hg18 of the human genome, when necessary, using UCSC’s Liftover tool. A Perl 

script was then used to perform the aggregation. This script divides the region 

immediately upstream and downstream of a feature’s start site into several bins. For each 

bin, all reads present for each nucleotide within the bin are summed and the average 

signal for the bin calculated. The bin scores corresponding to the same relative position 

for each feature are then averaged to produce a mean signal for each bin upstream and 

downstream of a feature’s start position. These signals are finally normalized to the sum 

of the averages for the first four and last four bins for each feature type to produce the 

final ChIP-Seq aggregated signal values. For all factors/reference types in this analysis, 

we chose to use a total of 46 non-overlapping bins (23 on each side of a feature’s start 

position) of length 90 base pairs for all features other than CpG islands. Due to the varied 

lengths of CpG islands, we could not apply a standard bin size across all islands. Instead, 

we partitioned each CpG island into 35 equal-sized bins and aggregated over each 
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fraction. We then extended this method to include additional bins of the same size 

regions flanking each CpG island. 

A.1.6 Calculating Percent Feature Composition for Sono-Seq DNA and Pol II DNA 

 From the ranked lists described in the manuscript, all enriched regions comprised of 

fewer than 20 tags or possessing a fold-enrichment less than 5 were discarded. A subset 

of the peaks was then analyzed in a stepwise fashion by intersecting enriched regions 

against promoter regions of expressed Ensembl genes and against promoter regions of 

non-expressed genes. Remaining enriched regions were deemed to lie outside of 

promoter regions and classified as “Other.” For this analysis, promoter regions are again 

defined as within 2.5 kb of a TSS. Data was added to the subset in 5% increments (i.e. 

iteration 1 would intersect enriched regions above the fifth percentile, iteration 2 above 

the tenth percentile, etc) until 100% of enriched regions were analyzed. 

A.1.7 Creation of the Pol II and Sono-Seq rank-order plot 

 To create the rank-order plot, enriched regions are ranked by tag count (minimum: 

20) and enrichment factor (minimum: 5), and q-value (maximum: 0.05). This subset of 

enriched regions is deemed to be “high-quality enriched regions.” For Pol II and Sono-

Seq, data is added in a stepwise-fashion at 5% increments in decreasing order of 

enrichment to create an analysis set. During each iteration, enriched regions contained in 

the analysis set are intersected against 5 ends of Ensembl genes. This process is repeated 

until all enriched regions are included in the analysis set. Regions intersecting promoter 

regions of Ensembl genes are further subdivided based upon whether they overlap 

promoters of expressed or non-expressed Ensembl genes. Enriched regions lying distal 

(2.5 kb) to the TSS of an Ensembl gene are classified as “other.” 
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A.2 Supporting Results 

A.2.1 Sono-Seq DNA signals show little increase over CTCF regions distal to 

promoters  

 Since Sono-Seq DNA regions are often associated with promoter regions, 

particularly those of expressed genes, we examined whether Sono-Seq signal is depleted 

over regions of closed chromatin or insulators. CCCTC-binding factor (CTCF) plays 

many roles in the human genome including behaving as a chromatin barrier, binding 

insulator elements to restrict transcriptional enhancers from activating unrelated 

promoters, and acting as an anchor for positioning neighboring nucleosomes [1]. We 

analyzed the association of CTCF sites distal to promoters by removing sites found 

within 2.5 kb of 5′ ends of known genes from a list of 127,172 CTCF sites obtained from 

Barski et al. [2]. ChIP signals were then aggregated using a random sample of 100,000 

sites from the remaining 119,940 distal sites. We find that Pol II signal is elevated over 

both proximal and distal CTCF sites, as well as Sono-Seq and MNase-digested DNA 

signals to a lesser degree (Figure A.9). 

A.2.2 Highly-transcribed regions are sonication-sensitive whereas centromeric 

repeats are sonication-resistant 

 As a complementary approach for examining how different genomic regions are 

affected by the size of DNA fragments in sonicated samples, we performed quantitative 

PCR analysis. DNA from sonicated chromatin was electrophoretically separated into 

small (100-500 bp) and large (1,000-6,000 bp) DNA fragments, and the amounts of DNA 

for various genomic regions were determined by quantitative PCR analysis (Figure A.8). 

The results are presented as the small:large ratio, where a value of 1.0 indicates 
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equimolar representation in the two samples. Several Pol II promoter regions are strongly 

overrepresented among the small DNA fragments (ratios ranging between 5-20). In 

contrast, the corresponding coding regions as well as two non-annotated, transcriptionally 

inactive regions of chromosome 21 are comparably represented in both the small and 

large DNA samples. Two of four Pol III genes as well as the 18S and 28S regions of the 

ribosomal DNA genes are also highly overrepresented among the small DNA fragments 

(ratios between 20-30). Interestingly, whereas a telomeric region is equally represented in 

the two samples, a centromeric region is extremely under-represented among the small 

DNA fragments (ratio of 0.03). Thus, sonication of crosslinked chromatin samples occurs 

in a highly non-random fashion (variation among genomic regions occurs over a 200-fold 

range), with preferential fragmentation occurring at promoters and in highly-transcribed 

regions, and strong resistance to fragmentation occurring near centromeric repeats. 

A.3 Supporting Figures 

 

 
Figure A.1 Signal map showing Pol II ChIP DNA, Sono-Seq DNA from HeLa S3 cells and naked 

DNA.Signal maps are created with the IGB Browser (Affymetrix, Santa Clara, CA) and tracks are scaled 
based upon the number of uniquely mapped reads obtained for each sample type. The magnified view 
shows the same region but uniformly alters the scale for all tracks to show additional peak detail. This 
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figure shows signal levels between positions 62,755,000-62,821,500 of chromosome 17. Both PSMD12 
and PITPNC1 are expressed in HeLa S3 based on RNA-Seq data [3]. 

 

 
Figure A.2 Signal maps. A) Signal map showing Pol II ChIP DNA, Sono-Seq DNA (small and large 

fragment sizes), normal IgG, and naked DNA. All signals are in HeLa S3 cells. This figure shows signal 
levels between positions 4,517,000-4,576,000 of chromosome 17. Signal maps are created with the IGB 

Browser (Affymetrix, Santa Clara, CA) and tracks are scaled based upon the number of uniquely-mapped 
reads obtained for each sample type. Both PELP1 and ARRB2 are expressed in HeLa S3 based on RNA-
Seq data [3]. The boxed region illustrates a region where an auxiliary Pol II peak is observed without an 

accompanying Sono-Seq peak near the ARRB2 promoter region, although other large Sono-Seq and Pol II 
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peaks are located at this loci. B) Signal map showing Pol II ChIP DNA, Sono-Seq DNA (small and large 
fragment sizes), normal IgG, and naked DNA. All signals are in HeLa S3 cells. This figure shows signal 

levels between positions 60,520,000-60,576,000 of chromosome 17. Signal maps are created with the IGB 
Browser (Affymetrix, Santa Clara, CA) and tracks are scaled based upon the number of uniquely-mapped 
reads obtained for each sample type. RGS9 is not expressed in HeLa S3 based on RNA-Seq data [3]. The 

boxed region shows a large Sono-Seq peak in the absence of a corresponding peak in Pol II. 

 

 
Figure A.3 Venn diagrams. Venn diagrams showing the number of Sono-Seq DNA and Pol II ChIP DNA 

regions, where both data sets were collected from HeLa S3 cells. Diagrams show intersections of all 
highly-enriched regions of Pol II and Sono-Seq DNA A) in the entire genome, B) proximal (within ±2.5 
kb) to an Ensembl gene TSS, C) within or proximal to Ensembl genes, and D) distal to Ensembl genes. 

Intersections were performed using the Active Region Comparison Tool, which merged all peaks occurring 
within 500 bp before performing the intersections [4]. Results are different than one-way intersections used 

in the paper, as Sono-Seq and Pol II hits do not necessarily exhibit a one-to-one relationship. 
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Figure A.4 Breakdown of non-Pol II-associated Sono-Seq peaks with respect to small RNAs, CTCF 

sites, and enhancers. All three of these intersecting sets were HeLa-derived [5-7]. Sono-Seq regions 
located > 1 kb from a Pol II peak were intersected against CTCF and enhancer sites (within 200 bp) and 
small RNAs (within 2 kb). 28% of the non-Pol II-associated peaks fall within one of these categories. 

 

 
Figure A.5 Signal map. Signal map showing Pol II ChIP DNA, Sono-Seq DNA (small fragment sizes) and 

naked DNA relative to several small (< 200 nucleotides) RNAs from HeLa cells [5]. Signal tracks are 
scaled based upon the number of uniquely-mapped reads obtained for each sample type. Boxed regions in 

A) and B) show Sono-Seq peaks in the absence of corresponding RNA Pol II peaks and where several 



 146 

small RNAs (small black rectangles near gene annotations) are within 1 kb of the Sono-Seq peaks. Neither 
SCAND3 nor ULBP2 are expressed in HeLa S3 cells based on RNA-Seq data [3]. Regions shown are from 

28,654,000-28,670,000 on chromosome 6 for SCAND3 and from 150,297, 200-150,314,000 on 
chromosome 6 for ULBP2. Signal maps are created with the IGB Browser (Affymetrix, Santa Clara, CA). 

 

 
Figure A.6: Aggregation plot depicting average ChIP signal across a random sample of 100,000 

H3K4me3 sites identified in CD4+ cells. The right panel is a magnified view of the region enclosed by 
the dotted box in the left panel. In the right panel, Pol II is removed and the scale is altered to allow for 
better comparison between reference sample types. Vertical axis units are consistent between all plots. 

Horizontal axis units are given in terms of nucleotides from the feature start site. 

 

 
Figure A.7 Signal map showing Sono-Seq DNA and FAIRE signals in Saccharomyces cerevisiae. For 
FAIRE, signal levels above the axis are enriched whereas levels beneath the axis are depressed. Regions 
enriched in Sono-Seq appear anti-correlated with FAIRE signal. This figure shows signal levels between 
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positions 207,900-217,200 of S. cerevisiae chromosome 3. Signal maps are created with the IGB Browser 
(Affymetrix, Santa Clara, CA). 

 

 
Figure A.8 Sonication efficiency varies greatly among genomic regions. DNA samples derived from 

100-500 bp and 1,000-6,000 bp chromatin fragments were analyzed by qPCR and normalized to the 
concentration of the input DNA. The amount of DNA in the 100-500 bp sample was 2.8 ± 0.5 higher than 

in the 1,000-6,000 bp sample. 

 

 
Figure A.9 Aggregation plots depicting average ChIP signal across 7,232 proximal and 100,000 distal 
CTCF sites. The same units and conventions as those from Figure 3.3 in the main text are used for the axes. 
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Figure A.10 Sono-Seq enriches for regions flanked by sonication-sensitive sites and are comprised of both 

protected and deprotected chromatin regions. Signal peaks are only seen at smaller Sono-Seq fragment 
sizes (100-350 bp). 

A.4 Supporting Tables 

Table A.1 Sliding windows sizes used to generate signal maps. 

Factor/Reference Sample Type Signal Map (SGR) Window Size 
Pol II 200 

Sono-Seq (100-350 bp, HeLa S3) 200 
Sono-Seq (350-800 bp, HeLa S3 575 

Naked DNA 200 
IgG 200 

MNase 200 
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Appendix B: Supporting Documentation for Chapter 3 

B.1 Supporting Figures 

 
Figure B.1 SWI/SNF signals and target regions in the context of interferon receptor genes on 

chromosome 21.The coordinates shown are in hg18 and all regions were identified in HeLa cells as 
detailed in Table S1 and Materials and Methods. The vertical axis for each signal track is the count of the 

number of overlapping DNA fragments at each nucleotide position and is scaled from 0 to 40 for each track. 
Panel A displays a ~370 kb region on chromosome 21 containing genes encoding cytokine receptors. Panel 

B displays a ~20 kb region at the edge of an H3K27me3 domain. Panels C and D each display ~6 kb 
regions around the 5 ends of expressed genes. 
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Figure B.2 SWI/SNF ChIP-Seq targets and interacting proteins superimposed on KEGG ‘Pathways 
in Cancer’. The KEGG ‘Pathways in Cancer’ network was among those pathways overrepresented using 
our 49,555 SWI/SNF high-confidence union regions (Benjamini adjusted p-value < 4.7 x 10-8). SWI/SNF 

ChIP-Seq targets are highlighted in yellow and SWI/SNF co-purifying proteins detected in our IP-mass 
spectrometry experiments are highlighted in blue. SWI/SNF co-purifying proteins reported in other studies 
(Table S10) are highlighted in red. Proteins or genes not detected in any known SWI/SNF studies are gray. 

Starred annotations were detected in both ChIP-Seq and protein interaction studies. 
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Figure B.3: SWI/SNF ChIP-Seq targets and interacting proteins superimposed on KEGG ‘Cell 

Cycle’. The KEGG ‘Cell Cycle’ network was among those pathways overrepresented using the 49,555 
SWI/SNF high-confidence union regions (Benjamini adjusted p-value < 3.7 x 10-8). SWI/SNF ChIP-Seq 

targets are highlighted in yellow and SWI/SNF co-purifying proteins detected in our IP-mass spectrometry 
experiments are highlighted in blue. SWI/SNF co-purifying proteins reported in other studies (Table S10) 
are highlighted in red. Starred annotations were detected in both ChIP-Seq and protein interaction studies. 
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B.2 Supporting Tables 

Table B.1 Data sources of genomic features used.  

Annotation Number of 
regions Platform Sourcea 

Ini1 49,458 ChIP-Seq this study 
Brg1 12,725 ChIP-Seq this study 
BAF155 46,412 ChIP-Seq this study 
BAF170 30,136 ChIP-Seq this study 
RNA Polymerase II 23,320 ChIP-Seq Rozowsky et al. 2009 
IgG control N/A ChIP-Seq Auerbach et al. 2009 
SWI/SNF union 69,658 ChIP-Seq this study 
SWI/SNF high-confidence union  49,555 ChIP-Seq this study 
SWI/SNF core (Ini1, BAF155 and BAF170) 9,760 ChIP-Seq this study 
Lamin A/Cb 1,770 ChIP-chip this study 
Lamin Bb 1,270 ChIP-chip this study 
H3K27me3 32,704 ChIP-Seq Cuddapah et al. 2009 
CTCF 19,308 ChIP-Seq Cuddapah et al. 2009 
Predicted enhancersc 36,562 ChIP-chip Heintzman et al. 2009 
RNA Polymerase III 478 ChIP-Seq Oler et al. 2010; Barski et al. 2010 
RNA-Seq N/A RNA-Seq Morin et al. 2008 

Non-canonical small RNAsd 48,403 RNA-Seq 
Affymetrix ENCODE Transcriptome 
Project and Cold Spring Harbor Laboratory 
ENCODE Transcriptome Project (2009) 

DNA replication origins b,e 282  Short nascent 
strand-chip Cadoret et al. 2008 

 

aAll regions were identified in HeLa cells. Coordinates used are in hg18. 
bData are from the ENCODE pilot phase regions.  
cEnhancers were predicted using a model trained on various chromatin signatures including those for p300/EP300, MED1, CTCF, DNase hypersensitivity sites 
and histones H3K4me1, H3K27ac and H3K4me3.  
dExcludes annotated miRNAs, small nucleolar RNAs, repeats and predicted RNA genes. 
eOne of the 283 replication origins from Cadoret et al. was discarded in the process of converting hg17 coordinates to hg18 with the the UCSC ‘liftOver’ utility 
(http://genome.ucsc.edu/cgi-bin/hgLiftOver).
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Tables B.2 through B.19 Due to space constraints, only the data sources table is provided as part of this 
dissertation document. For additional supporting tables related to this work, such as those listing the 
genomic coordinates of all regions identified by this study, please see the supporting information in 
[Chapter 2, Reference 91]. 
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Appendix C: Supporting Documentation for Chapter 4 

 Supplemental materials accompanying the work featured in this chapter can be 

found in its original form on the Cell website 

(http://www.sciencedirect.com/science/article/pii/S0092867411015170). Supplemental 

Figures are provided in this dissertation for convenience. In the interest of space and 

formatting constraints, Supplemental Methods text and Supplemental Tables are omitted 

from this document but can be found at the above link. 

 Materials prefaced with the appendix designation (e.g. “Figure C.1) can be found in 

this section. Materials lacking the appendix designation (e.g. Table S1) can be referenced 

online. 

C.1 Supporting Figures 
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Figure C.1 Validation of Chromatin Interactions in MCF7 and K562 Cells by DNA-FISH and 3C-
qPCR, Related to Figure 1.(A) Quantitative DNA FISH data for positive (interaction) and negative (no 
interaction) hits randomly selected from MCF7 interchromosomal ChIA-PET data. (B) An example of a 

chromatin interaction between chr11 and chr17 in MCF7 cells. This exemplifies that multigene complexes 
from different chromosomes could further converge to a common active nuclear compartment. (C–G) 

Detailed 3C-qPCR validations for several long-range (up to ∼17 Mb) intrachromosomal interactions and an 
interchromosomal interaction (D). Most of the intrachromosomal interactions are tested in both MCF7 and 
K562 cell-lines. P values are calculated using binomial test. Panel D, F and G represent local interactions at 

distant genomic loci converging to each other via long range cis or trans interactions. 3C-qPCR mean 
values and standard error of means (SEM) from three independent experiments are shown. See also Table 

S2. 

 

 
Figure C.2 Detailed Genomic Features of Distinct Chromatin Models, Related to Figure 4.2(A) 

Detailed examples from 6 different chromosomes illustrating the association of distinct chromatin 
architectures with genomic descriptors. Density of each descriptor (except %GC, which is measured in 
isochores) and the interacting anchors in each of our chromatin architectures is measured in each 1 Mb 
domain across chromosomes and running mean over 5 values are plotted. Certain gene rich domains 

enriched in multigene (MG) models and depleted in single-gene (SG) models are highlighted in red, while 
relatively gene-poor domains enriched in SG and depleted in MG are marked in blue. (B and C) Genomic 

features of BP, SG, MG models in MCF7 (B) and K562 (C) saturated libraries. The plots validate our 
observations on the combined pilot data presented in Figure 2 of the main text. 
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Figure C.3 Promoter Properties and Functional Output (Transcription) of Different Categories of 

Chromatin Models, Related to Figure 4.3(A and B) Tissue specificity measured by descriptor-1 (A) and 
descriptor-2 (B). Equations for tissue specificity descriptors are given in the Extended Experimental 

Procedures. (C and D) Normalized CpG content (C) of promoters (±1500 bp to TSS) and strand bias (CG-
skew) (D) at promoters of genes in different models. Difference in the representation of High CpG (HCG) 
promoters (associated with housekeeping genes) and Low CpG (LCG) promoters (associated with tissue 
specific genes) is found to be significant between SG and MG complexes, while BP model has relatively 

negligible representation of LCG promoters suggesting their association primarily with housekeeping 
function. Similarly, CG-skew in (D) shows greater bias (associated with high and housekeeping expression) 

at promoter sites for BP and MG models, while lower bias (associated with lower and tissue specific 
expression) for SG model. These predictive measures support our observation in Figure 3D in the main text. 

(E) Coexpression of interacting genes in K562 cells. (F–K) Density plots for Pearson's Correlation 
Coefficient (PCC) values of gene pairs in MG complexes (red), rewired pairs and random gene pairs 

selected from a control dataset of the same distribution of genomic spans and gene density as MG pairs 
with an upper limit of 1 Mb. The gene expression datasets analyzed are: (F) E2 induced time course 
microarray at 6 time points (Fullwood et al., 2009); (G) microarray dataset of 4,787 human samples 

covering a wide range of diversity in gene expression, like distinct tissues, gender, developmental and 
differentiation stages etc. (Sahoo et al., 2008). Different controls are selected over genomic spans of BP, 

SG and MG genes; (H–I) ENCODE RNA-Seq datasets for 5 different cell-lines (K562, MCF7, HeLa, 
HCT116 and GM12878) for MCF7 and K562 interactions; (J) PCC distribution for MG gene pairs 

belonging to the same and different functions (GO process); (K) PCC distribution for housekeeping (HK) 
and tissue specific (TS) gene pairs in MG units. (L) Representation of gene families in random (#3383) and 

MG complexes (#1487) datasets with respect to expected probability “p” of finding 2 proximal genes 
(within 1 Mb proximity) from the same gene family. The method to compile random control and to 

calculate the probability of finding two proximal genes from the same gene family is given in the Extended 
Experimental Procedure. The plot suggests greater enrichment of gene families in multigene complexes. 

Also see Table S4. 
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Figure C.4 Chromatin Interactions and Gene Expression Following siERα Transfection in MCF7 
Cells, Related to Figure 4.4.(A) Overlap of RNAPII loops with ERα loops at the GREB1 locus. P1, P2, 
and P3 are RNAPII interacting sites; E1, E2, and E3 are ERα interacting sites. (B) ERα knockdown by 

siERα as tested by Western blot and RT-qPCR. (C) GREB1 expression following 0, 3 and 6 hr of ethanol 
(ET) and estrogen (E2) treatment after siControl and siERα transfections. RT-qPCR mean values and 

standard deviations (SD) from two independent experiments are shown. (D) 3C-qPCR data for chromatin 
interactions at GREB1 locus following ET and E2 treatment after siControl and siERα transfections. 3C-

qPCR mean values and standard error of means (SEM) from three independent experiments are shown. (E) 
Estrogen induction and siERα knockdown led to correlated changes in the expression of interacting genes 

(CCDC88C and GPR68). ChIA-PET tracks clearly show that interaction between promoters of GPR68 and 
CCDC88Cis associated with RNAPII, while ERα binds only at promoter and gene-body of CCDC88C. 
Color codes of the bars are shown in Figure C.4D. RT-qPCR mean values and standard deviations (SD) 

from two independent experiments are shown. 
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Figure C.5 Enrichment Profiles of Transcription Factors and Histone Modification Marks Centered 

at the Interaction Anchor Regions of RNAPII-Bound Chromatin Interaction Structures in K562 
Cells, and Reporter Gene Assays in MCF7 Cells, Related to Figure 4.5.(A) Aggregation plots of TFs 
enrichments centered at the RNAPII interaction sites, proximal to TSS (TSS) or distal to TSS (non-TSS). 

RNAPIII, as a negative control, shows negligible enrichment at the RNAPII interacting sites. y axis: sliding 
median for ChIP-Seq enrichment in the region. x axis: distance (bp) from RNAPII sites. (B) TFs enriched 

at non-TSS (potential enhancer sites). (C) Enrichment profile of chromatin remodeling and chromatin 
architectural factors. (D) Enrichment profile of open chromatin and histone marks around RNAPII 

interacting sites. Clearly, the open chromatin mark DHS and active histone marks are substantially enriched 
at the RNAPII interacting sites, while the repressive histone marks show little enrichment. (E) Map of 

pGL4.10 vector and cloning sites of promoters and enhancers for luciferase assays. (F) Standard promoter 
and enhancer reporter assay for elements around the CALM1 locus. The enhancer upstream of CALM1 

significantly, but modestly, enhanced the luciferase activity of the CALM1 promoter, which was involved 
in the typical enhancer-promoter interaction. (G) The DDHD1 promoter, which is located on the same 
chromosome as C14orf102-CALM1 locus and had no interaction with CALM1, showed no significant 
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enhancement to the CALM1 promoter activity in luciferase assays. (H) Deletion promoter reporter assay 
around CALM1 locus. The TATA box of the CALM1 promoter was deleted (from – 133 bp to +100 bp, 

black arrow). The reporter construct containing this deletion promoter did not show any promoter activity 
in luciferase assays by itself or in any combinations with C14orf102. (I) Non-MG promoters do not possess 
enhancer functions. The ELFN1 and DLD promoters, which are located on the same chromosome as for the 
INTS1-MAFK locus and had no interaction with MAFK, did not enhance the promoter activity of MAFK 

in luciferase assays. (J) Box plots of RNA-Seq data in log2 RPKM for the genes with low and high log 
ratio of H3K4me3/H3K4me1 in the pairs of interaction sites. The genes with higher log ratio in a pairing 

relationship have higher RNA-Seq counts on average than the interacting partner with lower log ratio. (K) 
Box plots of normalized luciferase activities when the promoters have a low log ratio of H3K4me3/me1 at 

the enhancer position of the luciferase constructs, or when the promoters have a high log ratio of 
H3K4me3/me1 at the enhancer position of the luciferase constructs. The promoters with low log ratio of 

H3K4me3/me1 at the enhancer position of the luciferase constructs have higher enhancing effects in 
general. (L) Swap of INTS1 and MAFK promoters in positions in reporter gene construct for luciferase 

assays. The promoter sequence from INTS1 (with lower log ratio of H3K4me3/me1 signals) enhanced the 
luciferase activity of MAFK (with higher log ratio of H3K4me3/me1 signals). On the reverse, the MAFK 

promoter showed no enhancer function. The mean values and standard deviations (SD) of luciferase 
activities from at least three independent experiments are shown. 
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Figure C.6 Cell-Specific Interaction Analysis, Related to Figure 4.6(A) All the Gene Ontology (GO) 
terms over-represented in the gene sets engaging cell-specific expression and interactions. (B) 

Overrepresented GO terms in the gene set engaged in chromatin interactions common to both MCF7 and 
K562 cells. The abundance of housekeeping terms is apparent. (C) K562-specific interactions around β-

globin gene locus on chromosome 11. ChIA-PET loop tracks clearly show that there are chromatin 
interactions from β-globin genes to the locus control region (LCR) in K562 cells, but not in MCF7 cells. 
Correspondingly, the RNAPII and RNA-Seq show higher expression of β-globin genes in K562 cells, but 

not in MCF7 cells. (D) MCF7-specific interactions around GATA3 gene locus on chromosome 10. In 
contrast to the β-globin gene locus, the ChIA-PET loop tracks clearly show that there are chromatin 

interactions from GATA3gene locus to multiple enhancer sites in MCF7, but not in K562 cells. 
Correspondingly, the RNAPII binding and RNA-Seq showed high activity in MCF7 and low activity in 
K562 cells. Especially, one super-long-distance enhancer is about 1.2 Mb away from GATA3 promoter. 

 

 

 
Figure C.7 Examples of Cell-Type-Specific Long-Range Enhancer-Promoter Interactions, Related to 
Figure 4.6 and Figure 4.7.(A–E) are specific to MCF7 cells, and (F-K) are specific to K562 cells. Most of 

the regulatory sites in these long distance interaction examples are bypassing the nearest promoters and 
linking to other gene promoters. (L) Several distant enhancers converging to MYC gene promoter. Cell-

specific alternative usage of certain enhancers can be seen from the interaction loop views from MCF7 and 
K562 cells. 
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Figure C.8 Assessment of Technical Noise, Library Reproducibility and Saturation Analysis, Related 

to Experimental Procedures.(A and B) Heatmaps of PET sequence counts versus genomic span for 
interactions identified from homo-dimer and hetero-dimer PETs from the combined pilot dataset. (C) 

Densities of genomic spans of interactions from homo-dimer PETs and hetero-dimer PETs of the combined 
pilot data. (D) Densities of genomic spans of interactions from rewired PETs. (E–G) Scatter plot of 

sequence reads per 10 kb from RNAPII ChIA-PET replicates: (E) MCF7 pilot datasets, (F) MCF7 saturated 
and (G) K562 saturated datasets. (H) Scatter plot of sequence reads per 10 kb from K562 saturated and 

MCF7 saturated RNAPII ChIA-PET datasets. (I–L) RNAPII binding site reproducibility of K562 saturated 
replicates. (I) Histogram of genomic distances between RNAPII peaks from replicates. (J) Venn diagram of 
RNAPII peak overlap between replicates. (K) Scatter plot of RNAPII peak intensities of replicates. (L) Box 

plot of peak intensities of RNAPII peaks common and unique in replicate 1. (M–O) RNAPII interaction 
reproducibility of K562 saturated replicates. (M) Scatter plot of interaction PET counts between replicates. 

(N) Venn diagram of interaction overlaps between replicates. (O) Violin plot of interaction PET counts 
from common and unique interactions from replicate 1. (P) Saturation assessment of chromatin interactions 

from K562 saturated RNAPII ChIA-PET replicates. The overlap ratio between replicates against the 
proportion of PETs sampled from K562 saturated replicate 1 (more details in the Extended Experimental 

Procedure; under saturation analysis). (Q and R) RNAPII interaction region reproducibility of K562 
saturated replicates. (Q) Scatter plot of interaction region PET counts between replicates. (R) Venn diagram 

of interaction region overlaps from replicates. I, II, and III for the top 25%, 50% and 75% interaction 
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regions from K562 saturated replicate 1. (S and T) Scatter plots of RNA-Seq reads per 10 kb in replicates 
from MCF7 (S) and K562 (T). 
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Appendix D: Supporting Documentation for Chapter 5 

D.1 Link to Supporting Documents 

Supporting documents including sample input and output files, UML class and 

activity diagrams for CAPE, and the Users’ Guide can be found at 

http://cape.gersteinlab.org. Some files are reproduced here for convenience. 

D.2 Documents Included in this appendix 

This appendix includes the CAPE Users Guide, Use Cases, and UML diagrams. 

Updated versions are always available at the CAPE website. 
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Coupled Analysis of Polymerase Binding 

and Expression (CAPE) Users Guide 

Version 1.0 

Raymond Auerbach, Arif Harmanci, Joel Rozowsky, and Mark Gerstein 

Gerstein Laboratory 

Yale University 

 

Note: The latest version of the Users Guide can always be found at 

http://cape.gersteinlab.org. 

Introduction 

CAPE Is designed with two primary goals in mind. The first is to associate 

transcription factor binding site data from next-generation sequencing experiments such 

as ChIP-Seq with a set of genomic features such as transcription start sites, transcription 

end sites, etc. The second aim is to classify transcripts based on levels of transcription 

factor binding at the promoter vs. the expression level of the transcript. This tool is 

designed to work with many of the formats employed by large consortia such as 

NHGRI’s ENCODE and modENCODE consortia. 
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Program Requirements 

CAPE is written in Java and requires Java version 1.6 or higher. The Java runtime 

environment (JRE) must be installed. If the JRE is not installed (i.e. typing “java –version” 

at the command line does not produce a version number or the version number is < 1.6), 

an updated version of the Java Runtime Environment can be downloaded from 

http://www.oracle.com/technetwork/java/index.html. Please see that website for 

instructions. 

Obtaining the program 

The CAPE programs are distributed as self-contained, executable java archives 

(a .jar file) and can be downloaded from http://cape.gersteinlab.org. If you wish to 

download the source code and associated first-party libraries for this tool, they can also 

be found at the same address. CAPE is distributed as-is as open-source software. 

 

CAPE-analyze 

Generating Transcription and Binding Reports using CAPE-analyze 

Once the JRE is installed and the jar file is downloaded, the program can be run 

from a terminal window. From the command prompt, type “java –jar CAPE-analyze.jar 

<arguments>”. See the section “Command line arguments below for a detailed 

description of possible arguments. Long-form arguments are given in the format “--

longFormOptionName=value” and short-form arguments are given in the format “-

shortFormOptionName value”. For larger data sets, we recommend increasing the 
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maximum amount of memory allocated to the Java heap to improve system performance. 

Depending upon your hardware configuration and the number of transcripts to be 

analyzed, the java heap size may be increased using Java’s “-Xmx” option (e.g. “-

Xmx512M” will set the heap size to use 512 MB of RAM, “-Xmx1G” will use 1 GB of 

RAM, etc.). This option should appear between “java” and “-jar” in the example 

command given above. 

 

CAPE-analyze Command-Line Arguments 

Program Mode Arguments 

One of the following arguments may be specified to select the mode of operation. 

If no argument is specified, CAPE will run in transcript mode by default. 

 
Long-Form Short-Form Description 

--binding -b Run in binding mode 

--transcript -t Run in transcript mode (default) 

 
If both arguments are specified, CAPE will exit with an error. 
 
Binding Mode Arguments 

The following arguments are required when running in binding mode: 

Long-Form Short-Form Description 

--signalfile -s Signal file in bigWig or bigBed format. Extension must 
be .bw, .bigWig, .bb, or .bigBed 

--transcriptfile -tf File with transcript information. Must be GTF format 

--peakfile -p Peak file. Extension must be .bed or .narrowPeak 

--outputfile -o Filename to use for output 

 
Additionally, the following optional parameters may be specified: 



 168 

Long-Form Short-Form Description 

--upstreampad -up The upstream overlap window in bp to use for feature 
association. Default=1000 bp. 

--downstreampad -dp The downstream overlap window in bp to use for 
feature association. Default=1000 bp. 

 
Transcript mode arguments 

The following arguments are required when running in transcript mode: 
Long-Form Short-Form Description 

--signalfile -s Signal file in bigWig or bigBed format. Extension must 
be .bw, .bigWig, .bb, or .bigBed 

--transcriptfile -tf File with transcript information. Must be in GTF format 

--outputfile -o Filename to use for output 

 
 
 
Additionally, the following optional parameters may be specified: 
Long-Form Short-

Form 
Description 

--aggpad -ap The initial window size in bp on each side of a feature to 
use for the aggregation step. Default=1000 bp (note: this 
results in +/- 1000 bp from start) 

--aggoverride -ao In transcript mode, the pad value to use on each side of a 
feature for aggregation. Value must be >= 50. Skips 
window size detection if set. 

--rseqtoolsfile -r File created by the rSeqTools program mrfQuantifier 
containing expression values for all transcripts (the 
transcript ID appears in column 1 and the RPKM appears 
in column 2) 

--cufflinksfile -c File created by cufflinks containing expression values for 
all transcripts (the transcript id appears in column 2 and 
the FPKM appears in column 10) 

--GFFkey -k The feature type to use from the third column of a valid 
GFF or GTF file. Defaults to "transcript". Change if you 
are analyzing genes, etc. 

--percentileoverride -po A comma-separated list of percentile cutoffs for low- and 
high-value binding and expression. Default=25,75 
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--expressionoverride -eso A comma separated list of expression value cutoffs for 
low- and high-value expression. Given in real units 
(RPKM, FPKM, etc). Masks the --percentileoverride 
option for expression. 

--bindingoverride -bso A comma separated list of expression value cutoffs for 
low- and high-value expression. Given in real units 
(RPKM, FPKM, etc). Masks the -percentileoverride option 
for binding. 

 
Description of Algorithm - Binding Mode 

Given a transcript file, a signal file, and a peaks file, binding mode will identify 

the position within each peak where the signal is the highest. Using this summit position 

to represent the peak region, overlap analysis is then run against the transcript list and the 

closest TSS and TTS is reported as well as the distance to each. Distances are reported in 

a strand-specific manner where negative values correspond to the summit position being 

upstream of a feature. Conversely, a positive distance value indicates that the summit 

occurs downstream of a feature. Each peak will be assigned an association of “TSS”, 

“TTS”, “Neither” or “Ambiguous” based on the distance to each feature. The values of --

upstreampad and --downstream pad are used to assign a peak to a category. For example, 

the default value of 1000 bp means that a peak that falls within +/- 1000 bp of a TSS will 

be assigned a TSS association. If a peak falls halfway between a TSS and a TTS and both 

distances fall within the cutoff, a value of “ambiguous” is reported. Peaks falling outside 

the pad range will be reported as “Neither.” Note that for peak files in narrowPeak format, 

the summit position given in the file for each peak is used as the summit position. For 

files in bed format, the maximum signal in the region is determined and if this region 

spans multiple base pairs, the midpoint of the range is reported as the summit value.  
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In the event that there is more than one maximum value, the peak is reported as 

“multimodal” and an association is not calculated. Please note that binding mode is still 

under active development at this time and that the crux of CAPE-analyze is transcript 

mode. 

Description of Algorithm - Transcript Mode 

Given a transcript file, a signal file, and a file with expression values, the tool 

begins by aggregating the TF binding signal around TSSs given the window size of +/- 

the --aggPad argument (default: 1000 bp). The results from this aggregation are used to 

determine an ideal size for the promoter region as follows: for the aggregation values, the 

global maximum and minimum positions are determined. From the position of the global 

maximum, the closest positions where the value crosses below the value of (global 

minimum + ((global maximum - global minimum) * .10) are determined in both the 

upstream and downstream directions and the largest values used as the pad. For example, 

if the above criteria are met at -500 and +300 bp from the global maximum, then an 

“ideal” pad size of +/- 500 bp from the TSS is used. Using the ideal pad size to represent 

the promoter region, the average signal level in the promoter and the gene body are 

determined for each transcript and the ratio between these values is reported. Note that 

currently, there is no size restriction on transcripts. If a transcript is smaller than the ideal 

pad for a promoter, no signal over the transcript body is calculated and the ratio will be 

“N/A”. For gene expression, values are read directly from an expression file (typically in 

RPKM or FPKM) or can be read from the annotation file. Please see the description of 

input files below for more details. 
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Once both binding values and expression values are determined for each 

transcript, low- and high-value cutoffs are determined. This process occurs separately for 

binding and expression but the steps are the same. We will discuss in terms of binding in 

this example. Using only the binding signal values that are non-zero, we determine the 

values that correspond to the percentile cutoffs specified by --percentileoverride (default= 

25th and 75th percentile). All transcripts with a binding value below the lower cutoff 

value will be deemed as “low binding,” any transcript with a binding value above the 

upper cutoff will be deemed “high binding.” Transcripts with binding values in the 

intermediate range are deemed “normal.” Alternatively, we expect there will be some 

cases where a researcher will want to use actual data values instead of percentiles to set 

the lower and upper cutoffs. These values can be set with the --expressionoverride and --

bindingoverride arguments (e.g. --bindingoverride=20,80 will set the low and high 

binding cutoffs to be below the 20th percentile and above the 80th percentile, 

respectively. These arguments will override the percentile cutoffs for their respective data 

types. After all transcripts are categorized, a list of transcripts that fall into each category 

is written to the file named in the --outputfile argument. 

 

Input File Formats 

CAPE-analyze supports a variety of different input formats for peak files, signal 

files, and expression files. 

 

Peak Files 
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Peak files are used in binding mode and can be provided in three or four column, 

tab-delimited bed format. The first column corresponds to the chromosome, the second 

column gives the start position, the third column gives the end position, and the optional 

fourth column is a single character denoting the strand (“+” or “-”). If strand is omitted, 

all features will be considered to be on the forward strand. Please note that bed files must 

end in the extension “.bed”. For more information about bed format, please see 

http://genome.ucsc.edu/FAQ/FAQformat#format1. For example: 

chr1 500 1000 + 
chr2 100 300 - 
 
Alternatively, peak files can also be provided in ENCODE narrowPeak format to allow 

for direct download from the ENCODE data repository at UCSC. For a description of the 

ENCODE narrowPeak format, please see 

http://genome.ucsc.edu/FAQ/FAQformat#format12. ENCODE narrowPeak files must 

end in the extension “.narrowPeak”. 

 

Signal Files 

Signal files must be provided in bigWig or bigBed formats. These files are 

indexed, allow for random access, and reduce the storage requirements for large signal 

files such as those produced from whole-genome analyses in human cells. Other formats 

such as bedGraph and wiggle can be easily converted to bigBed or bigWig formats using 

Jim Kent’s toolkit at UCSC (binaries available at 

http://hgdownload.cse.ucsc.edu/admin/exe/. Please see the documentation in the source 

distribution of Jim Kent’s utilities for more information. The relevant programs are 

bedGraphToBigWig, wigToBigWig, and bedToBigBed. Alternatively, Galaxy may also 
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be used to convert other signal file formats to bigWig and bigBed (http://galaxy.psu.edu/). 

For more information about the bigWig and bigBed formats, please see 

http://genome.ucsc.edu/FAQ/FAQformat#format1.5 and 

http://genome.ucsc.edu/FAQ/FAQformat#format6.1. 

 

Transcript Files 

Transcript files are accepted in either GTF (preferred) or GFF3 files. A full 

description of these files formats can be found at 

http://genome.ucsc.edu/FAQ/FAQformat#format4 (GTF) and 

http://genome.ucsc.edu/FAQ/FAQformat#format3 (GFF3). An example in GTF format is 

given below: 

II modENCODE_TX gene 8651057 8658766 . + . RPKM "109.609215"; gene_id 
"pyr-1" 
II modENCODE_TX gene 5399522 5405988 . + . RPKM "94.070177"; gene_id 
"mog-5" 
II modENCODE_TX gene 13670567 13694711 . - RPKM "61.110324"; gene_id "Y48E1A.1" 
 

 

To illustrate some of the features of CAPE-analyze, let’s use the above snippet as 

an example. This GTF file targets genes instead of transcripts. The default behavior of 

CAPE-analyze is to look for transcripts, but this can be changed by setting the “--

GFFkey=gene” parameter at the command line. This will tell CAPE-analyze to look for 

genes and to key off the gene_id value given in the ninth column. 

In both GFF3 and GTF, the ninth column is a “catch-all” column where the id and, 

occasionally, gene expression data will appear. Running in default mode, CAPE-analyze 

will look for records with “transcript” in the third column and “transcript_id” in the ninth 
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column. If the “--GFFkey=gene” option is set, CAPE-analyze will instead analyze 

records with “gene” in the third column and “gene_id” in the ninth column. 

 Also shown above is the expression value given in the ninth column (“RPKM”). 

CAPE-analyze will use this field if no other expression files are provided. CAPE-analyze 

is designed to look for RPKM or FPKM tags in the ninth column. Multiple instances of 

these tags can exist (e.g. RPKM1 and RPKM2 in the case of multiple replicates being 

described in the same file). In these cases, all values will be averaged to calculate the 

overall expression value to be used for the transcript. 

 

Expression Files 

CAPE-analyze accepts expression values in any of three possible formats: 

● rSeqTools - A tab-delimited file where the transcript ID occurs in column 1 and 
the expression value occurs in column 2. 

 
● cufflinks - A tab-delimited file where the transcript ID occurs in column 2 and the 

expression value occurs in column 10. Note that users of Cufflinks 2.0+ should 
use the GTF option below if a final GTF file is produced. 

 
● GTF - a GTF or GFF file with one or more of the following tags present in the 

final field for each transcript: RPKM or FPKM. In cases where tags are present 
for multiple replicates (ex: RPKM1 and RPKM2), the average expression value 
will be used. 

 
For rSeqTools and cufflinks files, the file should be specified on the command-

line using the “--expressionfile” option. For GTF format files, one must only specify the 

GTF file using the “--signalfile” option (the “--expressionfile” option should be omitted). 

NOTE: Using a cufflinks file or an rSeqTools file will override any expression values 

given in the GTF file. In transcript mode, the program will exit with an error if expression 
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values are omitted completely. Binding mode will still function, but expression values 

will be omitted from the final reports. 

 

CAPE-analyze Output File 

CAPE-analyze will produce a tab-delimited text file that can be easily viewed in 

Excel or a text editor of your choice. A snippet of a CAPE-analyze report for C. elegans 

follows: 

#Transcript File: /emb_study/worm/total-RNA_20_degree_celsius_N2_Early_Embryos_RNA-seq.gtf 
#Signal File: /emb_study/worm/2435_Snyder_N2_POLII_eemb_combined.bw 
#Mode: transcript 
#Promoter Binding Low Percentile Threshold: 25.0 (Binding <= 12.771 
#Promoter Binding High Percentile Threshold: 75.0 (Binding >= 27.305 
#Expression Low Percentile Threshold: 25.0 (Expression <= 43.015 
#Expression High Percentile Threshold: 75.0 (Expression >= 80.253 
 
#A. Transcripts with low promoter binding and high expression: 32 
#B. Transcripts with high promoter binding and low expression: 45 
#C. Transcripts with no promoter binding and no expression: 0 
#D. Transcripts with no promoter binding: 6 
#E. Transcripts with no expression: 0 
#F. "Normal" transcripts: 937 
 
#Category Transcript ID Chromosome Start End Strand PromoterSignal BodySignal
 Ratio (Stalling Index) Expression Value 
A ZK858.6 I 9138260 9145625 - 8.889 24.151 0.368 88.639 
A rpt-5 I 5741868 5743576 - 12.163 22.264 0.546 106.276 
A sup-17 I 8792767 8797287 + 12.737 19.403 0.656 90.673 
A ngp-1 I 8394722 8398622 + 12.222 17.766 0.688 86.28 
… 
… 
… 
 
 

The top of the report shows the files used for analysis as well as the parameters 

and cutoffs used by CAPE-analyze to categorize transcripts (or in this particular analysis, 

genes). This is followed by a breakdown of the six classifications used by CAPE-analyze 

as well as summary counts. The table then shows the values calculated for each gene or 

transcript as well as identifying characteristics such as chromosome, position, and strand. 

Raw values for promoter and body signals are also provided as well as the expression 

value from the expression file. The stalling index is the ratio of signal in the promoter vs 
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the gene body. For genes that are smaller than the average window size being used for 

aggregation, the bodySignal value will be 0 and the Stalling Index will be “NA”. 

 

CAPE-compare 

Comparing Results Using CAPE-compare 

Often, researchers will want to compare transcripts from different samples or 

organisms to identify changes between ortholog groups or compare multiple samples 

from the same organism (e.g. healthy vs diseased cells, replicates, etc). The CAPE-

compare tool takes two or more reports generated using the transcript mode of CAPE-

analyze as well as an optional tab-delimited ortholog file and generates a tabular file 

combining the results into a single file. This file can easily be viewed in Excel or any text 

editor. Additionally, if two, three, or four reports are specified as input, an HTML file 

summarizing the overlaps within each transcription/binding category is also produced in 

addition to a ready-to-run R script that will produce Venn diagrams comparing samples 

across each category and save them as TIFF files. Please note that the free 

“VennDiagram” R package must be installed within R to use the script produced by 

CAPE-compare (see Acknowledgement of External Libraries section). We envision 

CAPE-compare to be useful in two different scenarios: comparing between organisms 

and comparing within an organism. 

 

Comparing Results Between Organisms 

For comparing reports generated between different organisms or annotation 

sources (e.g. worm, fly, and human), an ortholog file must also be provided to CAPE-
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compare and specified on the command line with the “--orthologs” option. The ortholog 

file is a tab-delimited text file with the number of columns equal to the number of 

organisms being compared where each column contains the gene or transcript IDs used in 

the report Each row represents an ortholog set. For example: 

humanOrtholog1 flyOrtholog1 wormOrtholog1 
humanOrtholog2 flyOrtholog2 wormOrtholog2 
humanOrtholog3 flyOrtholog3 wormOrtholog3 
... 
... 
... 
etc... 

 
Only transcripts for which a complete list of orthologs exists should be provided 

(e.g. if three samples are being used, a value must exist in all three columns in each row). 

 

When comparing different organisms, the following should be noted: 

1. The IDs in the ortholog file must exactly match those in the report file. 

2. The order of the filenames given to the --input option must match the order of the 

columns in the ortholog file (e.g. for the above example, the --input option must 

be “--input=humanReport.txt,flyReport.txt,wormReport.txt”). 

3. Only transcripts specified in the orthologs file will be written to the output files 

and considered in the output files. 

4. When comparing two, three, or four CAPE-analyze reports, the HTML files and 

R script for Venn diagrams will be produced. In these files, only transcripts for 

which data exists for all samples being compared will be used. In the raw data 

output from CAPE-analyze, all transcripts will be listed with those missing data 

being classified as “NA”. 
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5. Venn diagrams will only be produced for categories containing at least one data 

point. 

6.  

Comparing Reports from the Same Organism 

Researchers may also wish to compare CAPE reports from the same organism 

generated under different experimental conditions, as different experimental replicates, 

etc. In this case, an ortholog file is not necessary and CAPE-analyze will assume that the 

reports share the same set of transcript IDs (for cases where transcript IDs may differ, 

such as when using different annotation versions, use the “Comparing Reports Between 

Organisms” workflow described above). Alternatively, an ortholog file can also be 

specified when a researcher wishes to limit the subset of transcripts being examined. In 

this case, the “Comparing Reports Between Organisms” workflow should be used. A tab-

delimited text file or raw data generated from combining the reports will be generated. 

An HTML summary file and an R script to generate associated Venn diagrams will also 

be generated when comparing two, three, or four CAPE-analyze reports. These files are 

as described above. 

 

Running CAPE-compare 

CAPE-compare is run in the same manner as CAPE-analyze. From the command-

line use: java -jar CAPE-compare.jar <argument list> 
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CAPE-compare Command Line Arguments 

The following arguments are required for CAPE-compare: 
Long-Form Short-Form Description 

--input -i Comma-delimited list of CAPE reports to compare 

--prefix -p the prefix to use for output files 

 
Additionally, the following arguments may also be specified: 

Long-
Form 

Short-
Form 

Description 

--labels -l comma-delimited list of labels to use in the reports. Order must 
correspond to the order given for the --input option. 
File names will be used as labels if not specified 

--
orthologs 

-o the ortholog file to use 

 

CAPE-compare File Formats 

Input Files 

Input files are in the output format produced by CAPE-analyze and should be 

specified as a comma-delimited list at the command line using the input option. For 

example, “--input=file1.txt,file2.txt”. 

Labels 

We recommend giving each file a descriptive label, as it will make the reports 

easier to read. These labels should be provided in a comma-delimited list with the “--

labels” parameter. For example: “--labels=worm,fly”. Please note that the order of the 

labels must coincide with the order of the input files passed to the --input argument. 
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Output Files 

All output files will contain the prefix specified by the “--prefix” argument. For 

example, for “--prefix=testOutput” with three input files, CAPE will produce the output 

files testOutput.txt, testOutput.html, and testOutput.r. 

Ortholog File 

The ortholog file is described in the section “Comparing Results Between 

Organisms” above and is optional. 

Raw Data Output 

Regardless of the number of CAPE-analyze input reports to compare, the raw data text 

file will be produced. This file is tab-delimited and an example follows: 

#A. Transcripts with low promoter binding and high expression 
#B. Transcripts with high promoter binding and low expression 
#C. Transcripts with no promoter binding and no expression 
#D. Transcripts with no promoter binding 
#E. Transcripts with no expression 
#F. "Normal" transcripts 
 
#Worm Feature Fly Feature Human Feature Worm State Fly State Human State 
dhc-1 FBgn0261797 ENSG00000197102 F F NA 
prp-8 FBgn0033688 ENSG00000174231 F F NA 
ama-1 FBgn0003277 ENSG00000181222 F F NA 
sma-1 FBgn0004167 ENSG00000137877 F F F 
… 
… 
… 
 

In the above example, some genes could not be analyzed by CAPE-analyze (in 

this case, the quality data for some transcripts were subpar and as a result, these genes 

were omitted from the human GTF annotation file). Genes and transcripts for which data 

are missing will still be shown in the raw data text file but will be given the category 

“NA”. However, the entire record for the corresponding ortholog set will be omitted from 

both the html files and the Venn diagram calculations, should these be generated. 
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HTML Summary File 

In cases where two, three, or four CAPE-analyze reports are being compared, a 

summary file in HTML format will be produced. This file will contain a breakdown of 

transcript counts by category and sample combination as well as a list of the orthologous 

features comprising each category. The HTML file links the numbers in the summary 

tables to the corresponding feature list. A sample can be viewed as part of the Use Case 

document available at http://cape.gersteinlab.org. 

 

R Script for Venn Diagrams 

In cases where two, three, or four CAPE-analyze reports are being compared, a 

ready-to-run R script will be produced. When run, this script will create Venn diagrams 

for each category, showing the distribution of orthologs across sample combinations (e.g. 

Worm Only, Worm and Fly Only, etc). Please note that the R script requires that the free 

VennDiagram R package be installed (http://cran.r-

project.org/web/packages/VennDiagram/index.html). Sample Venn diagrams can be 

viewed as part of the Use Case document available at http://cape.gersteinlab.org. 

 

Acknowledgement of External Libraries 

CAPE-analyze makes use of the following external, publicly-available libraries: 

Google Guava, Apache Commons Math, Apache Commons CLI, JavaPlot, and the Broad 

Institute’s IGV BigFile. CAPE-compare utilizes the Apache Commons CLI external 
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library. These libraries are packaged as part of the respective executable jar file in their 

original, unaltered forms. 

 

For more information on each library, please see the following links: 

Broad IGV BigFile: http://code.google.com/p/bigwig/ 

Apache Commons Math: http://commons.apache.org/math/ 

Apache Commons CLI: http://commons.apache.org/cli/ 

Google Guava: http://code.google.com/p/guava-libraries/ 

JavaPlot: http://gnujavaplot.sourceforge.net/JavaPlot/About.html 

 

Additionally, the following free R library is required to run the Venn diagram 

script file generated by CAPE-compare: 

VennDiagram: http://cran.r-project.org/web/packages/VennDiagram/index.htm 

 

Frequently Asked Questions: 

Q. In CAPE-analyze, I don’t know what percentile I want to use but I do know which 

specific cutoff values I want to use for my expression and binding cutoffs. Can I specify 

raw values? 

A. You bet! We designed CAPE-analyze to allow for either percentiles or raw values 

to be used. If you want to define the low RPKM cutoff at ≤ 1 and the high RPKM cutoff 

at ≥ 5, for example, the following argument should be used at the command line: “--

expressionoverride=1,5”. The “--bindingoverride” option can be used to set binding 
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cutoffs in the same manner. Please note that the cutoffs should be given in ascending 

order. The CAPE-analyze report will reflect your chosen cutoffs in the file header. 

 

Q. CAPE-analyze is giving me very strange results for the ideal window size 

determined by aggregation. What should I do? 

A. Although we have tried to tune our algorithm to choose an ideal window size, 

sometimes a larger window than expected can be selected if ChIP-Seq signal is 

particularly broad or if the annotation is not specific (e.g. in worm, for example, there are 

splice leaders that are not always removed from an annotation. In these cases the actual 

RNAPII signal may be offset from the annotation start site). For these cases, we suggest 

setting the “--aggoverride” option to a reasonable setting for your organism. This will 

skip the initial aggregation step and use your value to define promoter size. For example, 

“--aggoverride=500” will set the promoter region as +/- 500 bp from the start sites in the 

annotation file. 

 

Q. Are there any sample runs available? 

A. Yes. Sample runs with links to data, logs, and program output are included in the 

Use Case document available at http://cape.gersteinlab.org. Use cases are given for both 

transcript and binding modes. 

CAPE Use Cases 

The following document describes several use cases illustrating how the Coupled 

Polymerase Binding and Expression Tool (CAPE) can be used to relate matched RNA 

polymerase II (RNAPII) ChIP-Seq and RNA-seq experiments, identify features with 
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unusual levels of RNAPII binding vs. mRNA abundance, and compare these transcripts 

across samples or organisms. Current use cases may always be found at 

http://cape.gersteinlab.org. 

 

Use Case 1: Comparing Transcription between Worm, Fly, and Human 

Embryos 

Our first use case uses publicly available data from the ENCODE and modENCODE 

consortia to show how CAPE can be used to compare orthologs between different 

organisms. In this case, we are comparing embryos from worm, fly, and human. Also, no 

additional expression files are needed as RPKM values are contained in the gtf files. 

 

Sample Data 

The following sample data will be used: 

 

Worm RNAPII ChIP-Seq Signal Data (early embryo):  

http://archive.gersteinlab.org/proj/CAPE/usecases/data/2435_Snyder_N2_POLII_eemb_combined.bw 

(Note: converted to bigWig format from the public modMine file available at 

http://submit.modencode.org/submit/public/get_file/2435/extracted/Snyder_N2_POLII_eemb_combined.wig) 

 

 

Fly RNAPII ChIP-Seq Signal Data (embryo):  

http://archive.gersteinlab.org/proj/CAPE/usecases/data/3251_ON_PolII.bw 

(Note: converted to bigWig format from the public modMine file available at 

http://submit.modencode.org/submit/public/get_file/3251/extracted/ON_PolII.wig) 
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Human RNAPII ChIP-Seq Signal Data (H1 embryonic stem cells):  

Available from the ENCODE public data repository at 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibTfbs/wgEncodeHaibTfbsH1h

escPol2V0416102RawRep1.bigWig 

 

Worm Annotation and Expression Data: 

http://archive.gersteinlab.org/proj/CAPE/usecases/data/wormEmbryo.gtf 

(Note: Adapted from public data available as part of the modENCODE project. This file only includes 

entries for known orthologous genes. Expression values are also given in this file). 

Excerpt: 
II modENCODE_TX gene 8651057 8658766 . + . RPKM "109.609215"; 
gene_id "pyr-1" 
II modENCODE_TX gene 5399522 5405988 . + . RPKM "94.070177"; 
gene_id "mog-5" 
II modENCODE_TX gene 13670567 13694711 . - . RPKM 
"61.110324"; gene_id "Y48E1A.1" 
II modENCODE_TX gene 11661516 11675863 . - . RPKM 
"94.316146"; gene_id "trr-1" 
 

Fly Annotation and Expression Data: 

http://archive.gersteinlab.org/proj/CAPE/usecases/data/flyEmbryo.gtf 

(Note: Adapted from public data available as part of the modENCODE project. This file only includes 

entries for known orthologous genes. Expression values are also given in this file). 

 

Human Annotation and Expression Data: 

http://archive.gersteinlab.org/proj/CAPE/usecases/data/humanEmbryo.gtf 

(Note: Adapted from public data available as part of the ENCODE/GENCODE projects. This file only 

includes entries for known orthologous genes. Expression values are also given in this file). 

 

Ortholog File:  
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http://archive.gersteinlab.org/proj/CAPE/usecases/data/wfhOrthologList.txt 

(adapted from the pairwise MIT-Broad Ortholog Project files at 

http://compbio.mit.edu/modencode/orthologs/modencode-orths-2012-01-30/ensembl-

v65/modencode.merged.orth.txt.gz) 

Excerpt: 
dhc-1 FBgn0261797 ENSG00000197102 
prp-8 FBgn0033688 ENSG00000174231 
ama-1 FBgn0003277 ENSG00000181222 
sma-1 FBgn0004167 ENSG00000137877 
pyr-1 FBgn0003189 ENSG00000084774 
F33H2.5 FBgn0020756 ENSG00000177084 
T08A11.2 FBgn0031266 ENSG00000115524 
rme-8 FBgn0015477 ENSG00000138246 
 

Generating CAPE-analyze reports for each organism 

The first step is to generate individual reports for each organism using CAPE-

analyze in transcript mode. We will now show the text of an example session at the 

commend line to generate these reports in addition to the output that was produced at 

each step. Please note that the directory names in the script below are tailored to our test 

system and should be changed if trying to reproduce these results. Also for this example, 

CAPE-analyze was run using Java’s default heap size on Mac OSX. 

Worm Embryo Analysis 

bash-3.2$ java -jar CAPE-analyze.jar --
signalfile=/emb_study/usecase/data/2435_Snyder_N2_POLII_eemb_combined.bw --
transcriptfile=/emb_study/usecase/data/wormEmbryo.gtf --
outputfile=/emb_study/usecase/wormReport.txt --GFFkey=gene --aggoverride=500 
Running in transcript mode... 
Signal File: /emb_study/usecase/data/2435_Snyder_N2_POLII_eemb_combined.bw 
Transcript File: /emb_study/usecase/data/wormEmbryo.gtf 
 
 
Loading transcript file... 
Performing aggregation with user-defined window size +/- 500 bp... 
Processing 1020 features... 
Processed 1000 features... 
Processed 1020 features... 
 
Determining binding and expression cutoffs... 
Updating expression states for all transcripts... 
Determining binding and expression cutoffs... 
Updating RNAPII promoter binding states for all transcripts... 
Writing output to /emb_study/usecase/wormReport.txt... 
Program completed in 4 seconds 
 
 

Fly Embryo Analysis 
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bash-3.2$ java -jar CAPE-analyze.jar --
signalfile=/emb_study/usecase/data/3251_ON_PolII.bw --
transcriptfile=/emb_study/usecase/data/flyEmbryo.gtf --
outputfile=/emb_study/usecase/flyReport.txt --GFFkey=gene 
Running in transcript mode... 
Signal File: /emb_study/usecase/data/3251_ON_PolII.bw 
Transcript File: /emb_study/usecase/data/flyEmbryo.gtf 
 
Loading transcript file... 
Determining ideal window size with starting value +/- 1000 bp... 
Processing 1015 features... 
Processed 1000 features... 
Processed 1015 features... 
 
Performing aggregation with ideal peak window size +/- 250 bp... 
Processing 1015 features... 
Processed 1000 features... 
Processed 1015 features... 
 
Determining binding and expression cutoffs... 
Updating expression states for all transcripts... 
Determining binding and expression cutoffs... 
Updating RNAPII promoter binding states for all transcripts... 
Writing output to /emb_study/usecase/flyReport.txt... 
Program completed in 4 seconds 
 
 

Human H1 Embryonic Stem Cells Analysis 
 
bash-3.2$ java -jar CAPE-analyze.jar --
signalfile=/emb_study/usecase/data/wgEncodeHaibTfbsH1hescPol2V0416102RawRep1.bigWig --
transcriptfile=/emb_study/usecase/data/humanEmbryo.gtf --
outputfile=/emb_study/usecase/humanReport.txt --GFFkey=gene 
Running in transcript mode... 
Signal File: /emb_study/usecase/data/wgEncodeHaibTfbsH1hescPol2V0416102RawRep1.bigWig 
Transcript File: /emb_study/usecase/data/humanEmbryo.gtf 
 
Loading transcript file... 
Determining ideal window size with starting value +/- 1000 bp... 
Processing 999 features... 
Processed 999 features... 
 
Performing aggregation with ideal peak window size +/- 500 bp... 
Processing 999 features... 
Processed 999 features... 
 
Determining binding and expression cutoffs... 
Updating expression states for all transcripts... 
Determining binding and expression cutoffs... 
Updating RNAPII promoter binding states for all transcripts... 
Writing output to /emb_study/usecase/humanReport.txt... 
Program completed in 8 seconds 

 
 
bash-3.2$ java -jar CAPE-analyze.jar --
signalfile=/emb_study/usecase/data/wgEncodeHaibTfbsH1hescPol2V0416102RawRep1.bigWig --
transcriptfile=/emb_study/usecase/data/humanEmbryo.gtf --
outputfile=/emb_study/usecase/humanReport2.txt --GFFkey=gene --expressionoverride=.1,.3 
Running in transcript mode... 
Using expression signal thresholds of 0.1 and 0.3... 
Signal File: /emb_study/usecase/data/wgEncodeHaibTfbsH1hescPol2V0416102RawRep1.bigWig 
Transcript File: /emb_study/usecase/data/humanEmbryo.gtf 
 
Loading transcript file... 
Determining ideal window size with starting value +/- 1000 bp... 
Processing 999 features... 
Processed 999 features... 
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Performing aggregation with ideal peak window size +/- 500 bp... 
Processing 999 features... 
Processed 999 features... 
 
Determining binding and expression cutoffs... 
Updating expression states for all transcripts... 
Determining binding and expression cutoffs... 
Updating RNAPII promoter binding states for all transcripts... 
Writing output to /emb_study/usecase/humanReport2.txt... 
Program completed in 8 seconds 
 

The above runs also show several of the options available to customize analyzes 

in CAPE. For example, when analyzing the worm data we used the “—aggoverride=500” 

command line option to tell CAPE to use a window size of +/- 500 bp around the start 

position given in the annotation file. Worm transcripts have what are called splice leaders 

that can be included in the annotation files, resulting in a shift of the polymerase-binding 

site from the annotated start position. CAPE will detect the maximum regardless of its 

position inside the initial aggregation window, but this “play” in the annotation can 

produce an overly broad aggregation profile and hence, CAPE-analyze would choose a 

larger ideal window size. We chose to set a manual window size in this instance. We also 

performed two different analyses on human. The first uses CAPE’s default boundaries for 

low and high cutoffs for binding and expression (the 25th and 75th percentiles). The 

second run overrides the expression cutoffs with defined RPKM values using the –

expressionoverride option. This was done as an exercise to show that one can refine 

CAPE-analyze cutoffs using either percentile or raw data values. 

 

CAPE-analyze Output 

CAPE-analyze produces four output files from the above runs. For convenience, these 

files can be obtained at the following links. 

 

Fly CAPE-analyze Report: 
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http://archive.gersteinlab.org/proj/CAPE/usecases/reports/flyReport.txt 

#Transcript File: /emb_study/usecase/data/flyEmbryo.gtf 
#Signal File: /emb_study/usecase/data/3251_ON_PolII.bw 
#Mode: transcript 
#Promoter Binding Low Percentile Threshold: 25.0 (Binding <= 1.972 
#Promoter Binding High Percentile Threshold: 75.0 (Binding >= 15.744 
#Expression Low Percentile Threshold: 25.0 (Expression <= 25.209 
#Expression High Percentile Threshold: 75.0 (Expression >= 62.315 
 
#A. Transcripts with low promoter binding and high expression: 25 
#B. Transcripts with high promoter binding and low expression: 26 
#C. Transcripts with no promoter binding and no expression: 0 
#D. Transcripts with no promoter binding: 0 
#E. Transcripts with no expression: 0 
#F. "Normal" transcripts: 964 
 
#Category Transcript ID Chromosome Start End Strand PromoterSignal
 BodySignal Ratio (Stalling Index) Expression Value 
A FBgn0004603 2R 1868785 1900039 + -5.832 3.463 -1.684 65.285 
A FBgn0033062 2R 1968333 1973125 - -0.213 9.449 -0.023 81.819 
A FBgn0016697 2R 13300269 13301274 + 1.262 8.521 0.148
 111.608 
A FBgn0035046 2R 20551921 20552962 + 1.683 10.89 0.155
 65.167 
 

Worm CAPE-analyze Report: 

http://archive.gersteinlab.org/proj/CAPE/usecases/reports/wormReport.txt 

 
Human CAPE-analyze Report: 

http://archive.gersteinlab.org/proj/CAPE/usecases/reports/humanReport.txt 

 

Human CAPE-analyze Report (using manual expression cutoffs): 

http://archive.gersteinlab.org/proj/CAPE/usecases/reports/humanReport-expOverride.txt 

 

Combining and Visualizing Results Using CAPE-compare 

CAPE-compare is used to combine and visualize CAPE-analyze reports into a summary 

format containing information about all organisms. Since we are exploring different 

organisms in this use case, all with different gene/transcript ID nomenclatures, an 

ortholog file must be used for the comparison. If we were comparing organisms mapped 
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against the same annotation set (such as diseased human cells vs. healthy human cells), 

an ortholog file would not be necessary. 

 

A sample run of CAPE-compare follows, using the CAPE-analyze reports generated 

above. Note that for human H1 embryonic stem cells, we are using the report generated 

using CAPE’s default options: 

bash-3.2$ java -jar CAPE-compare.jar -i 
/emb_study/usecase/wormReport.txt,/emb_study/usecase/flyReport.txt,/emb_study/usecase/hum
anReport.txt -l Worm,Fly,Human -p /emb_study/usecase/output/wfhEmbryoComparison -o 
/emb_study/usecase/data/wfhOrthologList.txt 
 
Running CAPE-compare on the following label/file pairs: 
Worm /emb_study/usecase/wormReport.txt 
Fly /emb_study/usecase/flyReport.txt 
Human /emb_study/usecase/humanReport.txt 
 
Initializing variables... 
Parsing reports... 
Comparing lists and writing results... 
Using ortholog file /emb_study/usecase/data/wfhOrthologList.txt... 
Writing raw comparison data to /emb_study/usecase/output/wfhEmbryoComparison.txt... 
Writing summary tables to /emb_study/usecase/output/wfhEmbryoComparison.html... 
Writing R script to generate Venn Diagrams to 
/emb_study/usecase/output/wfhEmbryoComparison.r... 
Complete! 
 

CAPE-compare Output 

Up to three files will be generated for each CAPE-compare run. In all cases, a tab-

delimited text file containing the category breakdown for each transcript in an ortholog 

set will be produced. In cases where two, three, or four CAPE-analyze reports are being 

compared, two additional files will also be generated. The first is a summary breakdown 

of transcripts shared between organisms within each CAPE-analyze category. Clicking 

the numbers in the table will take you the corresponding list of feature IDs. The third file 

is a ready-to-run R script that will generate Venn diagrams for each CAPE-analyze 

category showing the breakdown by organism. Note that the free VennDiagram R 

package must be installed to use the R script (see Users Guide) and that Venn diagrams 
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will only be produced for categories with at least one data point. Links to the files 

generated by this run appear below, as well as the Venn diagrams produced by R. 

 

CAPE-compare tab-delimited report (raw data): 

http://archive.gersteinlab.org/proj/CAPE/usecases/reports/wfhEmbryoComparison.txt 

Excerpt: 
#A. Transcripts with low promoter binding and high expression 
#B. Transcripts with high promoter binding and low expression 
#C. Transcripts with no promoter binding and no expression 
#D. Transcripts with no promoter binding 
#E. Transcripts with no expression 
#F. "Normal" transcripts 
#NA. No data available in CAPE-analyze report file 
 
#Worm Feature Fly Feature Human Feature Worm State Fly State Human State 
dhc-1 FBgn0261797 ENSG00000197102 F F F 
prp-8 FBgn0033688 ENSG00000174231 F F F 
ama-1 FBgn0003277 ENSG00000181222 F F F 
sma-1 FBgn0004167 ENSG00000137877 F F D 
pyr-1 FBgn0003189 ENSG00000084774 F F F 
F33H2.5 FBgn0020756 ENSG00000177084 F F A 
… 
… 
… 
 

CAPE-compare HTML Summary Report: 

http://archive.gersteinlab.org/proj/CAPE/usecases/reports/wfhEmbryoComparison.html 

 

CAPE-compare R Script (Produces the Venn Diagrams): 

http://archive.gersteinlab.org/proj/CAPE/usecases/reports/wfhEmbryoComparison.r 

 

When comparing 1,010 possible orthologous genes across worm early embryo, fly 

embryo, and human H1 embryonic stem cells, we see that most transcripts fall in the 

“normal” category for all three organisms. That is, 741 orthologs do not show an extreme 

difference between the degrees of mRNA abundance and RNAPII binding. 250 orthologs 

show an extreme case in at least one organism. 29 orthologs were not included in the 

comparison due to missing data in at least one organism (in most cases, this was due to 
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the human ortholog not meeting an iIDR quality cutoff of > 1). In cases where data is 

missing for at least one member of an ortholog set, the entire set will be ignored by 

CAPE-compare. 

 

 

 

The 250 orthologs that are classified differently in at least one organism are 

interesting, as this difference may indicate differential regulation between worm, fly, and 

human embryos. Examining both genes with a stalled polymerase (high RNAPII binding, 

low expression) and genes that are undergoing a burst of transcription or not transcribed 

by RNAPII (high expression, low RNAPII binding), we find that affected genes are 

predominantly organism-specific. 37 orthologs did not have RNAPII binding data for 

human H1 embryonic stem cells from ChIP-Seq, either due to these promoters falling in 

unmappable regions or due to a genuine lack of RNAPII binding. No orthologs in this 

analysis fell into the “No expression” or the “No binding, no expression” categories. 
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Gene IDs for each category and grouping can be found in the CAPE-compare HTML 

summary report linked above. 
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Use Case 2: Classifying ChIP-Seq Peaks Using CAPE-analyze in 

Binding Mode 

This use case will demonstrate CAPE’s binding mode, an additional mode that 

can help researchers better annotate ChIP-Seq peaks. The functionality of this mode is 

similar to that of BedTools’ closestBed program (http://code.google.com/p/bedtools/), but 

supports ENCODE formats such as bigwig, bigBed, and narrowPeak files. This mode 

combines ChIP-Seq peak annotations with transcript or gene annotations and mRNA 

abundance from RNA-seq. The output is a table of each peak that identifies the nearest 

feature within a user-defined window, and whether a peak should be classified as 

associated with a transcription start site (TSS), a transcription termination site (TTS), or 

neither. For more information about binding mode, please see the Users Guide. 

This use case uses publicly available ChIP-Seq signal and peak files for RNA 

polymerase II from the ENCODE consortium. Annotations were produced by the 

GENCODE Project using expression data from the ENCODE consortium. All data were 

generated from the K562 human cell line. 

 

Sample Data 

Signal File: 

http://archive.gersteinlab.org/proj/CAPE/usecases/data/wgEncodeSydhTfbsK562Pol2StdSig.bigWig 

(Note: this file is unaltered from its original version available from the ENCODE public data repository at 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Pol2StdSi

g.bigWig) 
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Transcript File: 

http://archive.gersteinlab.org/proj/CAPE/usecases/data/K562-HighIDRTranscripts.gtf 

(Note: this file is adapted from the GENCODE project file by taking only those transcripts with iIDR [a 

quality metric] >= 1.0. The original file is available at http://genome.crg.es/~jlagarde//encode/pre-

DCC/wgEncodeCshlLongRnaSeq//20120220_long_quantifications_gencodev10_cufflinks_cshl_NOT_SUBMITTED/

LID16629-LID16630_TranscriptGencV10IAcuff.gtf. 

 

Peak File: 

http://archive.gersteinlab.org/proj/CAPE/usecases/data/wgEncodeSydhTfbsK562Pol2StdPk.narrowPeak 

(Note: this file is unaltered from its original version available from the ENCODE public data repository at 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Pol2StdP

k.narrowPeak.gz). 

 

Generating a CAPE-analyze Report in Binding Mode 

A sample run of CAPE-analyze in binding mode follows. Please note that the “—binding” 

flag must be specified to run the tool in binding mode, as CAPE’s default behavior is to 

run in transcript mode. Please note that directories are specific to our test system and 

should be changed if trying to reproduce this result. 

bash-3.2$ java -jar CAPE-analyze.jar --
signalfile=/ptemp/wgEncodeSydhTfbsK562Pol2StdSig.bigWig --transcriptfile=/ptemp/ 
gtf/K562-HighIDRTranscripts.gtf --outputfile=/ptemp/CAPE-K562BindingReport.xls --
peakfile=/ptemp/ChIP-Seq/peaks/wgEncodeSydhTfbsK562Pol2StdPk.narrowPeak --binding 
Running in binding mode... 
Loading ChIP-Seq peak file... 
Loading transcript file... 
Finding maxima and corresponding signal levels... 
Finding nearest TSS and TTS for maxima... 
Writing output to /ptemp/CAPE-K562BindingReport.xls... 
Program completed in 38 seconds 
 

Sample Output 

Output from CAPE-analyze running in binding mode: 

http://archive.gersteinlab.org/proj/CAPE/usecases/reports/CAPE-K562BindingReport.xls 
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Excerpt: 
#Transcript File: ptemp/NewApproach/gtf/K562-HighIDRTranscripts.gtf    
        
#Signal File: ptemp/wgEncodeSydhTfbsK562Pol2StdSig.bigWig      
#Peak File: /ptemp/NewApproach/ChIP-Seq/peaks/wgEncodeSydhTfbsK562Pol2StdPk.narrowPeak 
#Upstream pad = 1000 bp; Downstream pad = 1000      
#Mode: binding            
            
#Pad values used: 1000bp upstream, 1000bp downstream      
      
#Chromosome Start End PeakPosition PeakScore DistanceToNearestTSS
 TSSTranscriptID TSS_RPKM DistanceToNearestTTS TTSTranscriptID
 TTS_RPKM Association 
chr1 713770 714492 713983 514.7 23 ENST00000428504.1 2.328 3588
 ENST00000457084.1 0.278 TSS 
chr1 762552 763294 762819 163.9 83 ENST00000473798.1 0.415 1233
 ENST00000473798.1 0.415 TSS 
chr1 839851 840391 840212 90.4 42228 ENST00000483767.1 0.112 39372
 ENST00000327044.6 5.482 Neither 
chr1 878395 878889 878597 35.1 3843 ENST00000483767.1 0.112 987
 ENST00000327044.6 5.482 TTS 
chr1 894411 894815 894624 185.8 12 ENST00000469563.1 0.902 998
 ENST00000469563.1 0.902 TSS 
chr1 901209 902557 902316 112.5 3384 ENST00000481067.1 0.455 1221
 ENST00000338591.3 1.553 Neither 
chr1 935246 936536 935441 136.5 111 ENST00000428771.2 1.113 1099
 ENST00000428771.2 1.113 TSS 
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UML Diagrams for CAPE and AnnotationLibrary 

Unified Modeling Language (UML) is a common method to show relationships between 

different classes and functionalities in object-oriented analysis and design. This section 

contains full UML documentation at the class and activity levels. These graphics are 

reproduced from http://cape.gersteinlab.org. 

 

Activity Diagrams 

Activity diagrams are essentially flow charts that illustrate the general flow of a 

program’s logic. The following are more specialized versions of Figure 1 in the 

manuscript. All diagrams were made using the TopCoder UML Tool. 
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CAPE-analyze (Transcript Mode) 
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CAPE-analyze (Binding Mode) 
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CAPE-compare 
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Class Diagrams 

Class diagrams show the internal structure of a class, describing attributes, methods, and 

parameters. Class diagrams were produced for all AnnotationLibrary classes as well as 

the main CAPE-analyze and CAPE-compare classes. 

 

CAPE-analyze 
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CAPE-compare 

 

 

  



 204 

 

AnnotationLibrary Classes 
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