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 A cellʼs transcriptome is characterized by the full repertoire of its condition-specific 

transcripts and their respective levels.  Deciphering the transcriptome is essential for interpreting 

the functional elements of the genome, unraveling the molecular constituents of cells, and 

understanding disease.  Furthermore, the emergence of next-generation DNA sequencing has 

significantly reduced costs, thereby revolutionizing the study of genomes and transcriptomes.  

These technologies have been leveraged for a number of applications, such as the sequencing of 

personal genomes on a large scale, which has revealed many novel variants and enabled the 

analysis of their effects on transcripts.  In addition, as applied to transcriptome profiling (RNA-

Seq), these technologies have allowed the study of transcripts at an unprecedented level.  

However, new computational methods are required to take advantage of the burgeoning volumes 

of data.  In this thesis we present four computational approaches for transcript analysis in the 

context of next-generation DNA sequencing, including: (1) the Variant Annotation Tool, a 

computational framework to functionally annotate variants and assess their effects on the 

transcript structure of a gene; (2) RSEQtools, a modular approach for analyzing RNA-Seq data 

using compact anonymized data summaries; (3) FusionSeq, a tool for identifying fusion 

transcripts using paired-end RNA-Seq data; and (4) DupSeq, a computational approach for 

assessing the transcriptional activity of highly similar genomic sequences.  Finally, as an 

application of these methods, we investigate the transcriptome dynamics of human embryonic 

stem cells as they differentiate into neural precursors.  Together, these methodologies have been 

utilized extensively to gain novel insights into the transcriptome in different biological contexts. 
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Chapter 1 

Introduction 

 A cellʼs transcriptome is defined as its full set of condition-specific transcripts and their 

corresponding levels.  Deciphering the transcriptome is essential for interpreting the functional 

elements of the genome, unraveling the molecular constituents of cells, as well as understanding 

development and disease.  A comprehensive understanding of the transcriptome requires the 

identification of different types of transcripts (including mRNAs, non-coding RNAs, small RNAs, 

and unannotated transcribed regions), the determination of their transcriptional structure and 

splicing patterns, as well as the quantification of the varying expression levels associated with 

each transcript under different conditions [1].  Historically, the transcriptome has been 

investigated by employing either hybridization- or sequence-based approaches.  Although 

hybridization-based approaches [2–5] (in which a fluorescently labeled cDNA sample is 

hybridized with probes on a customized microarray or a high-density genome tiling array) can be 

conducted on a large-scale, these methods have several limitations.  Such caveats include the 

relatively high levels of noise (which result from cross-hybridization) [6, 7], limited dynamic range 

for detecting low-abundance transcripts, poor resolution, the inability to accurately distinguish 

between different transcript isoforms, as well as the need for complex normalization methods 

when comparing measured expression levels across different conditions.  However, sequence-

based methods employ Sanger sequencing to directly provide the underlying sequence of a 

cDNA molecule.  Initially, cDNA and EST libraries [8, 9] were sequenced using this approach, but 

it was expensive and relatively low throughput.  In order to surmount these limitations, tag-based 

methods were developed, such as serial analysis of gene expression (SAGE) [10, 11] and 

massively parallel signature sequencing (MPSS) [12, 13].  While these methodologies were high-
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throughput and provided precise measurements of gene expression, they were still expensive to 

conduct.  

 However, the advent of next-generation DNA sequencing technologies has revolutionized 

the ways in which genomes and transcriptomes are studied.  Specifically, it has significantly 

reduced the cost of sequencing and has enabled researchers to address many new questions, 

which had previously been impossible.  The advantages afforded by these new technologies 

have found a number of applications, including whole genome sequencing, targeted 

resequencing, transcriptome and transcription factor profiling (RNA-Seq [1] and ChIP-Seq [14], 

respectively), as well as investigating epigenetic marks and chromatin structure.  In particular, 

efforts aimed at sequencing multiple personal genomes, such as those under way as part of The 

1000 Genomes Project [15], have revealed many novel variants, thereby enabling researchers to 

study their effect on transcripts.   

 Moreover, the application these technologies to transcriptome profiling has provided 

many novel insights by enabling researchers to study the transcriptome at single-nucleotide 

resolution [16–20].  In a typical RNA-Seq experiment, RNA from a population of cells is extracted 

and then converted to a library of cDNA fragments.  Adapters are subsequently ligated to each 

end of a cDNA fragment, and by obtaining sequence reads from one or both ends of a fragment 

(single- or paired-end, respectively), these molecules are then subjected to high-throughput 

sequencing, with or without amplification.  The size and error profile of a read depends on the 

sequencing platform utilized.  The resulting collection of reads is then either assembled de novo, 

or in conjunction with a splice junction library, they may be aligned to the reference genome.  

Computational methods are then utilized to define the structure of the transcripts, identify their 

respective splicing patterns, and calculate their corresponding expression values at the transcript 

or gene level. 

 RNA-Seq technology offers a number of advantages over traditional methods.  Firstly, 

RNA-Seq provides single-base resolution, and the signal obtained tends to be less noisy relative 

to that obtained by hybridization-based approaches [1, 21, 22].  Secondly, RNA-Seq has a larger 



 10 

dynamic range, and can be used to identify and quantify low-abundance transcripts without prior 

knowledge of a particular gene.  Lastly, the connectivity information provided by paired-end reads 

can be used to identify alternatively spliced transcript isoforms [20] and fusion transcripts [23, 24].   

 Although this revolutionary technology offers many advantages, it also presents a number 

of bioinformatics challenges.  Firstly, as the volume of data generated by a typical run continues 

to grow at a rapidly, there is an increasing need for more efficient data storage and retrieval.  

Secondly, new computational methods, which are tailored for specific applications, are required to 

process and analyze this type of data.  Moreover, these computational methods must be 

implemented in an efficient way in order to deal with burgeoning volumes of data being 

generated.  

 Therefore, the core of the thesis work described here focuses on four computational 

methods for transcript analysis in the context of next-generation DNA sequencing.  The first is a 

computer program that describes a computational framework addressing the intersection of 

variants with annotated elements.  Specifically, we investigate the effect of such variants on the 

transcript structure of a gene.  The remaining three are computer programs designed to address 

specific questions related to applications of next-generation DNA sequencing to transcriptome 

profiling (RNA-Seq).  In particular, we describe RSEQtools [25], which is a modular framework for 

analyzing RNA-Seq data using compact anonymized data summaries.  The second is called 

FusionSeq [24], which is an extension of RSEQtools and focuses on the identification of fusion 

transcripts using paired-end RNA-Seq data.  Lastly, we describe DupSeq, which is designed to 

enable the analysis of transcribed regions that share high sequence similarity with other genomic 

elements.   

 In Chapter 2, we describe a computational framework to annotate variants in personal 

genomes in a cloud-computing environment.  A number of large-scale studies, including The 

1000 Genomes Project [15], aim to sequence and genotype large numbers of individual genomes 

using next-generation DNA sequencing technologies.  These studies have revealed many novel 

variants, including single nucleotide polymorphisms (SNPs), small insertions and deletions 
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(indels), and structural variants (SVs).  In order to assess the functional impact of identified 

variants, a key objective is to determine whether those variants intersect with annotated 

elements, including both coding and non-coding genes.  However, the intersection of variants with 

a gene annotation set is non-trivial; a number of complicating factors make it difficult to assess 

the overall functional impact on the structure of a gene [26].  To tackle these issues, we have 

designed and implemented the Variant Annotation Tool (VAT).  By implementing VAT, we also 

addressed the question on how to best position the software relative to the data.  Like VAT, other 

tools have been implemented to assess the functional impact of variants [27–29].  One issue with 

these tools is that they do not reside in the same space as the data itself.  However, as the 

volumes of data generated continues to grow, the placement of the software relative to the data 

becomes increasingly important.  Thus, the burgeoning volume of data places growing demands 

on limited bandwidth, making it impractical for software and data to reside in separate spaces.  In 

order to address these issues, we provide VAT as a virtual machine that can be run within a 

cloud-computing environment (including that operated by Amazon) to take advantage of the 

scalability and unlimited storage capacity offered by this framework.   

 In Chapter 3, we present RSEQtools [25].  As noted previously, the application of next-

generation DNA sequencing technologies for functional genomics studies has generated large 

volumes of sequence information.  This deluge of data poses many challenges in terms of data 

storage, processing, and dissemination, thereby necessitating more efficient algorithms and 

compact data formats.  In addition, with the advent of personal genomics, the sequencing data 

fundamentally stems from individuals, and new mechanisms for protecting confidential 

information are thus needed.  Along these lines, a pivotal challenge is to devise a new data 

format that enables the dissemination of large amounts of data without revealing the genotypic 

information of the underlying individual, while still enabling the community to carry out most 

functional genomics analyses.   

 In order to address these issues, we have developed the Mapped Read Format (MRF), 

which not only facilitates the representation of short and long read alignments, but also allows the 
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anonymization of confidential sequence information.  MRF achieves this by separating the read 

alignments from the actual sequence reads that contain the polymorphisms.  In addition to the 

data format, RSEQtools comprises a suite of tools that use this format for the analysis of RNA-

Seq experiments.  Specifically, RSEQtools implements several modules using this standardized 

format for performing common RNA-Seq analyses, such as calculating gene expression values, 

generating signal tracks of mapped reads, and discovering novel transcribed regions.  Moreover, 

the modules of RSEQtools can easily be used to build customizable RNA-Seq workflows.   

 In Chapter 4, we describe FusionSeq [24], a downstream analysis pipeline based on 

RSEQtools.  FusionSeq may be used for finding instances of gene fusions by analyzing paired-

end RNA-Seq data, and it comprises three main modules.  The first aligns each end of a paired-

end read to genome and identifies potential fusion candidates, where each end of the read maps 

to different genes.  The second module employs a sophisticated filtration cascade to remove 

spurious fusion candidates due to misalignment and random pairing of transcript fragments.  In 

addition, the second module classifies the fusion candidates and ranks them according to several 

statistics.  The third module is then utilized to identify the exact junction sequence surrounding the 

breakpoint between the two genes.  By employing this approach we identified several high quality 

fusion candidates, which were then experimentally validated. 

 A key advantage of paired-end RNA-Seq data over information obtained from 

hybridization-based approaches is that they provide connectivity information required to identify 

fusion transcripts.  Although the role of fusion transcripts is still not fully understood, studies have 

indicated that they play a role in cancer [30, 31].  In addition, gene fusions may reflect an 

underlying genomic rearrangement between two genes and are thought to drive molecular 

events.  For instance, in chronic myelogenous leukemia, a gene fusion that originates by the 

reciprocal translocation between chromosome 9 and 22, results in a chimeric fusion oncogene 

(BCR-ABL1) that constitutively activates a tyrosine kinase [32].  Similarly, another gene fusion, 

called TMPRSS2-ERG, has been reported to play a key role in prostate cancer [33].  Thus, in 
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order to identity gene fusions, we have developed and applied FusionSeq to eight prostate cancer 

tissue samples [24].   

 In Chapter 5, we describe DupSeq, which is a computational framework for assessing the 

transcriptional activity of highly similar genomic sequences.  A key objective in modern genomics 

is to accurately measure the levels of transcription of any given region in the genome.  However, 

this task is non-trivial, especially for genomic elements that share high degrees of sequence 

similarity, such as pseudogenes and paralogs.  Specifically, it is difficult to discriminate between 

true transcription and potential artifacts when studying these elements.  Such artifacts may result 

from spillover effects from the expression of a highly transcribed region with a similar sequence.   

This issue has been studied extensively in the context of hybridization-based methods [6, 34, 35], 

and although the advent of next-generation DNA sequencing applied to transcriptome profiling 

has led to several improvements, the issue of accurately measuring the levels of transcription for 

such elements remains unresolved.  The reason for this is that reads from an RNA-Seq 

experiment must be mapped to the reference genome.  Occasionally, sequencing errors cause 

reads from highly expressed genes to be mistakenly aligned to untranscribed elements with 

highly similar sequences.   

 In order to surmount these challenges, we have designed DupSeq as a computational 

framework that employs statistical methods to compare the transcription signal patterns (as 

obtained from mapped RNA-Seq reads) across multiple samples.  The premise is that when 

comparing the signal of a given sequence across multiple tissues, truly transcribed regions will be 

characterized by distinctly different (i.e., independent) expression patterns relative to those 

observed in regions with high sequence similarity, whereas concordant patterns are suggestive of 

mapping artifacts.   

 The implementation of DupSeq is based on three main modules.  The first identifies all 

highly similar regions given specific regions of interest.  The second processes the various RNA-

Seq data sets by mapping the reads and generating the signal tracks associated with those 

mapped reads.  Lastly, the core module utilizes the output of the two modules described above to 
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statistically evaluate the transcriptional activity of these particular regions of interest.  As proof-of-

principle, DupSeq has been employed to discriminate between true transcription and artifacts for 

both human as well as worm [36] pseudogenes.   

 In Chapter 6, we apply these computational methods to examine the fundamental 

mechanisms governing neural differentiation by analyzing the transcriptome dynamics that occur 

during the differentiation of human embryonic stem cells into the neural lineage [37].  By using 

RNA-Seq data and integrating the sequence information from various next-generation DNA 

sequencing platforms, we were able to find many previously unannotated transcripts, as well as 

distinct transcript isoforms that are expressed at each stage of differentiation.  Furthermore, a 

notable finding was that the splicing isoform diversity decreases as human embryonic stem cells 

differentiate into neural cells.  

 In Chapter 7, we conclude the thesis with possible future directions. 
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Chapter 2 

VAT: A computational framework to functionally 
annotate variants in personal genomes within a 
cloud-computing environment 

Abstract 
The functional annotation of variants obtained through sequencing projects is generally assumed 

to be a simple intersection of genomic coordinates with genomic features.  However, complexities 

arise for several reasons, including the differential effects of a variant on alternatively spliced 

transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large 

structural variants.  Taking these factors into consideration, we developed the Variant Annotation 

Tool (VAT; http://vat.gersteinlab.org/) to functionally annotate variants from multiple personal 

genomes at the transcript level, as well as obtain summary statistics across genes and 

individuals.  VAT also allows visualization of the effects of different variants, integrates allele 

frequencies and genotype data from the underlying individuals, and facilitates comparative 

analysis between different groups of individuals.  VAT can either be run through a command-line 

interface or as a web application.  Finally, in order to enable on-demand access, and to minimize 

unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-

computing environment. 

2.1 Introduction 
 Recent technological advances have significantly reduced the cost of DNA sequencing 

and have made it possible to sequence complete human genomes on a large scale.  Currently, a 

number of efforts, including the 1000 Genomes Project, aim to sequence and genotype large 

numbers of individual genomes [15].  These studies have already revealed many novel single 

nucleotide polymorphisms (SNPs), small insertions and deletions (indels), and structural variants 
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(SVs).  In order to assess the functional impact of identified variants, a key objective is to 

determine whether those variants intersect with annotated elements, including both coding and 

non-coding genes.  However, the intersection of variants with a gene annotation set is non-trivial 

[26].  First, a variant may affect only a subset of the possible transcript isoforms of a given gene, 

or it may have different effects on alternatively spliced transcripts.  For example, a variant can 

affect the coding region of one transcript and overlap the canonical splice site of another.  

Second, depending on their length, indels in coding regions can either preserve the frame or 

introduce frameshifts.  In addition, indels can partially overlap coding exons, thereby not only 

affecting the coding region of a transcript, but also impairing its splice sites.  Assessing the 

functional impact in such cases is especially challenging.  Lastly, large SVs can have drastic 

effects on the structure of a gene if exons are removed in whole or in part.  As a result, it can be 

difficult to assess the overall functional impact of different types of variants on gene structures 

without having visual representations.  A summary of the various complicating factors is provided 

in Figure 2.1.  

 

 

Figure 2.1 Factors that may complicate the functional annotation of variants.  As a result of several confounding 
factors, the functional annotation of variants is non-trivial.  A variant may affect all or only a subset of the transcript 
isoforms of a given gene.  Furthermore, a variant may have differential effects on alternatively spliced transcripts.  For 
example, a variant can affect the coding region of one transcript, and overlap with the canonical splice site of another.  
Depending on their length, indels and SVs can introduce frameshift or non-frameshift variations.  In addition, indels and 
SVs may partially overlap with coding exons, thereby not only affecting the coding region of a transcript, but also impairing 
the nearby splice site.  Lastly, large SVs can have drastic effects on the structure of a gene by potentially removing a 
number of exons. 

 To address these issues, we have designed and implemented the Variant Annotation 

Tool (VAT).  Like VAT, other tools have been developed to assess the functional impact of 

variants [27–29].  One issue with these tools is that they do not reside in the same space as the 
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data itself.  However, as the quantity of data generated by sequencing experiments continues to 

grow, the positioning of the software relative to the data becomes increasingly important; the 

burgeoning volume of data places growing demands on limited bandwidth, making it impractical 

for software and data to be positioned separately, and more advantageous for both to reside in 

the same space.  In order to provide an efficient workflow for annotating variants from large-scale 

sequencing studies, we have taken great care to position VAT with the data.  Specifically, we 

provide VAT as a virtual machine (VM) that can be run within a cloud-computing environment 

(including that operated by Amazon) to take advantage of the scalability and unlimited storage 

capacity offered by this framework.  VATʼs utility has been demonstrated by its extensive use in 

annotating the loss-of-function variants obtained as part of the 1,000 Genomes Project [38]. 

2.2 Features and methods 
 VAT is implemented in C for efficiency, and consists of a number of modules to pre-

process gene annotation sets, intersect variants from multiple individuals with both coding and 

non-coding genes, generate summary statistics across these individuals and at the single gene 

level, and provide clear visualization summarizing the functional impact of the annotated variants.  

The overall workflow is depicted in Figure 2.2A. 
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Figure 2.2. Schematic representation of VAT.  (A) VAT comprises a number of different modules that relate variants to 
both protein-coding genes and non-coding elements.  These modules use a set of variants and an annotation set as input 
to generate annotated Variant Call Files (VCFs; [39]).  (B) Architecture the VAT web application.  The web application may 
be accessed through the browser or a JSON-based interface.  The I/O layer of VAT takes advantage of the Amazon S3 
service, and stores all data in S3 buckets or, if S3 support is disabled, simply writes to a local disk.  (C) The VAT EC2 
cloud service is implemented in a service-oriented architecture consisting of a master node and a number of worker 
nodes.  The master node hosts the user-facing interface and delegates tasks on behalf of the user to the worker nodes. 

 VAT comprises a number of different modules that relate variants to both protein-coding 

genes (snpMapper, indelMapper, and svMapper) and non-coding elements (genericMapper). 

These four core modules use an annotation set and a set of variants from multiple individuals as 

inputs.  The variants are typically represented using the Variant Call Format (VCF; [39]).  A key 

feature of VAT is that the annotation task is performed at the transcript level to determine whether 

all or only a subset of the transcript isoforms of a gene are affected.  Therefore, the output of 

these programs explicitly shows which transcript isoforms are affected by each variant and 

provides detailed information about the location of a given variant within a transcript, as well as 

the variantʼs effect on the coding potential of that transcript.  Moreover, VAT can be executed 
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using various gene annotation sets and genome builds.  Preprocessing of gene sets using 

auxiliary modules in VAT provides the end user with more options and flexibility for variant 

annotation. 

 The VAT software package contains a number of utilities for performing downstream 

analyses on functionally annotated variants.  For instance, an auxiliary module generates detailed 

summaries of the annotated variants across multiple individuals and at the level of single genes.  

For those variants intersecting protein-coding genes, VAT includes a module for generating an 

image for each gene in order to provide the user with a clear overview.  Specifically, this 

schematic representation displays the various transcript isoforms of a gene, which are then 

superimposed with the annotated variants (Figure 2.2A). 

 As shown in Figure 2.2B, VAT is built to take advantage of the Amazon Web Services 

(AWS) cloud-computing platform.  In addition, VAT can also be deployed as a VM on a private 

cloud.  Each installation consists of the command line executable of the VAT pipeline and a PHP 

web application.  The web application serves as the user interface and driver for the VAT 

pipeline, and it may be accessed through the browser or a JSON-based RESTful API.  The VAT 

I/O abstraction layer may be customized using the configuration file to take advantage of 

Amazonʼs Simple Storage Service (S3), which allows for high availability, reliability, and large 

storage capacity.  With S3 support enabled, VAT reads input files from a bucket storing raw VCF 

files, and then stores output data sets in a separate bucket.  With S3 support disabled, VAT 

simply reads from and writes to a local disk.  Our architecture may also be easily scaled to utilize 

more sophisticated storage schemes, such as hashing across multiple input and output buckets. 

 Our hosted VAT cloud service takes advantage of the scalability and reliability of 

Amazonʼs Elastic Compute Cloud (EC2) distributed computing platform.  Our service is 

implemented in a service-oriented architecture consisting of a master node and a number of 

worker nodes.  Each node consists of a customized VAT installation running on an EC2 VM 

(Figure 2.2C).  The master node hosts user-facing web components and serves as a load-

balancer for the worker nodes.  A user action is forwarded by the master node as a request to 
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one of the worker nodes.  Each of the worker nodes communicates with our S3 buckets and 

reports updates to the master node asynchronously.  Furthermore, we take advantage of 

Amazonʼs EC2 API to allow the master node to dynamically create additional worker instances.  

Thus, intensive batch requests and increased traffic may be parallelized and handled efficiently.  

Finally, our collection of S3 buckets accumulates a growing data set that may be made available 

to aid in further analyses. 

2.3 Conclusions 
 In summary, VAT offers two primary advantages in variant annotation.  First, it addresses 

the complicating factors frequently involved in variant annotation and visualization.  Second, by 

virtue of operating as a VM in a cloud-computing environment, VAT has direct access to the data 

on which it operates, and is capable of leveraging unlimited storage capacity and scalability. 

2.4 Design and implementation 

2.4.1 Pre-processing of the annotation set 
 The current implementation of VAT uses the GENCODE [40] gene annotation set, 

although alternative annotation sets can easily be adapted.  The goal of the GENCODE project is 

to accurately annotate all evidence-based features in the human genome, as determined by 

manual curation, a variety of computational analyses, and targeted experimental approaches [40].  

The GENCODE annotation files are updated on a regular basis, and VAT provides the 

functionality to efficiently parse these files.  The raw annotation files, which contain the 

coordinates of all gene models (including different transcript isoforms) are typically stored in GTF 

format, and may be downloaded from http://www.gencodegenes.org/. 

 The variant annotation modules require two inputs obtained from the annotation file.  One 

file provides the underlying coordinates of the coding sequences from all gene models in Interval 

format (see http://vat.gersteinlab.org/documentation.php for details), whereas the second stores 

the transcript sequences of all transcripts in FASTA format.  The VAT framework includes two 



 21 

modules to facilitate pre-processing of the raw annotation file.  The first module, 

gencode2interval, converts the coordinates of the raw GTF file into Interval format.  The second 

module, interval2sequences, extracts the underlying transcript sequences for each entry in the 

Interval file.  

2.4.2 Overview of the annotation modules 
 VAT comprises a number of different modules that relate variants to both protein-coding 

genes (snpMapper, indelMapper, and svMapper) and non-coding elements (genericMapper).  

These four core modules use a set of variants from multiple individuals and an annotation set as 

input.  The variants are typically represented using the Variant Call Format (VCF), which was 

originally developed as part of the 1000 Genomes Project [15, 39], and is also being adapted for 

cancer variants.  A VCF file is a tab-delimited text file that stores information about a variety of 

variant types, including SNPs, indels, and SVs.  Unlike other tools, VAT annotation modules 

directly capture the annotation information within the VCF file without necessitating a new file 

format (see http://vat.gersteinlab.org/documentation.php for details).  As mentioned, a key feature 

is that the annotation is performed at the transcript level to determine whether all or only a subset 

of the transcript isoforms of a given gene are affected.  This distinction is important, given that 

some transcript isoforms are expressed in a tissue-specific manner.  Therefore, the output of 

these core modules explicitly shows which transcript isoforms are affected by each variant.  In 

addition, the output contains detailed information about the location of a given variant within a 

transcript, and the output from snpMapper and indelMapper also includes the variantʼs effect on 

the coding potential of a transcript.  For instance, an annotated SNP may be classified as 

synonymous, non-synonymous, premature stop, removed stop, or as a splice overlap.  On the 

other hand, indels are grouped into the following categories: frameshift insertion, non-frameshift 

insertion, frameshift deletion, non-frameshift deletion, start overlap, end overlap, or splice overlap.  

The term “splice overlap” (as used when describing both SNPs and indels) refers to a variant that 

overlaps with a canonical splice site (either two nucleotides downstream of an exon or two 
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nucleotides upstream of an exon).  Lastly, for those SVs, which overlap with a transcript, the 

program calculates the number of overlapping nucleotides. 

2.4.3 Generating summaries of functionally annotated variants 
 The VAT software package contains a number of utilities for performing downstream 

analyses on functionally annotated variants.  One program, vcfSummary, creates summary 

statistics across different individuals and genes.  Specifically, it tabulates the different types of 

variants for each individual and for each gene.  The resulting tab-delimited files can then easily be 

accessed as spreadsheets for further analyses.  

2.4.4 Visualization of functionally annotated variants in coding regions  
 The VAT software package includes vcf2images, a program to visualize the impact of 

different functionally annotated variants on the various transcript isoforms of a protein-coding 

gene.  In particular, this program generates a schematic representation of the exon/intron 

structure of all transcript isoforms of a gene.  The different types of functionally annotated variants 

are subsequently superimposed on the transcript structures to provide the user with an overview 

of the various types of variants that affect a particular gene, along with their respective locations 

along transcripts.  In order to clearly visualize coding exon variants, introns are represented as 

small, fixed-length bars.  Thus, introns only account for a small portion of the overall display, 

while the coding regions are emphasized.  The exons are scaled according to their lengths.  The 

main advantage of displaying the variants in this way is that it enables the user to more easily 

discern the overall impact of the variants on a gene model, in contrast to the displays 

conventionally provided in genome browsers, in which introns and exons are shown on the same 

scale (Figure 2.3). 
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Figure 2.3 Comparison between different visualization methods.  This figure shows a gene, MAST2, and its 
associated variants using three different visualization methods: the rendering tool as part of VAT, the UCSC genome 
browser [41] and the Ensembl genome browser [42].  The top panel (VAT) shows variants which were obtained from the 
1000 Genomes Pilot Project [15].  In this representation, introns are rendered at a fixed size, whereas exons are scaled 
according to their length.  The middle panel shows a screenshot of the same gene as represented in the UCSC genome 
browser [41].  The bottom track in this panel represents SNPs from one individual that was sequenced and genotyped as 
part of the 1000 Genomes Pilot Project [15].  The lower panel shows a screenshot of the same gene in the Ensembl 
browser utilizing the Variant Image Viewer.  This representation shows the gene models of MAST2 at the original scale, 
and also highlights the exonic regions containing variants.  This detailed view contains in-depth information about the 
variants obtained from various sources as well as their effects on coding potential. 

2.4.5 Comparative analyses of different data sets 
 One principal feature of VAT is that it enables users to compare functionally annotated 

variants across different samples.  For instance, samples from three different populations (CEU, 

CHBJPT, YRI) were sequenced and genotyped as part of the pilot phase of the 1000 Genomes 

Project [15].  Thus, in this context, a key question is whether the allele frequency of a particular 

variant differs across the three populations. 

 In order to address this issue, the VAT package includes vcfModifyHeader, a program 

which modifies the header line in a VCF file to assign each sample to a particular group prior to 

the annotation step.  In the case of the 1000 Genomes Projectʼs pilot phase, each group 
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represents a different population.  This information is subsequently utilized when the results are 

presented in a web-interface in order to calculate allele frequencies, as well as display the 

genotype information in a population-specific manner.  This concept may further be generalized to 

clinical re-sequencing projects, in which there is a need to compare cases and controls, as well 

as to analyze differences between patients.  

2.4.6 VAT web application 
 VAT is designed to take advantage of the Amazon Web Services (AWS; 

http://aws.amazon.com/) cloud-computing platform.  An individual VAT node consists of the C 

executables comprising the VAT pipeline and the PHP scripts implementing the VAT web 

application.  VAT requires PHP version 5.2 or later.  Due to the large sizes of the files being 

uploaded to be processed by VAT, the user must configure PHP to allow larger upload files by 

editing php.ini and setting upload_max_filesize and post_max_size to at least 100M.  

It is also recommended the user turns off output buffering so that flush(), which is used by the 

processing page to update the user, works properly by setting output_buffering = off. 

 The .vatrc configuration file, which resides in both the installing userʼs home directory 

and the root directory for the web application (as vat.conf), may reconfigured without 

recompilation.  The AWS_USE_S3 configuration directive is set to true to turn on support for 

Amazonʼs Simple Storage Service (S3; http://aws.amazon.com/s3/) or false to disable S3 support.  

To enable S3 support, configure the AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and 

the AWS_S3_HOSTNAME directives with the AWS credentials and the S3 hostname, respectively.  

If S3 support is enabled, file storage is fully backed by S3.  Raw VCF files are stored in the S3 

bucket specified by the AWS_S3_RAW_BUCKET directive, and processed data sets are stored in 

the bucket specified by AWS_S3_DATA_BUCKET.  Set WEB_DATA_URL to the URL of the data 

bucket and ensure that the data bucket may be accessed in a browser, as the images generated 

by VAT and stored in the data bucket are accessed by the URL to be embedded in the results 

page. 
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 Locally, the data directory under the web root contains the directory tree used by the VAT 

I/O layer.  Regardless of whether S3 support is enabled or disabled, all reference annotation files 

must be stored in the directory to which WEB_DATA_REFERENCE_DIR points (this is set to 

data/reference by default).  The script get_annotation_sets.sh may be used to download all the 

annotation files from our servers using wget.  Also, the I/O layer uses the directory pointed to by 

WEB_DATA_WORKING_DIR, which is web/working/ to contain the temporary working directories 

for process instances of VAT.  Each instance is given its own unique working directory and hence 

its own isolated copy of files.  

 If S3 support is disabled, the S3-specific directives are ignored, and the I/O layer simply 

stores and retrieves files from local directories.  However, the options WEB_DATA_DIR and 

WEB_DATA_RAW_DIR must be configured to point to directories used to store processed data 

sets and raw VCF files respectively.  With S3 support disabled, set WEB_DATA_URL to the URL of 

the data directory.  

2.4.7 Hosted VAT service and cluster setup 
 The architecture of the hosted VAT service consists of a master node or load balancer 

and a set of worker nodes.  The web PHP components on the master node are specially adapted 

for this architecture.  Rather than calling local VAT command-line web applications, the master 

node delegates tasks to worker nodes via requests made through the RESTful API.  Load 

balancing is done by LRU (least-recently used).  The information for each server is stored as a 

JSON string in a local text file on the master that is exclusively locked by a process before 

reading and updating the server load information.  The master also keeps track of information for 

each data set in a MySQL database.  Furthermore, the master implements an atomic fetch-and-

increment counter using the ID primary key field, which is specified as AUTO_INCREMENT, and 

assigns the new data set a unique ID using the insertion ID. 
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Figure 2.4 Screenshot of the VCF file upload web interface.  This web interface enables users to upload their own 
variants (SNPs, Indels, SVs) for annotation. 

 As an example of a typical run, a user uploads a VCF file to be processed as shown in 

Figure 2.4.  Upon completion of the upload, the master saves metadata in the database, assigns 

the data set a unique ID, and transfers the file into a S3 bucket used to store raw VCF files.  The 

master then selects a worker and performs a RESTful API call to the worker to request the worker 

to download the VCF file to its local cache and forks a background process that performs the six 

processing steps of the VAT pipeline including intersecting the variant calls in the input file with 

the reference annotation, compressing and indexing the output, generating summary files for the 

data set, generating images to visualize the data, and generating subsets of the variants by gene.  

Because each step takes a few seconds to complete, the background process on the worker also 

updates the master asynchronously at the end of each processing step by making an API call to 

the master, which then updates the status for the data set in the database.  At the same time, 

client-side JavaScript code also makes JSON AJAX calls to the master to retrieve the status of 

the processing in order to update the user interface in real time.  Once the processing is 
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complete, the user may proceed to view the data.  Again, rather than calling local command line 

programs, the master retrieves the necessary information through API calls to workers. 

2.4.8 Analysis of the 1000 Genomes pilot data set 
 As a proof-of-principle, we have applied VAT to annotate the variants identified as part of 

the 1000 Genomes Pilot Project [15].  We downloaded SNP call sets for three populations (CEU, 

JPTCHB, and YRI) from their web page.  These calls sets were distributed using the VCF format 

and they contain detailed genotype information on the underlying individuals from these three 

populations.  We subsequently modified the VCF header line in these files to encode the 

population origin within each VCF file using vcfModifyHeader.  This step is important because 

VAT utilizes this information to calculate allele frequencies and to display the genotype 

information in a population-specific manner.  Next, we merged the SNP calls using the merge-vcf 

tool as part of the VCFtools package [39].  We then ran snpMapper on the merged SNP set using 

the GENCODE 3b annotation set.  Subsequently, we ran vcfSummary to tabulate the functionally 

annotated variants in a gene- and sample-specific manner.  In addition, we generated an image 

for each gene model containing at least one functionally annotated variant using the vcf2images 

program.  Lastly, we visualized and distributed the results using our web service. 
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Figure 2.5 Screenshot of the gene summary table.  This summary table contains genes that intersect at least one 
variant. 

 A sample of the resulting gene summary table is shown in Figure 2.5.  Specifically, a 

gene is listed in this table if it has at least one annotated SNP.  Each row, which represents a 

gene, contains the gene ID, the gene name, and counts for the different types of variants.  It 

should be noted that the columns of this table can be sorted by one or more columns.  The upper-

right corner of the table provides a search box which enables the user to quickly find a gene of 

interest.  The bottom of the summary web page also contains two links, one to the VCF file with 

the annotated variants, and the second to a tab-delimited file with the gene summary table.  

Lastly, VAT provides the user with a unique way to further explore the impact of different variants 

at the level of individual genes.   
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Figure 2.6 Screenshot of the gene-specific view.  This page contains detailed information about the variants 
intersecting various transcript isoforms of a particular gene (TNFRSF14). 

 An example of a gene-specific view is shown in Figure 2.6.  This view comprises four 

parts.  The first contains external links to the UCSC genome browser [41], the Ensembl genome 

browser [42], and the Gene Cards [43] website.  The second part provides a detailed summary of 

the transcript isoforms of the specific gene.  The third part provides a graphical representation of 

the functionally annotated variants, and shows how these variants affect the geneʼs different 

transcript isoforms.  The fourth part contains a detailed summary table for each variant, including 

the genomic coordinates of the variant, the reference as well as the alternate alleles, external 

links to dbSNP [44], and the variant type.  This table also contains detailed information on the 

number of transcripts of the gene that are affected by a particular variant, their transcript IDs, and 
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the relative position of the variant.  The table includes allele frequencies for the different 

populations (CEU, CHBJPT, and YRI) and a link to the specific genotypes of the underlying 

individuals.  
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Chapter 3 

RSEQtools: A modular framework to analyze 
RNA-Seq data using compact, anonymized data 
summaries 

 

The work described in this chapter was adapted from a manuscript, which was originally 

published in Bioinformatics [25]. 

 

Abstract  
The advent of next-generation sequencing for functional genomics has given rise to quantities of 

sequence information that are often so large that they are difficult to handle.  Moreover, sequence 

reads from a specific individual can contain sufficient information to potentially identify and 

genetically characterize that person, raising privacy concerns.  In order to address these issues 

we have developed the Mapped Read Format (MRF), a compact data summary format for both 

short and long read alignments that enables the anonymization of confidential sequence 

information, while allowing one to still carry out many functional genomics studies.  We have 

developed a suite of tools that use this format for the analysis of RNA-Seq experiments.  

RSEQtools consists of a set of modules that perform common tasks such as calculating gene 

expression values, generating signal tracks of mapped reads, and segmenting that signal into 

actively transcribed regions.  Moreover, these tools can readily be used to build customizable 

RNA-Seq workflows.  In addition to the anonymization afforded by this format it also facilitates the 

decoupling of the alignment of reads from downstream analyses. 
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3.1 Introduction 
 The advent of next-generation sequencing technologies has revolutionized the study of 

genomes and transcriptomes.  In particular, the application of deep sequencing approaches to 

transcriptome profiling (RNA-Seq) is increasingly becoming the method of choice for studying the 

transcriptional landscape of cells [1, 18, 45].  Typically, the first step in this analysis is the 

alignment of the sequence reads to a reference sequence set.  Recently, a number of different 

alignment tools have been developed to map short reads in an efficient manner [46].  While much 

progress has been made on this front, there is still a great need for a set of software tools that 

facilitate the downstream analysis of mapped RNA-Seq reads.  

 Further, two other issues remain to be addressed.  First, the immense file size of next 

generation sequencing data poses many challenges in terms of data processing, storage, and 

sharing.  Secondly, mechanisms to protect personal confidential genetic information need to be 

established.  With the birth of personal genomics, sequencing data stems fundamentally from 

individuals, and this type of data cannot be distributed as easily because significant privacy 

concerns arise with sharing all the sequence variations of a particular individual [47, 48].  One 

critical challenge for genomics, then, is to devise new data summaries that allow the sharing of 

large amounts of information from sequencing experiments without exposing the genotypic 

information of the underlying individual. 

 Although many data formats have been developed such as SAM [49], there is no 

practical solution yet that addresses the privacy concerns when sharing large sequence 

alignment files.  Addressing this challenge is precisely what we have endeavored to do in putting 

together the Mapped Read Format (MRF), a format that allows data summaries to be exchanged, 

enabling many aspects of the RNA-Seq calculation to be performed such as expression 

measurements, but that also detaches the actual sequence variation in a person into separate 

files.  Further, it provides a very clear way of linking these two pieces of information so that the 

data summaries can be subsequently conjoined back to the original sequences for more in-depth 

analyses with potentially confidential data.  
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 Specifically, we developed MRF in the context of RNA-Seq to provide a mechanism to 

protect the private genotypic information of the underlying individual and to represent the mapped 

reads in a compact manner.  It is important to note that a RNA-Seq experiment with sufficient 

depth of sequencing is essentially equivalent to an exome sequencing study and thus provides 

immediate access to the genotypic information of the underlying individual.  Thus, in the era of 

personal genomics it is crucial to protect this private information, while still providing the scientific 

community a way to access the experimental data without revealing this confidential information.  

MRF achieves this goal by separating the read alignments from the actual sequence reads that 

contain the polymorphisms.  Thus, the content of the “public” read alignment file is comparable to 

the information obtained from a standard expression array, which are openly available through 

multiple data repositories such as Gene Expression Omnibus [50] or ArrayExpress [51].  Also, 

note that the levels of gene expression are potentially able to identify a person, but they do not 

genetically characterize someone.  Although this approach removes the most obvious genotypic 

information, other characteristics such as structural variants potentially remain.  However, it is not 

trivial to extract genotypic information from a subset of structural variations.  In addition, inferring 

structural variations from RNA-Seq data as opposed to DNA sequencing would be more 

complicated due to the presence of alternative splicing and uneven coverage determined by the 

expression level of the underlying gene. 

 Here we present an overview of a flexible suite of tools (RSEQtools) that are designed to 

facilitate easily customizable workflows and efficient pipeline building for the analysis of RNA-Seq 

experiments using this compact format (Figure 3.1).  Briefly, we first convert the aligned reads 

into MRF and thus decouple the alignment step from the downstream analyses.  RSEQtools 

implements several modules using this standardized format for performing common RNA-Seq 

analyses, such as expression quantification, discovery of transcribed regions, coverage 

computations, annotation manipulation, etc. 
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Figure 3.1 Schematic overview of RSEQtools.  Mapped reads are first converted into MRF from common alignment 
tool output formats, including SAM.  The resulting MRF files can be divided in two files: one with the alignment only, and 
another with the corresponding sequence reads.  The read identifiers provide a mapping between the two files.  Then, 
several modules perform the downstream analyses independently from the mapping step, such as expression 
quantification, visualization of the mapped read, and the calculation of annotation statistics, etc.  Other tools have been 
developed based on this framework to perform more sophisticated analyses such as transcript assembly, isoform 
quantification, fusion transcript identification, as well as aggregation and correlation of signal tracks (described 
elsewhere). 

3.2 Features and Methods 

3.2.1 Mapped Read Format (MRF) and converters 
 
 MRF only stores a minimal set of information, i.e. information that cannot be derived from 

the MRF data itself.  This has the advantage of keeping the format succinct, while still capturing 

the relevant information for most analyses.  MRF consists of three components: comment lines 

(optional) denoted by a leading ʻ#ʼ sign, a header line, and the mapped reads.  The header line 

specifies the data type of each column: AlignmentBlocks, Sequences, QualityScores, and 
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QueryID.  The column type AlignmentBlocks is required and represents the mapped reads.  Each 

alignment block contains the coordinates with respect to the reference genome to which the read 

aligns as well as the read coordinates.  A read spanning multiple regions, e.g. multiple exons, is 

denoted by multiple alignment blocks that are separated by a comma.  Paired-end reads can be 

represented by using a set of alignment blocks for each end, which are separated by the ʻ|ʼ 

symbol.  By using this format, it is straightforward to specify both gapped and paired-end 

alignments. The RSEQtools package includes various utilities to convert the output of several 

mapping tools into MRF.  A converter for the commonly used SAM format is included as well.  

The first example below represents two paired-end reads where one end is spliced, whereas the 

second example shows two unspliced single-end reads with their associated QueryIDs: 

 
# Example 1 
AlignmentBlocks 
chr2:+:601:630:1:30,chr2:+:921:940:31:50|chr2:+:1401:1450:1:50  
chr9:+:451:460:1:10,chr9:+:831:870:11:50|chr9:+:945:994:1:50 
 
# Example 2 
AlignmentBlocks          QueryID 
chr4:-:1221:1270:1:50    1 
chr16:+:511:560:1:50     2 

 
 
 The optional types Sequences, QualityScores, and QueryID provide additional 

information.  In particular, the confidentiality issues can be addressed by generating two files: one 

including the alignments and a second one containing the sequences such as a FASTQ file.  The 

former is useful for most analyses and can be publicly shared because it does not contain 

confidential information, whereas the latter can be subjected to a higher level of security and 

control.  The two files can be conjoined, if necessary, by using the common QueryID as shown in 

Figure 3.1.   

3.2.2 RNA-Seq analysis with RSEQtools 
 
 The RSEQtools suite contains a set of modules to perform a large variety of tasks 

including the quantification of expression values, manipulation of gene annotation sets, 
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visualization of the mapped reads, generation of signal tracks, the identification of transcriptional 

active regions, and several auxiliary utilities as shown in Table 3.1. 

 
Description Programs 

Format conversion utilities, conversion of mapped reads   
into standardized MRF. The purpose of this conversion step is 
to decouple the alignment step from the various downstream 
analyses. 

bowtie2mrf 
psl2mrf 
export2mrf 
sam2mrf 

Genome annotation tools, utilities to manipulate gene 
annotation sets or to retrieve the genomic/exonic sequences 
from a given annotation set. 

createSpliceJunctionLibrary 
mergeTranscripts 
interval2sequences 

Expression analysis, estimation of expression levels (this 
analysis can be performed at the exon or at the gene level). 

mrfQuantifier 
bgrQuantifier 

Visualization tools, conversion of MRF into common 
formats for visualization.  The WIG and BGR (bedGraph) 
formats are generally used to represent a signal track of 
mapped reads whereas the GFF format is utilized to depict 
splice junction reads. 

mrf2wig 
mrf2bgr 
mrf2gff 

Segmentation of mapped reads, identification of transcribed 
active regions (TARs).  This analysis is particularly helpful in 
discovering TARs that are not part of an annotation set. 

wigSegmenter 
bgrSegmenter 

Annotation statistics tools, computation of statistics related 
to the annotation set used and the mapped reads. 

mrfAnnotationCoverage 
mrfMappingBias 

MRF selection utilities, utilities to sub-select alignment 
blocks from a MRF flat file based on various criteria.  

mrfSampler 
mrfSelectRegion 
mrfSelectAnnotated 
mrfSelectSpliced 
mrfCountRegion 

Auxiliary utilities, additional utilities to convert data into 
different formats.  

bed2interval 
interval2bed 
gff2interval 
interval2gff 
export2fastq 
mrf2sam 

Table 3.1 List of RSEQtools modules. 

 Genome annotation tools.  To generate a splice junction library from any annotation set, 

we extract the genomic sequences of all the exons and synthetically create all splice junctions 

specified in the annotation set. This splice junction library can be used in combination with the 

reference sequences.  A second tool is particularly useful when estimating expression levels.  In 

order to capture the information of the various transcript isoforms, a “gene model” is required.  
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The module mergeTranscripts collapses the transcript isoforms into a single gene model by either 

taking the union or intersection of the exonic nucleotides.  

 Quantification of gene expression.  One of the key features of RNA-Seq is the 

quantification of expression at different levels.  Hence, a key module calculates the gene 

expression values for a given annotation set and a collection of mapped reads in MRF format.  

The annotation set specifies which “elements” will be quantified.  The program mrfQuantifier 

calculates RPKM (reads per kilobase per million mapped reads) values at the nucleotide level 

[18].  Briefly, for a given entry in the annotation set (typically an exon or gene model) the number 

of nucleotides from all the reads that overlap with this annotation entry are added up and then this 

count is normalized by sequence length of the annotation entry (per kb) and by the total number 

of mapped nucleotides (per million).  This calculation is not performed at the transcript level, 

which requires a more sophisticated analysis [52–54]. 

 Visualization of mapped reads. The RSEQtools package also contains various tools for 

visualizing the results in genome browsers, by means of wiggle (WIG) and bedGraph files, which 

are commonly used to represent a signal track of mapped reads.  Also, a GFF file can be 

generated from MRF files to visualize splice junction reads (example in Figure 3.1). 

 Identification of transcriptionally active regions (TARs).  Transcribed regions can be 

identified de novo by performing a max-Gap/minRun segmentation [35, 55] from the signal files 

using the wigSegmenter program.  Briefly, the signal is first thresholded to identify transcribed 

elements.  Contiguous elements whose distance is less than “max-Gap” are joined together and 

then filtered if the final size is less than “minRun”.  This type of analysis is particularly useful in 

discovering novel TARs such as small RNAs, etc. 

 MRF selection and auxiliary utilities.  Lastly, RSEQtools includes a set of utilities to easily 

manipulate MRF files and a collection of format conversion tools allowing for rapid pipeline 

development.  

 Implementation and run time.  The modules of the RSEQtools suite were implemented in 

C and the code was optimized in order to efficiently handle large data sets.  The importance of 
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code scalability cannot be overemphasized in a time where data sets become increasingly large 

and easily exceed several gigabytes.  For example, the conversion of an ELAND export file 

(uncompressed file size: ~4GB; total number of reads: ~20 million; number of mapped reads: ~12 

million) to MRF takes approximately two minutes and the resulting MRF file is significantly smaller 

(~400MB uncompressed, ~130MB compressed with gzip).  Converting the same ELAND export 

file to SAM generates a file of ~3.1GB (uncompressed) and the corresponding BAM file has a 

size of ~1.2GB.  The subsequent quantification of gene expression using mrfQuantifier requires 

45s to calculate estimates for about 20,000 genes.   

 In addition, the modularity of RSEQtools also enables the development of additional 

programs in any programming language and their seamless integration into this framework. 

Finally, most modules use STDIN and STDOUT to process the data, making them suitable to be 

integrated into an automated pipeline.  For instance, we have developed three downstream 

analysis pipelines that are based on RSEQtools: FusionSeq [24], a computational framework for 

identifying fusion transcripts (described in Chapter 4); IQSeq [54], a method for transcript isoform 

quantification; and DupSeq, an algorithm for analyzing transcribed regions with high sequence 

similarity to other regions in the genome (described in Chapter 5). 

3.3 Conclusions 
 In summary, RSEQtools contains a number of useful and highly specific modules that can 

rapidly analyze RNA-Seq data.  The MRF format has two major features: it allows the decoupling 

of downstream analysis from the mapping strategy and addresses the issue of confidentiality that 

is intrinsic in any sequencing experiments involving human subjects.  By separating the actual 

sequencing reads from the alignments MRF provides a mechanism to protect the private 

genotypic information of the underlying individual.  Although this approach removes the most 

obvious genotypic features, other distinctive attributes do remain.  First of all, the information in a 

MRF file is at least equivalent to that in traditional expression array, which can potentially identify 

the underlying individual.  Secondly, some information about structural variants may be contained 
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in the MRF file of an RNA-Seq experiment.  However, it is not obvious how to extract genotypic 

information from a subset of structural variations just affecting genes.  In addition, inferring 

structural variations from RNA-Seq data as opposed to DNA sequencing would be more 

complicated due to the presence of alternative splicing.  

 Another advantage of storing the alignments without the underlying sequences is that it 

saves space, especially as reads become longer.  Moreover, a possible future extension is the 

development of a specific compression schema that could further reduce the size of the files.  In 

addition, this data format could be easily applied to sequence alignments obtained from other 

high-throughput functional genomic assays such as ChIP-Seq or chromosome conformation 

capture (3C). 
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Chapter 4 

FusionSeq: a modular framework for finding gene 
fusions by analyzing paired-end RNA-sequencing 
data 

 

The work described in this chapter was adapted from a manuscript, which was originally 

published in Genome Biology [24]. 

 

Abstract 
We have developed FusionSeq to identify fusion transcripts from paired-end RNA-sequencing. 

FusionSeq includes filters to remove spurious candidate fusions with artifacts, such as 

misalignment or random pairing of transcript fragments, and it ranks candidates according to 

several statistics.  It also has a module to identify exact sequences at breakpoint junctions. 

FusionSeq detected known and novel fusions in a specially sequenced calibration data set, 

including eight cancers with and without known rearrangements. 

4.1 Introduction 
 Deep sequencing approaches applied to transcriptome profiling (RNA-Seq) are 

dramatically impacting our understanding of the extent and complexity of eukaryotic transcription 

[1, 16, 18, 45]. RNA-Seq provides a more accurate measurement of expression levels of genes 

and more information about alternative splicing of their isoforms as compared to other chip-based 

methods [16, 20, 21, 45, 56–59]. 

 Large international consortia such as the ENCODE project [60] and the modENCODE 

project [61] are exploiting this technology to obtain a better picture of the transcriptome.  More 

recently, RNA-Seq was applied to the identification of fusion transcripts, where mRNAs from two 
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different genes are joined together [23, 62–65].  Although the role of these chimeric transcripts is 

not fully understood, some studies have shown that they might be implicated in cancer [30, 31].  

Also, a fusion transcript may indicate an underlying genomic rearrangement between the two 

genes.  Such gene fusions are thought to be driving molecular events such as in chronic 

myelogenous leukemia (CML), which is defined by the reciprocal translocation between 

chromosome 9 and 22 leading to a chimeric fusion oncogene (BCR-ABL1) encoding a tyrosine 

kinase that is constitutively active. 

 The majority of gene fusions reported in the past have been attributed to hematological 

cancers [66–68].  Recently, recurrent fusions between the transmembrane protease serine 2 

(TMPRSS2) gene and members of the ETS family of transcription factors (mainly the v-ets 

erythroblastosis virus E26 oncogene homolog (avian), ERG and the ets variant 1, ETV1) were 

reported in prostate cancer [33]. Other epithelial tumors such as lung and breast cancer also 

harbor translocations [69–71]. 

 Compared to DNA sequencing, RNA-Seq seems to have less requirements in terms of 

overall coverage, since it aims at sequencing only the regions of the genome that are transcribed 

and spliced into mature mRNA, which current estimates set at about 2 to 6%.  However, this 

apparent advantage of RNA-Seq in practice is not so straightforward.  Indeed, determining the 

depth of sequencing needed to completely assess the extent of transcription in complex 

organisms is complicated by the high dynamic range of gene expression, the presence of 

alternatively spliced transcripts, and the biological condition of the transcriptome, that is, cell 

types or environmental conditions [1]. 

 RNA-Seq can be used effectively to detect fusion transcripts.  Maher et al. discovered 

novel fusion transcripts using single-end reads of various lengths [62].  This approach nominated 

multiple candidates such as SLC45A3-ELK4, which was independently confirmed as a common 

“read-through” transcript identified in prostate cancer (i.e. fusion transcripts resulting by two 

nearby genes without any genomic rearrangement [31]).  This and other non-genomic events of 

adjacent or neighbouring genes appear to be common.  Maher et al. showed in principle how to 
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use RNA-Seq for discovering fusion transcripts.  They used two single-end sequencing platforms, 

which is rather infeasible in terms of both cost and labor efforts [62].  Since then, Paired-End (PE) 

RNA-Seq has been introduced and has received broader attention for transcriptome profiling 

bringing with it a great potential to accelerate fusion discoveries [23, 63]. 

 The concept of sequencing both ends of a fragment, either cDNA or genomic DNA, was 

introduced in the context of the identification of structural variants (SVs) [72–75].  Such events are 

among the basic mechanisms generating fusion transcripts.  The main advantage of PE reads is 

that the connectivity information between the sequenced ends is available.  PE sequencing is 

thus the obvious method to employ for identifying fusion transcripts.  In a path-breaking study, 

Maher et al. [23] analyzed PE RNA-Seq data and demonstrated the feasibility of this technology 

to confirm known gene fusions and identify novel fusion transcripts.  Their study also confirmed 

the need for a systematic analysis accounting for computational complexity and statistical 

significance.  The method proposed, however, relies on the distance between the two ends of a 

transcript fragment (insert size).  This idea, inspired by structural variant analysis, cannot be 

directly translated to the transcriptome analysis in order to obtain an accurate description of all 

the occurring events.  The main reason is the complexity of the transcription, and in particular the 

splicing of introns, that can lead to read pairs spanning several exons. 

 Two more recent studies focus on the identification of novel splice junctions from RNA-

Seq data [76, 77].  This problem is related to the discovery of fusion transcripts because, in 

principle, a “splice junction” can indeed join two different genes and thus suggest a fusion event.  

Although these methods can in principle be applied for the discovery of fusion transcripts, they 

mainly focus on the mapping of the reads.  They do not analyze the impact of artifacts 

independent from the mapping procedure on the detection of fusion transcripts, such as the 

random pairing of transcript fragments during sample preparation (see Materials and methods).  

These tools also do not provide a means to summarize the results of the detection of potential 

fusion transcripts.  Finally, the experimenter would not have the flexibility of using other mapping 
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tools that may provide complementary information.  Specifically, SplitSeek is currently available 

only for AB/SOLiD [78].   

 To address these issues, we developed FusionSeq: a novel computational suite whose 

aim is to detect candidate fusion transcripts by analyzing PE RNA-Seq data 

(http://rnaseq.gersteinlab.org/fusionseq).  FusionSeq is mapping independent as much as 

possible, such that it is not bound to a single platform or mapping approach.  It accounts for 

several sources of errors in order to provide a high-confidence list of fusion candidates, which are 

also scored by using several statistics to prioritize experimental validation.  FusionSeq also 

includes tools to summarize and present its results integrated into a web browser.  Furthermore, 

we sequenced an appropriate data set to calibrate this approach, comprising mostly human 

prostate cancer tissues with and without known fusion events. 

4.2 Results 

4.2.1 Mapping the reads 
 The first step when dealing with next-generation sequencing is the alignment of the reads 

against known reference sequences.  Here the main challenge is how to map millions of reads in 

a computationally efficient way.  Several alignment tools have been developed and, since this 

research field is quite active, it is likely that improved or new tools will be introduced.  In addition, 

a variety of mapping strategies can be employed.  As an example, a splice junction library may be 

employed along with the reference genome to identify reads bridging exons.  Our goal is to 

develop a method that is independent as much as possible from mapping strategies and 

alignment tools.  As a test, we tried a variety of alignment tools and approaches, all yielding 

consistent results, thus demonstrating the robustness of FusionSeq.  For simplicity, we here 

report the results obtained by mapping the reads to the genome with ELAND, the standard 

program supplied with the Illumina platform (see Materials and methods).  Table 4.1 reports the 

results of the mapping step. 
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Table 4.1 Results of the alignment step.  Total number of PE reads, number of mapped PE reads and the percentage 
mapped are reported.  Note that the number of single-end reads is double the number of PE reads. 

4.2.2 Overall modular framework 
 The overall schematic of our approach is depicted in Figure 4.1. It consists of three 

modules. 

4.2.3 Module #1: fusion transcript detection 
 This module only assumes that the PE reads have been aligned and their location is 

known.  It identifies the set of candidate fusions from the mapped sequence reads.  Conceptually, 

it consists of three steps (Figure 4.1A):  (1) poor quality reads are removed;  (2) PE reads that 

map to the same gene are considered part of the normal transcriptome;  (3) PE reads that map to 

different genes are selected as potential candidate fusion transcripts; also, reads that do not align 

anywhere are stored for the computational validation of the candidates and for determining the 

sequence of the junctions.  Note that the mapping of the reads can occur anywhere within a gene: 

exons, introns or splice junctions. 
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Figure 4.1 Schematic of FusionSeq.  (A) The PE reads are processed to identify potential fusion candidates.  Poor 
quality reads are discarded at first, and the remaining PE reads are aligned to the reference human genome (hg18).  The 
reads are compared to the annotation set (UCSC knownGenes; [79]) in order to classify them as belonging to the same 
gene or to different genes.  Those aligned to two different genes are then selected as potential fusion candidates.  All 
good quality single-end reads are also stored for the identification of the sequence of the junction.  (B) The filtration 
cascade module analyzes the candidates and removes those that have high sequence homology between the two genes 
or a higher insert-size compared to the transcriptome norm.  Additional filters are employed to remove candidates due to 
random pairing and misalignment as well as PCR artifacts and annotation inconsistencies.  The high-confidence list of 
candidates is then scored and processed to find the sequence of the junction.  (C) The junction-sequence identifier 
detects the actual sequence at the breakpoints by constructing a fusion junction library.  It first covers the regions of the 
potential breakpoint of each gene with “tiles” 1bp apart, and then creates all possible combinations, considering both 
orientation of the fusion, namely gene A upstream of gene B and vice versa.  All single-end reads are then aligned to the 
fusion junction library and the junction with the highest support is identified as the sequence of the fusion transcript 
junction. 

 We employ a reference annotation set (University of California Santa Cruz - UCSC 

Known Genes [79]) and classify each single-end of a PE read into different categories depending 

of what parts of the gene is mapped to: exon, intron, splice junction or boundary.  The latter case 

corresponds to reads that might be mapped to the genomic boundary of an exon - for example, in 

the case of a retained intron or when pre-mRNA is sequenced.  

4.2.4 Module #2: filtration cascade 
 Several types of noise can introduce artifacts at any stage of the sequencing and analysis 

process.  Hence, we developed a number of different filters to reduce the problem of artificial 

chimeric transcripts (see Figure 4.1B).  Additional filters that are specific to the reference 

annotation set are also employed.   

4.2.4.1 Misalignment filters 
 The reads can be mapped to a different location on the genome compared to where they 

were generated, mainly because of the sequence similarity of regions in the genome (paralogs, 

pseudogenes, repetitive elements).  Indeed, it is possible that single nucleotide polymorphisms 

(SNPs), RNA editing, or errors in the base caller can lead to misalignment of one of the ends 

resulting in artificial chimeric transcripts.  This issue is particularly relevant in the intermediate 

range of sequencing depth (1-100M reads), which FusionSeq has been designed for.  We 

devised three filters to deal with this issue of sequence similarity, briefly described hereafter (see 

Materials and methods for detail).   
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4.2.4.1.1  Large scale sequence similarity filter 

 If the two genes of a candidate fusion transcript are paralogous, they are discarded 

because of this homology potentially causing a misalignment.  We use TreeFam to identify these 

candidates and remove them from the list [80, 81]. 

4.2.4.1.2  Small scale sequence similarity filter 

 The above filter seeks broad similarities between two transcripts.  However, it may be 

possible that there is high similarity between small regions within the two genes where the reads 

actually map.  To identify these cases, for each of the candidate chimeric transcripts, the reads 

aligned to one gene are searched for sequence similarity against the corresponding partner.  If 

high similarity is found, the pair is removed (Materials and methods). 

4.2.4.1.2  Repetitive regions filter 

 Some reads may be aligned to repetitive regions in the genome, due to the low sequence 

complexity of those regions and may result in artificial fusion candidates.  We thus remove reads 

mapped to those regions (Materials and methods). 

4.2.4.2 Abnormal insert size filter 
 The filters described so far deal with computationally generated artifacts.  However, some 

artifacts can be intrinsic to the experimental protocol.  Library preparation typically requires the 

fragmentation of the cDNA.  This may result in the generation of random chimeric transcripts 

when inefficient A-tailing may lead to the ligation of random cDNA molecules [82].  This issue 

affects more highly expressed genes.  The Abnormal Insert Size filter addresses this problem by 

exploiting the fact that the transcript fragments have approximately the same size because a size-

selection step is typically part of the experimental protocol.  We could filter the set of candidate 

fusion transcripts by selecting those paired reads having an insert size - that is, the distance 

between the two mapped reads - comparable to the fragment size and by excluding those with a 

much higher insert size, somewhat resembling the approach for determining DNA structural 

variants [72, 83–85].  However, this approach is based on the fact that the alignment of genomic 
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PE reads to the genome reflects its linearity, where any deviation from this “nominal” insert size 

will be considered abnormal (Figure 4.2A).  These approaches cannot be directly translated to 

RNA-Seq analysis because of at least three additional layers of complexity: i) the splicing 

mechanism of the transcription; ii) the genome of the individual, which contains some differences 

from the reference genome; and iii) the cancer genome of the same individual, which can include 

additional somatic variations (Figure 4.2B).  

 

 

Figure 4.2 Insert-size analysis.  (A) The insert-size computation can help identifying structural variations such as 
insertions and deletions, by comparing to the normal insert-size distribution.  Deletions will result in bigger insert sizes, 
whereas insertions are characterized by smaller insert sizes.  (B) The direct application of this principle to the 
transcriptome is not possible.  Three layers of complexity compared to the reference genome can prevent the direct use of 
the insert-size analysis: 1. germline variations of the individual genome; 2. somatic variations of the cancer genome; and 
3. splicing and alternative splicing.  If PE reads are mapped to the transcriptome (unknown) the insert-size of normal 
transcripts will be comparable to the fragment size.  However, since PE reads are mapped to the genome, the insert size 
is not meaningful anymore.  PE reads of normal spliced genes may have a bigger insert size (hashed light blue) compared 
to PE reads of fused genes (hashed blue-yellow).  Hashed symbols highlight the correspondence of the reads from the 
transcriptome to the genome. 
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 We devised a method to address some of these issues and still make use of this concept 

to identify true chimeric transcripts. We first introduce the concept of the “composite model” of a 

gene - that is, the union of all exons from all known isoforms of a gene - and then we define the 

“minimal fusion transcript fragment” (Figure 4.3).  This is generated by using all PE reads bridging 

the two different genes.  It is important to note that in the case of a real fusion transcript, we can 

only identify the region around the fusion junction.  Reads generated by a fusion transcript that 

are distant from the junction will be assigned to one gene or the other.  For a real chimeric 

transcript, the minimal fusion transcript fragment will thus capture the region around the 

breakpoint and the insert-size distribution computed on it will be similar to the insert size 

distribution of normal transcripts.  Conversely, for an artifactual chimeric transcript, paired reads 

would randomly join the two genes from all different parts (Figure 4.3B – right).  The minimal 

fusion transcript fragment would be bigger than the expected fragment.  Hence, the insert-size 

distribution computed on this minimal fusion transcript fragment will be higher than that of normal 

transcripts, i.e. abnormal.  The normal insert-size distribution can be estimated from the data by 

using the composite models of all genes (see Materials and methods). 
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Figure 4.3 Abnormal insert-size principle applied to transcriptome data.  (A) The composite model of a gene is 
created via the union of the exonic nucleotides from all its isoforms.  By using the composite model, we can exploit the 
abnormal insert-size principle.  (B) A minimal fusion transcript fragment is created by connecting the regions of the two 
genes joined by PE reads.  Subsequently, the insert-size of these chimeric PE reads is computed and compared to the 
insert-size distribution of PE reads in the normal transcriptome.  The higher insert-size compared to the transcriptome 
norm would suggest an artifact since it may be due by the random joining of fragments during library generation. 

4.2.4.3 Filters for removing misalignments and random pairings 
 An additional complication is the possibility that random pairing and misalignment occur 

together.  Highly expressed genes may generate transcript fragments that randomly join with 

another gene.  In addition, misalignment can affect the correct identification of the genes involved 

in this random pairing.  This is particularly challenging because only a fraction of the reads from 

random pairing will be misaligned; specifically, those with high similarity to another region of the 

genome.  This would result in PE reads bridging relatively small regions that can escape the 

Abnormal Insert Size filter.  Hence, we devised two additional filters: one comparing the 

candidates to the typically highly expressed ribosomal genes, and the other assessing the 

consistency of the expression levels of the individual genes of a chimeric transcript (see Materials 

and methods).  
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4.2.4.4 PCR filter 
 Most library preparations also require a PCR amplification step.  This may lead to 

potentially artifactual fusion candidates when the same read is over-represented, yielding to a 

“spike-in-like” signal, i.e. a narrow signal with a high peak.  To reduce this effect, we filter 

candidates that have chimeric reads piling up in a small region (see Materials and methods).  

4.2.5 Module #3: junction sequence identifier 
 After the identification of high-quality candidate fusion transcripts, we can seek the overall 

support of those candidates taking advantage of the pool of all single-end reads.  This process 

also allows the identification of the exact sequence of the fusion transcript junction.  The 

knowledge of the actual junction sequence has many uses.  First, it can help to identify the actual 

regions that are connected in the fusion transcript.  Second, it helps in subsequent experimental 

validation, for example by RT-PCR.  Finally, it can provide additional evidence for the fusion 

transcript or can be used to rule out artifacts.  

 In order to identify the junction sequence, we build a “fusion junction library” and align all 

single-end reads to this library (Figure 4.1C).  To be computationally efficient, we first identify the 

regions where the potential breakpoints are using the information from the PE reads bridging the 

two genes.  The exact size of the regions bears greatly on the resulting complexity of the potential 

fusion transcript and the computational power (see Materials and methods).  Then, we cover 

these regions with “tiles” that are spaced 1bp apart and, finally, we generate the fusion junction 

library by creating all pair-wise connections between these tiles.  The rationale is that the correct 

junction sequence will correspond to one of these connected tiles and that there will be full-length 

single-end reads that will align to that sequence (see Materials and methods).   

4.2.6 Scoring the candidates 
 Although FusionSeq filters out many spurious fusion candidates, some may still be 

present, especially random chimeric transcripts generated during sample preparation.  Hence, 

candidates are scored based on their likelihood to be real allowing prioritization of validation 
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experiments.  The first obvious measure is simply the number of inter-transcript PE reads (mi) 

normalized by the total number of mapped PE reads (Nmapped), similarly to RPKM for measuring 

gene expression [18].  This is expressed per million mapped reads and called SPER for 

“Supportive PE Reads”. For the i-th candidate: 

! 

SPERi =
mi

Nmapped

" 106  

 This measure gives an indication of the abundance of the fusion transcript.  However, to 

assess whether a given SPER is “high” enough, we compare it with two “expected” values: one is 

analytically calculated and the other, empirically.  The first quantity is DASPER, i.e. the Difference 

between the observed and Analytically calculated expected SPER, indicating how many 

(normalized) inter-transcript PE reads we observe more than expectation.  The analytically 

calculated expected SPER (<SPER>) is based on the observation that if two ends were randomly 

joined, the probability that this occurs for gene A and gene B is proportional to the product of the 

probability that the two single-ends of the pair are mapped to gene A and gene B (see Materials 

and methods).  This scoring method takes into account fusion transcripts that might have been 

generated during sample preparation from highly expressed genes.  Obviously, the higher 

DASPER is, the more likely the fusion candidate is real. 

 The second measure is RESPER: the Ratio of Empirically computed SPERs.  The 

rationale for this measure is the comparison of the observed SPER with the SPERs of the other 

candidates.  We expect a real fusion transcript to be supported by a higher number of reads 

compared to the artifactual chimeric transcripts (see Materials and methods).  This quantity, 

contrary to DASPER, is independent from the fragment size, thus more suitable for comparisons 

across samples.  While RESPER is useful, it suffers in comparison to DASPER if a sample has 

several real fusions. 

 In summary, by computing these quantities, we can “demote” fusion candidates that may 

result from random joining of highly expressed genes (DASPER), and select those candidates 
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which “stand out” compared to the others (RESPER), thus providing a high-confidence ranked list 

of candidates. 

4.2.7 Classifying the candidates 
 FusionSeq provides a list of potential fusion candidates which are automatically classified 

into different categories depending on the genes that are involved [62]: (1) inter-chromosomal - 

two genes on different chromosomes; (2) intra-chromosomal - two genes on the same 

chromosomes. The latter can be further subclassified as: (2a) read-through candidates if the two 

genes are close neighbors on the genomes, that is, if no other gene is present between them; 

(2b) cis candidates - similar to read-through events, but the two genes are on different strands. 

 Several read-through events have been reported in the literature, although their role 

remains unclear [86].  This may also be an effect of the pervasive transcription of the genome.  

Indeed, when considering primary transcripts, more than 90% of the nucleotides of the human 

genome are transcribed [60].  Although the RNA-Seq protocol requires a poly-A selection step, it 

may occur that pre-mRNA fragments with stretches of adenosines are still selected and 

sequenced.  

4.2.8 FusionSeq applied to prostate cancer samples 
 In order to develop and calibrate FusionSeq, we selected a set of prostate cancer tissues 

harboring the common TMPRSS2-ERG fusion, others with less common fusions (SLC45A3-ERG, 

NDRG1-ERG) and prostate cancers with no evidence of known ETS fusions.  We also sequenced 

a prostate cancer cell line with the TMPRSS2-ERG fusion (NCI-H660) and a lymphoblastoid cell 

line (GM12878) that was selected for the HapMap project and employed by the ENCODE project 

as controls.  This normal cell line is not expected to have gene fusions (Table 4.1).  Overall, 

FusionSeq takes about two hours to analyze 20M mapped reads.  More details about the 

computational complexity are discussed in Materials and methods. 
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4.2.8.1 Fusion candidates 
 The application of FusionSeq to the above samples resulted in the identification of 12 

fusion candidates on average per sample with SPER greater than 1 (range 0-25).  Considering 

the top candidate for each sample, the average SPER is 13.99 for those with known ERG 

rearrangements and 3.09 for those without known fusions (Table 4.2).  The vast majority of 

candidate fusions are intra-chromosomal - they occur between genes that are on the same 

chromosome - with the majority being read-through events. 

 The most common fusion, TMPRSS2-ERG, is ranked at the top of the list.  The other 

known fusions between ERG and other 5' partners, namely SLC45A3 and NDRG1, are also 

included in the top candidates.  The remaining candidates appear to be read-through events, 

including ZNF649-ZNF577 (Table 4.2).  
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Table 4.2 Summary of fusion candidates. SPER, DASPER, and RESPER are provided for the top candidates with 
DASPER > 0 and RESPER > 1 across all prostate cancer tissue samples. In bold, the known gene fusions, in italic the 
confirmed read-through events either experimentally or via additional evidence such as EST or mRNA from GenBank. 

 Although the candidates are ranked by RESPER, it is worth noting that the TMPRSS2-

ERG fusion has high values for both SPER and DASPER, as expected.  These statistics are 

almost equivalent for the top candidates; however, they substantially differ in the case of artifacts 

given by highly expressed genes, suggesting the effectiveness of DASPER in identifying those 

cases.  Indicatively, DASPER and RESPER values greater than 1 seem to conservatively select 
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for true chimeric events, with 16 out of 19 candidates (84%) being either experimentally confirmed 

or with EST evidence.  

 We find a second candidate fusion transcript involving ERG and GMPR in sample 

1700_D in addition to TMPRSS2-ERG.  By analyzing the regions that are connected, it seems 

that the exons not involved in the TMPRSS2-ERG fusion are linked to GMPR, suggesting that 

ERG undergoes a balanced translocation.  This novel finding was experimentally validated (as 

shown in Figure 4.4). 

 

Figure 4.4 Novel fusion candidate: experimental validation.  Transcripts of ERG-GMPR fusion were amplified by PCR 
using forward primer in ERG exon 2 and using reverse primer in GMPR exon 8. The schematic reports the ERG-GMPR 
fusion transcript along with the Sanger sequencing result representing the breakpoint sequence. Also, a schematic of 
ERG fusions by translocating 3' sequences to TMPRSS2 gene on chr21 and 5' sequences to GMPR gene on chr6 is 
reported. 

 Another novel finding is the fusion transcript involving PIGU and ALG5 that was also 

experimentally confirmed [87].  Finally, there is one cis candidate, including AX747861 and FLI1, 

which may suggest some complex rearrangement (Materials and methods).  However, from EST 

data there is evidence that this may correspond to a single FLI1 transcript, thus suggesting an 
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artifact caused by the annotation set.  Although FusionSeq can properly handle such cases with 

the annotation filters, we report it here as an example of how the framework can be employed to 

refine the search of candidate fusion transcripts and help the experimenter screen this list. 

4.2.8.2 Effects of the filters 
 The application of the filters reduced the number of candidates identified by the fusion 

detection module.  Out of a total of 7342 candidates, only 133 candidates passed all the filters, 

i.e. a reduction of 98% (average number of identified candidates per sample = 917.75, range 

[451-1618] – average number of candidates per sample after filtering = 16.63, range [4-41]).  In 

Figure 4.5A, we summarize the effect of the filters.  Each filter reduces the number of potential 

candidates to some extent, indicating that they address these issues.  We experimentally verified 

that some of the candidates filtered out or with negative DASPER are artifactual. 
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Figure 4.5 Filtration cascade module.  (A) The average percentage of candidates identified by the fusion detection 
module that are removed by each filter is reported.  The labels also depict the order the filters have been applied in this 
case (counter-clockwise starting from the RepeatMasker filter), but it is worth noting that the order of the application of the 
filters does not affect the final list of candidates.  (B) RESPER vs. depth of sequencing.  The plot shows the RESPER 
values for SLC45A3-ERG, a real fusion transcript, and P4HB-KLK3, an artifact likely created by the random pairing due to 
the high expression of KLK3 at different sequencing depths. 
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4.2.8.3 Sequencing depth and detection of fusion candidates 
 We investigated the effect of the number of mapped reads on the detection of fusion 

transcript.  We randomly sampled fractions of mapped reads from sample 2621_D, and applied 

FusionSeq to the reduced data sets (see Materials and methods).  The top candidate is always 

SLC45A3-ERG with an increasing RESPER, as expected (Figure 4.5B).  That RESPER 

increases with increasing sequencing depth is an indicator that the real fusion transcript stands 

out compared to the background.  Although the number of fusion candidates increases as well, 

the DASPER for the majority of other candidates is negative, suggesting that they are artifacts.  

4.2.8.4 TMPRSS2-ERG fusion positive prostate cancer tissues 
 For all the TMPRSS2-ERG positive prostate cancer tissues, FusionSeq always detects 

this fusion transcript at the top of the list.  Figure 4.6A shows the PE reads bridging the two genes 

for the 3 tissue samples and the cell line harboring the fusion for the entire region between 

TMPRSS2 and ERG.  It is worth noting that the regions connected by the PE reads are different 

across the samples, suggesting the presence of different TMPRSS2-ERG isoforms.  

4.2.8.5 Exon expression 
 The expression of a fusion transcript should also be reflected in the intensity of the signal 

at the exon level.  Specifically, if a fusion transcript does not include some exons of the “wild-type” 

gene, the expression of those excluded exons should be lower compared to that of exons part of 

the fusion transcript.  This observation was originally reported by Tomlins et al. [33] using a 

standard exon walking experiment and has been confirmed using exon arrays [88].  
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Figure 4.6 Results of FusionSeq.  (A) A subset of the PE reads connecting TMPRSS2 and ERG are shown for 4 
samples (106_T, NCI-H660, 1700_D, 580_B).  (B) PE reads connecting ERG and SLC45A3 for sample 2621_D.  The 
outer circle reports all chromosomes, whereas the inset shows only the region of ERG and SLC45A3.  The gray lines 
depict the intra-transcript PE reads, whereas the red ones represent the inter-transcript PE reads.  Note that for illustration 
purposes, only the inter-transcript reads are shown for SLC45A3.  The inset also depicts the composite model (blue line) 
and its exons (green boxes).  (C) Results of the junction-sequence identifier.  The location of the breakpoints for the 4 
samples with the TMPRSS2-ERG fusion are reported as bars (not to scale).  Moreover, the sequence of the junctions as 
well as a subset of the aligned reads for 2 samples is reported (106_T, 580_B).  (D) The locations of the PCR primers 
used for the validation are depicted as red arrows.  The isoforms consist of TMPRSS2 and ERG exons fused to form 
different exon combinations as depicted schematically.  For both samples NCI-H660 and 1700_D, isoform III is detected, 
whereas, for samples 106_T and 580_B, isoforms I and VI are determined, respectively [89, 90].  The transcript isoforms 
were validated by a PCR assay for each sample separately (gel images).  A 50 bp length standard (lane 1) is shown here 
for the determination of the approximate fragment size. The identity of the PCR products was validated by Sanger 
sequencing. 
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 For illustration purposes, Figure 4.7 shows the expression values (RPKM) for the exons 

of ERG and TMPRSS2.  It is common that the expression of ERG is driven by its fusion with a 5' 

partner.  Hence, we can expect that the major expression signal is due to the fusion transcript.  

Indeed, the expression signal of the exons involved in the fusion transcript is higher than that of 

the region excluded.  A similar conclusion is obtained when looking at TMPRSS2. 

 

Figure 4.7 Expression values of the exons of TMPRSS2 and ERG.  The RPKM values computed on each exons of 
ERG (isoform NM_004449.4) and TMPRSS2 (isoform NM_005656.3) are shown as stacked bars for the 4 samples with 
TMPRSS2-ERG fusion.  For illustration purposes, the exons included in the most common fusion isoforms are labeled as 
“FUSED”. 

4.2.8.6 Junction-sequence identification analysis 
 Figure 4.6C shows the results of the junction-sequence identifier module for the 4 

samples with TMPRSS2-ERG fusion.  The main breakpoints are detected for both TMPRSS2 and 

ERG.  This allows the determination of the correct fusion isoform, which was experimentally 

validated with RT-PCR (Figure 4.6D).  By taking a closer look at the junction-sequence 

identification results, a second potential breakpoint for sample 1700_D can be detected, albeit 

with much fewer number of reads (5 compared to 320 for the main breakpoint) (Figure 4.8A).  The 

reads supporting it are uniformly distributed across the junction, suggesting that it is a real 

breakpoint and that multiple fusion variants are present.  This finding has been validated with RT-

PCR using a primer specific to this junction (Figure 4.8B).  
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Figure 4.8 Validation of the minor breakpoint.  (A) The location of the breakpoints and the sequences of the junctions 
as well as a subset of the aligned reads is reported. The minor breakpoint between TMPRSS2 exon 1 and ERG exon 6b 
in sample 1700_D is consistent with the expression of isoform IV.  (B) A PCR assay designed specifically for isoform IV, 
detects a single 95bp PCR product. 

4.2.8.7 ERG rearranged cases with different 5' partners 
 We analyzed two other ERG rearranged cases where the 5' partner of ERG is different 

from TMPRSS2.  We previously reported the discovery of a novel rearrangement between ERG 

and NDRG1 for sample 99_T, resulting from the focused analysis of PE RNA-Seq restricted to 

the specific region of ERG [63].  With the current method that performs a genome-wide analysis, 

we confirmed the NDRG1-ERG fusion transcript as the top candidate (Table 4.2).  Furthermore, 

we applied FusionSeq to another ERG rearranged sample, 2621_D, identifying SLC45A3-ERG as 

top candidate (Table 4.2 and Figure 4.6B).  
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4.2.8.8 ERG rearranged negative case and normal cell line 
 When applied to the sample without known fusion transcripts (1043_D), FusionSeq 

detected only a few candidates, the top being the read-through event between ZNF577 and 

ZNF649, which is common in all prostate tissues here analyzed and has been already 

documented [62].  For the GM12878 cell line, it is noteworthy that, despite having more than 20M 

mapped PE reads, none of the few candidates (n=4) have a SPER higher than 0.3, as expected 

being a normal cell line.  The read-through event with positive DASPER appears to be a mis-

annotation of the untranslated regions (UTRs) (BC110369-BC080605), whereas the inter-

chromosomal candidates have a negative DASPER, suggesting that they may be due to random 

chimeric pairing. Indeed, one of the genes involved is a highly expressed gene: ACTG1, with an 

RPKM > 232,000 [18].  Furthermore, the junction-sequence identifier analysis does not yield any 

result. 

4.2.9 Simulation results 
 In addition to experimental evidence, we also performed a simulation study to assess 

FusionSeq performance.  We employed the GM12878 cell line as an estimate of the background 

because it is not expected to harbor any fusion transcripts.  We randomly generated inter-

transcript reads thus simulating the presence of fusion transcripts and added these PE reads to 

the pool of the actual PE reads of the GM12878 cell line data.  The results showed that a 

DASPER score greater than 1 achieves high sensitivity (0.80) even if the fusion transcript is 

expressed at half the “wild-type” allele (F=0.5) with an Area Under the ROC curve (AUC) higher 

than 0.95.   

4.3 Conclusions 
 Gene fusions have been considered the key molecular event in leukemias, lymphomas, 

and some soft tissue tumor (i.e., sarcomas).  With the 2005 discovery of common recurrent gene 

fusions in prostate cancer, there exists a strong likelihood that recurrent gene fusions are present 

in common epithelial cancers [33].  Numerous studies have now confirmed that approximately 



 64 

50% of prostate cancers harbor a recurrent fusion between TMPRSS2 and ERG or ETV1 [91].  In 

an attempt to identify these fusion events, we employed PE RNA-Seq technology exploiting the 

connectivity information of the two ends of transcript fragments.  As is the case of other 

applications of deep sequencing, considerations of computational complexity and statistical 

significance are mandatory. 

4.3.1 FusionSeq: a modular framework 
 In the current study, we describe FusionSeq, a novel computational and statistical 

framework to identify fusion transcripts by analyzing PE RNA-Seq data.  This framework consists 

of three modules: a fusion transcript detection module; a filtration cascade module, which is 

composed of a set of filters that remove different types of artifacts and rank the candidates by 

different scores; and a junction-sequence identifier module, which detects the actual sequence of 

the fusion junction. 

 Among the advantages of our method is the decoupling of the alignment approach from 

the identification of candidate fusion transcripts.  Indeed, we developed FusionSeq to be 

independent from the alignment tool and the mapping strategy as much as possible.  Other 

methods proposed that could potentially identify fusion transcript requires a particular choice of 

the mapping tool or platform and do not provide any considerations about artifactual fusion 

transcripts generated by the sequencing protocol [76, 78].  To this end, we develop a set of filters 

to remove artifactual candidates generated by several sources of errors (see Materials and 

methods), which are particularly relevant in the intermediate range of sequencing depth (1-100M 

reads).  It is likely that with higher coverage those issues will impact the analysis less since one 

can use the statistics of the higher coverage to overcome errors. 

 Of further interest is also the ability of this method to identify the sequence of the junction 

of the fusion transcript using the full read length.  This valuable information allowed us to detect 

and then experimentally confirm the simultaneous presence of multiple fusion isoforms within a 

single cancer tissue.  Moreover, it enables the experimentalist to narrow the genomic region to 

look at for the subsequent validation of the fusion candidate.  All validated fusions in this data set 
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have breakpoints lying at the exon boundary. This might indicate that, in case of genomic 

rearrangement, the splicing machinery is still active and removes the intronic regions harboring 

the actual genomic breakpoints.  Hence, we speculate that insertions or deletions that typically 

occur at genomic breakpoints might not affect the junction of the fusion transcript.  

4.3.2 Scoring the candidates 
 One of the novel features introduced by FusionSeq is the computation of scores to assign 

a “confidence value” to the fusion candidates.  We propose a classification and scoring approach 

to prioritize the selection of candidates for experimental validation (see Materials and methods).  

 We envision that researchers seeking gene fusions can use this tool to focus their efforts 

on the candidates with the top scores.  Validation typically includes seeking confirmation of the 

putative fusion sequence using standard PCR assays and traditional sequencing as well as 

exploring for a corresponding genomic rearrangement at the DNA level using such approaches as 

fluorescence in situ hybridization (FISH).  

4.3.3 Sample set 
 One important aspect of this study is that we tested FusionSeq on data generated from 

cancer samples derived from human tumors and not only cell lines.  Clearly these types of 

samples are more challenging given their heterogeneity as they may include tumor, stromal, and 

endothelial cells.  We have used a set of prostate cancer samples with and without the 

TMPRSS2-ERG fusion transcript to calibrate FusionSeq.  This well-characterized gene fusion 

was not only detected where present, but the junction sequence identifier also detected the 

correct junctions, thus enabling the determination of the specific isoform variants.  Moreover, we 

observed that one sample had multiple variants. 

 Understanding the complexity of isoform splicing in cancer may not only add insight into 

biology, but may also have useful prognostic information as it has been suggested that some 

TMPRSS2-ERG isoforms play a distinct role in prostate cancer development [89, 92]. 
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 Furthermore, FusionSeq identified two novel events (ERG-GMPR and PIGU-ALG5), 

demonstrating that our procedure is able to find new fusions in addition to well-characterized 

ones. 

4.3.4 Reporting the results 
 FusionSeq also includes tools to access and display the results of the analysis through a 

web-browser by seamlessly integrating the UCSC Genome Browser.  Moreover, to display inter-

chromosomal events, which is currently not possible in the UCSC Genome Browser, we 

developed SeqViz, a visualization tool based on Circos [93], an open source software particular 

suited for this purpose (see Materials and methods). These web-based interface tools enable the 

user to quickly access the information provided by FusionSeq, an aspect that greatly increase its 

applicability in comparison to other related tools [76, 78]. 

4.3.5 Future directions 
 Although we demonstrated the feasibility of this approach using several cancer tumor 

samples, there are some limitations to the current approach.  The fusion transcript detection 

module is based on a gene annotation set that provides the information of the genes and their 

isoforms.  Although the framework is flexible and the choice of which annotation to use is left to 

the user, the identification of the candidate fusion is of course limited to this set.  We employed 

the UCSC knownGenes set, which contains 66,803 isoforms.  We believe that this is a 

reasonable choice and that the use of a different annotation set would not dramatically change 

our results. 

 Although FusionSeq is independent from the mapping strategy adopted, it is likely that 

different mapping approaches would make use of the filtration cascade differently.  As an 

example, if the alignment procedure explicitly excludes repetitive regions, the filter using 

RepeatMasker will impact on the final list of candidates to a lesser extent.  This is why the 

modularity of FusionSeq allows the users to adapt the framework to their specific goals.  
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 We anticipate that FusionSeq will benefit from the availability of longer sequence reads 

and deeper sequencing, with an increased ability to identify and score novel fusion events from 

RNA-Seq data.   

4.4 Materials and methods 

4.4.1 Prostate cancer selection and RNA extraction 
 All the prostate cancer samples were collected under an IRB (Institutional Review Board) 

approved protocol.  Hematoxylin and eosin (H&E) slides were prepared from frozen tissue blocks 

and evaluated for cancer extent and tumor grade by the study pathologist (MAR).  To ensure high 

purity of cancer cells and minimize benign tissue, tumor isolation was performed by first selecting 

for high-density cancer foci (< 10% stromal or other non-tumor tissue contamination) and then 

taking 1.5 mm biopsy cores from the frozen tissue block for RNA extraction using TRIzol Reagent 

(Invitrogen, Carlsbad, CA, USA).  The RNA extract was then subjected to DNase treatment using 

a DNA-free™ Kit (Applied Biosystems/Ambion, Austin, TX, USA).  The quality of RNA was 

assessed using the RNA 6000 Nano Kit on a Bioanalyzer 2100 (Agilent Technologies, Santa 

Clara, CA, USA). Up to 10 μg of RNA with RIN (RNA integrity number) ≥7 was determined 

suitable for sample preparation.  

4.4.2 Sample preparation 
 The samples were prepared in accordance with the Illumina RNA sample preparation 

protocol (Part # 1004898 Rev. A September 2008).  Briefly, mRNAs were fragmented at elevated 

temperature using divalent cations and transcribed into cDNA thereby generating a library of 

cDNA fragments.  RNA-Seq adapters were then ligated to the blunt ends of the cDNA fragments. 

The library of cDNA fragments subsequently underwent a size-selection step in which cDNAs 

were first electrophoresed through a 2.5% agarose gel in TAE buffer.  Then, the desired fragment 

size products (200 bp or 300 bp) were retrieved from the gel and subjected to PCR amplification 

using universal primer sites present at the end of the ligated adapters.  The library was then 
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subjected to quality control steps such as verification of fragment size and concentration 

measurements using the DNA 1000 Kit (Agilent Technologies) on an Agilent 2100 Bioanalyzer. 

 All samples were sequenced using one lane of an Illumina Genome Analyzer II (GAII) 

flowcell, except for GM12878, which was sequenced using 2 lanes.  Since the experiments were 

performed over several months as Illumina introduced advances to the GAII platform, the total 

number of reads and the read length vary (see Table 4.1).  However, all samples were prepared 

following the same protocol. 

4.4.3 Validation of TMPRSS2-ERG fusion isoforms with PCRs 
 Aliquots from the same RNA stock were used for both RNA-Seq and PCR validation by 

conventional reverse-transcription PCR.  RNA was reverse transcribed using a High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA).  The TMPRSS2-

ERG PCR was performed using Platinum Taq DNA Polymerase (Invitrogen) with 1 mM MgCl2, 

0.1 μM of each primer (forward, TMPRSS2 exon 1 - TAGGCGCGAGCTAAGCAGGAG; reverse, 

ERG exon 5 - GTAGGCACACTCAAACAACGACTGG; as published by Tomlins et al. [33]) and 50 

ng cDNA at an annealing temperature (Ta) of 63°C for 35 cycles and the PCR products were 

separated on a 2.5% agarose gel.  For TMPRSS2-ERG isoform IV, the PCR was performed, 

using a reverse primer specifically designed for the detection of isoform IV 

(TGCATTCATCAGGAGAGTTCCTGC), under the same conditions but with Ta 55°C and 40 

cycles.  The obtained products were isolated from the gel using the MinElute™ Gel Extraction Kit 

(Qiagen, Valencia, CA, USA) and subsequently sent for Sanger sequencing at the Core facility of 

Cornell University (Ithaca, NY, USA). 

4.4.4 Mapping 
 We employed ELAND to map the PE reads against the Human Reference Genome 

(March 2006 Assembly - hg18).  We allowed for up to two mismatches of the alignment and 

selected reads that passed the quality filter from ELAND.  In case of pairs mapped to the same 

chromosome, we selected reads aligned to opposite strands.  We also employed bowtie to map 
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the reads to the human genome sequence [94].  Since bowtie does not allow PE reads to be 

mapped on different chromosomes, we adopted the following strategy: the two ends were 

mapped separately to the genome and the best alignment was selected among the top 10 

candidates in the case of mapping to multiple locations.  Two mismatches were allowed for 

bowtie too. Then, the two ends were paired together, if both ends were aligned.  Moreover, for 

comparison purposes, we mapped the reads to a splice junction and a ribosomal library in 

addition to the genome.  

4.4.5 Filtration cascade 

4.4.5.1 Large scale sequence similarity filter 
 Two paralogous genes resulting as fusion candidates are discarded because of their 

homology can potentially cause a misalignment.  We use TreeFam to identify and remove these 

candidates [80, 81].  TreeFam is a database of phylogenetic trees of animal genes with the aim of 

providing a curated list of orthologs and paralogs. 

44.5.2 Small scale sequence similarity filter 
 The above filter seeks broad similarities between two transcripts.  However, it may be 

possible that there is high similarity between small regions within the two genes where the reads 

actually map.  Hence, to search for similar sequences within the two candidate genes, we 

employed a two-step strategy.  We first perform a fast search of the reads aligned to one gene 

against the full transcriptome, represented by all composite models, using bowtie [94].  If more 

than a user-defined threshold (default: 1%) of the reads mapped to one gene “hit” the partner 

gene, the candidate is discarded.  This approach removes candidates where the reads have high 

similarity, since bowtie allows up to 3 mismatches only.  For those candidates not filtered out by 

this approach, a second, more refined comparison is performed.  We align the reads mapped to 

one gene to its partner's sequence by using BLAT [95].  If the fraction of reads that have 

similarities to the corresponding partner is higher than a user-defined threshold (default: 1%) then 
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the pair is discarded.  In order to call a hit - that is, similarity to the partner gene - we require that 

at least 75% of the read has similarity to the corresponding gene. 

4.4.5.3 Repetitive regions filter 
 Some reads may be aligned to repetitive regions in the genome, due to the low sequence 

complexity of those regions and may result in artificial fusion candidates.  We thus remove reads 

mapped to repetitive regions, using RepeatMasker to identify these regions [96]. 

4.4.5.4 Abnormal insert size filter 
 The PE RNA-Seq experimental protocol requires sequencing the ends of cDNA 

molecules of a determined length: the fragment size.  If we mapped those sequenced reads to the 

transcriptome (which we do not know exactly), we would obtain an insert-size distribution, i.e. the 

distance between the two reads, similar to the fragment size.  However, since the reads are 

aligned to the reference genome, the insert-size distribution can be rather skewed (Figure 4.2B).  

Using a splice junction library does not help in this context.  Besides having potential biases given 

by the incomplete knowledge of the junctions, it cannot determine which isoform the two ends 

belong to.  The composite model allows to use the concept of the insert-size also for RNA-Seq 

data (Figure 4.3A).  The composite model is the union of all the exons from all known transcripts 

of a gene.  This ensures that all exonic nucleotides are considered.  The insert-size distribution 

computed using the composite model as reference should thus be comparable to the nominal 

fragment size selected during sample preparation (if there are more than one isoform, the insert 

size distribution computed with the composite model will be slightly shifted towards higher values 

because of the inclusion of all possible exonic regions in the composite model).  

 We then extend this concept to distinguish potentially real chimeric transcripts from 

artifactual ones.  We generate a minimal fusion transcript fragment by using all the PE reads 

bridging two different genes (Figure 4.3B).  The rationale is that the insert size distribution 

computed on this minimal fusion transcript fragment of a real chimeric transcript is similar to the 

insert size distribution of normal transcripts.  This is because we expect inter-transcript PE reads 
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to connect the regions around the junction only.  Conversely, a fusion transcript generated by 

random chimeric pairing would have a rather long minimal fusion transcript because paired reads 

would randomly join different regions of the two genes.  This, in turn, would yield a much higher 

insert-size distribution compared to that of the real case; that is, it would be abnormal. 

 Specifically, for each of the candidate chimeras, the insert-size distribution is computed 

using all paired reads mapping to the composite model of that gene: i.e. the intra-transcript insert-

size distribution.  For this purpose, only reads that are fully contained within exons are 

considered.  If a candidate has only intronic reads this filter is not applied.  Similarly, the 

“anomalous” reads, i.e. reads that bridge two different genes, are first used to create a minimal 

fusion transcript (Figure 4.3B). Note that from the PE data we cannot determine the full fusion 

transcript, but only the region nearby the actual junction of the two genes, i.e. the minimal fusion 

transcript fragment.  Then, the insert-size distribution of the minimal fusion transcript is computed 

(inter-transcript insert-size distribution) and compared with the intra-transcript insert-size 

distribution.  If the median of the inter-transcript insert-size distribution is much higher than the 

median of the intra-transcript insert-size distribution, it is likely due by misalignments.  A p-value 

is computed by randomly sampling the intra-transcript insert-size distribution.  Candidate fusion 

transcripts having a p-value lower than a user-defined cut-off are discarded as artifacts.  Note that 

the candidates that are “outliers” with respect to the intra-transcript insert-size distribution are 

discarded as artifacts, whereas, in the DNA context, those are kept as potential insertions or 

deletions (Figure 4.2A). 

 For this analysis, we used a p-value cut-off of 0.01 (corresponding to ~2.5 standard 

deviations from the transcriptome norm) for all samples, but for 2621_D, where we used a cut-off 

of 0.0001; the reason being the much tighter intra-transcript insert-size distribution given by the 

smaller fragment size compared to the other samples.  

4.4.5.5 Ribosomal filter 
 The vast majority of transcripts in the cell are ribosomal RNA.  Although the experimental 

protocol typically requires either selecting for non-ribosomal mRNA with polyA+ selection or 
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depleting of ribosomal RNAs, this process is imperfect.  This translates in a high abundance of 

ribosomal transcripts with a higher chance of generating random chimera.  If misalignment occurs 

too, this would result in artifactual candidates that appear to not involve ribosomal genes.  Hence, 

this filter compares the reads of the candidates to the ribosomal genes sequence database using 

a more sensitive alignment tool such as BLAT [95].  If the reads align to ribosomal genes, the 

candidate is removed. 

 Specifically, in order to identify reads that bear similarity to ribosomal genes but were 

mapped to another region, we require a read to have more than 75% of similarity to a ribosomal 

gene to count it as a hit. If more than 10% of reads map to the ribosomal library the candidate is 

discarded.  Note that this issue, although related, is independent from mapping strategy.  Indeed, 

even if we employ a ribosomal library during the alignment phase, there still may be reads that, 

due to misalignment, will map best to other regions of the genome.  

4.4.5.6 Expression consistency filter 
 Highly expressed genes give rise to the same issue that occurs with ribosomal genes.  

This filter compares the expression signal (i.e. number of reads) generated by the chimeric reads 

to the signal of the individual genes.  The rationale is that, in the case of a real fusion transcript, 

the two genes would be expressed at the same or higher levels than the “chimeric” signal, 

whereas, in the case of an artifactual candidate, the signal would be generated only from the 

chimeric reads and the signal of the two individual genes would be much lower.  

 In more detail, the expression signal of the fusion candidate is computed by counting the 

number or inter-transcript, i.e. chimeric, reads mapped and normalizing by the length of the region 

covered by those reads.  The expression of the individual genes is computed as the number of 

reads normalized by the length of the transcripts.  If the chimeric reads have a higher signal than 

that of the individual genes, the candidate is discarded.     
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4.4.5.7 PCR filter 
 To avoid that artifacts resulting from the PCR amplification step, we require the reads 

supporting a candidate fusion transcript to independently cover at least p nucleotides (default p = 

5) in addition to the read size on both end, otherwise the candidate is discarded.  This ensures 

that several instances of the transcripts were expressed in the cells.  In the case of sufficient 

coverage, it is also possible to compute the entropy to identify these cases and remove them. 

44.6 Junction-sequence identifier module 
 The PE reads can identify the genes involved in a fusion transcript, but cannot directly 

determine the junction sequence, because, typically, short read alignment tools do not allow 

gapped alignment for the single read.  Hence, we developed this module to take advantage of the 

fast short read alignment tools and identify the sequence of the junction in an efficient way. 

  Let us assume we have some PE reads joining gene A with gene B, thus suggesting a 

fusion event between them.  Those reads would connect regions around the junction.  For each 

gene, we thus select the region that can include the junction sequence by first considering all 

exons that can be potentially involved in the junction as well as the intronic regions that are 

supported by chimeric PE reads.  Those regions are extended considering the flanking 150 

nucleotides.  We then cover them with a set of “tiles” that are spaced 1bp apart and construct a 

fusion junction library by creating all pair-wise junctions between these tiles.  Since we do not 

know a priori what the specific form of the fusion transcript is, we create two libraries: one 

assuming gene A is upstream of gene B and the other assuming gene B is upstream of gene A 

(see Figure 4.1C).  This fusion junction library plays the same role as a canonical splice junction 

library does: it enables the alignment of short reads, thus overcoming the need for a 

computational expensive gapped alignment for reads bridging two exons or, as in this case, 

regions of different genes.  

 All the reads, including the non-mapped ones, are then mapped against this library.  In 

this case we considered the two ends independently.  The rationale is that the actual junction 

sequence will be described by a certain pair of tiles and reads not previously mapped anywhere 
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in the genome now can be aligned to this fusion junction.  Moreover, reads that previously 

mapped with 1 or 2 mismatches to the reference genome, now may map perfectly to the fusion 

junction and thus increase the evidence supporting the junction.  The size of these tiles depends 

on the read size as well as the amount of overlap across the two joined tiles required by the user.  

For example, for reads that are 36bp long and a required overlap of at least 10 nucleotides, each 

fusion junction element is 52bp long, i.e. each tile is 26bp long.  This ensures that every 36bp 

read, if mapped to this junction element, will have at least 10 nucleotides mapped to the tile of 

each gene.  

 To select the true junction sequence, we determine which fusion junction obtains the 

highest support, i.e. the junction with the highest number of reads aligned to.  In addition, we also 

require the set of single-end reads to be uniformly distributed across the junction to provide 

further evidence.  Provided there is enough coverage overall, we employ a Kolmogorov-Smirnov 

statistical test, otherwise we apply a simple heuristic by requiring that at least n reads align to the 

junction with at least m different starting position on the junction sequence.  The latter parameter 

ensures that no PCR artifacts affect the junction identification.  Also, we search for similarity of 

the identified junction elsewhere in the genome using BLAT [95], in order to eliminate potential 

spurious junctions.  

 From a computational viewpoint, let us assume that we have about 1000 virtual tiles for 

each gene.  By creating all pair-wise combinations of these virtual tiles for the two genes and 

considering both directions, i.e. gene A upstream of gene B or vice-versa, will result in 

1000x1000x2=2x106 putative junctions.  If we have ~30 candidate fusion transcripts, the putative 

fusion junction library will thus contain ~6x107 = 60 million elements.  Using fast alignment tools, 

this analysis is feasible although it requires large-scale computational resources.  Indeed, we use 

bowtie to first create an index of the fusion library and then map the reads against it [94].  To fully 

exploit the parallelization of a multi-node computing cluster, each fusion candidate is analyzed 

independently on different nodes.  Moreover, the fusion junction library itself is also split across 

multiple nodes in order to optimize the generation of the indexes. 
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4.4.7 Sequencing depth and detection of fusion candidates 
 To assess the impact of sequencing depth on the detection of the fusion candidates, we 

randomly selected a fraction of mapped reads from sample 2621_D.  Specifically, we extracted 

10%, 25%, 50%, 75%, and 90% of all PE mapped reads (1.1M, 3M, 6M, 9M, and 10.8M PE 

reads, respectively).  The number of fusion candidates with more than 5 PE reads clearly 

correlates with sample size: 0, 1, 3, 4, and 7, respectively.  The SLC45A3-ERG fusion was 

detected as the top candidate, starting with 3M mapped PE reads, with a SPER of 4.7.  The 

relatively low SPER for this candidate is related to the smaller fragment size that has been 

adopted for this sample (200nt compared to 300-330nt for the others).  The smaller fragment size 

limits the number of PE reads that could span the junction.  From this analysis, it appears that 3M 

reads are sufficient for detecting this fusion in this context.  However, this result is difficult to 

generalize.  It might be true only for fusion transcripts that are expressed at a similar level to 

SLC45A3-ERG.  We cannot exclude the presence of less abundant fusion transcripts that would 

have been uncovered by deeper sequencing. 

4.4.8 Scoring the candidates 
 We may take into account different types of information to score the candidates.  

Potentially we could use the number of PE reads bridging the two genes, the number of reads 

supporting the main junction, and the “shape” of the coverage as indicators of the reliability of the 

candidate.  Practically, since it may be possible that the true junction is not detected because of 

lack of coverage, the more general quantities are based on the number of PE reads supporting 

the fusion candidate.  Hence, every fusion transcript candidate is first scored using SPER, the 

normalized number of supportive PE reads, the most intuitive quantitative measure (see Results – 

Scoring the candidates).  One may argue that a “local” score, i.e. a score that takes into account 

the expression of the genes involved in the fusion might be a reasonable choice.  We defined 

LSPER (local SPER) as the number of inter-transcript PE reads supporting the fusion divided by 

the average gene expression value computed as RPKM [18].  However, in many cases, only one 

allele contributes to the fusion transcript.  Hence, the expression of the fusion transcript 
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(estimated by the number of inter-transcript reads because the structure of the whole fusion is 

unknown) may not correlate with the expression of the genes generating it and thus this may 

impair the correct ranking of the candidates.  After computing SPER for each candidate, we need 

to assign a “confidence” to this number.  We compare it with two expectations.  The first one, 

DASPER, i.e. the Difference between the observed and Analytically calculated expected SPER, is 

based on the observation that if two ends were randomly joined, the probability that this occurs 

for gene A and gene B is proportional to the product of the probability that the two single-ends of 

the pair are mapped to gene A and gene B: 
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where P(A) and P(B) are the probabilities that a single-end is mapped to gene A and B, 

respectively.  Note that this is a very conservative estimate because it does not take into account 

that single ends should also be within a certain distance, based on the fragment size, to be joined 

in a pair.  Nevertheless, as a first approximation, the expected SPER can be estimated as the 

ratio of the number of single-end reads mapped to gene A and gene B and the total number of 

mapped single-end reads. For the i-th candidate, involving gene A and B, we have:  

! 

SPERi =
mAB

Nmapped

" 106 = 1
Nmapped

" Nmapped " P A( )" P B( ){ }" 106 = mA " mB

Nmapped
2 " 106  

where <mAB> is the expected number of inter-transcript PE reads under the null hypothesis, and 

mA and mB are the number of single end reads mapped to gene A and B, respectively.  By 

subtracting this number from the observed SPER, we can rank the fusion candidates according to 

DASPER score: 

! 

DASPERi = SPERi " SPERi  

 We chose to compute the difference between these two quantities compared to a more 

traditional ratio or log-ratio because it is more robust in case of low coverage, i.e. low number of 

reads, than computing a ratio.  More accurate estimations of the expected SPER can certainly be 

devised for cases with low coverage, however, they would likely require to take into account the 

specific characteristics of the sequencing platform and the mapping approach adopted, thus 
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reducing the broader applicability of this method.  Although DASPER can reliably rank the 

candidates within a sample, it may be possible that when comparing candidates from multiple 

samples DASPER may not properly account for different fragment sizes.  Indeed, smaller 

fragment sizes decrease the likelihood of sequencing PE reads bridging two genes, resulting in 

lower SPER, and consequently, lower DASPER, affecting the comparison among samples.  To 

address this issue, for each fusion transcript candidate i, we compute the ratio of its SPERi to the 

average SPER of all candidates of a sample: RESPER: 

! 

RESPERi =
SPERi

1
M
" SPER j
j=1..M
#

 

where M is the total number of fusion transcript candidates for a sample.  Since this quantity is 

independent from the fragment size, it is more suitable for comparisons across samples.  Also, as 

long as the sequencing depth increases, RESPER is expected to increase for a real fusion 

transcript compared to an artifactual one (Figure 4.5B). 

 In the case of sufficient coverage, we can also integrate the information related to the 

junction-sequence identifier analysis, such as the number of single-end reads supporting a 

junction as well as how evenly the single-end reads covers it.  Ideally, the entire fusion junction 

should be uniformly covered by the reads.  If this does not occur, the chimeric transcript might 

have been generated during sample preparation and the PCR amplification step resulted in an 

over-representation of that transcript.  However, definitive determination of uniform coverage 

requires great sequencing depth.  

4.4.9 Computational complexity 
 One of the main issues to address is the computational complexity of processing RNA-

Seq data.  Computationally, the three modules have different requirements.  The fusion transcript 

detection module depends on the total number of mapped reads.  Once the alignment is 

performed, it takes about 15 minutes to run this module on 20 million mapped PE reads using one 

core of a dual 2 Intel® Xeon® CPU E5410 @ 2.33GHz (4 cores each, for a total of 8 cores), with 
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6 MB cache, 32 GB RAM, and 156 GB of local disk.  The filtration cascade module takes about 

15 to 30 minutes to run on the same architecture.  The difference depends on the number of 

candidates initially identified.  A more intensive effort is required for the junction-sequence 

identifier analysis, the main bottleneck being the indexing of all the virtual tiles.  The time 

complexity also depends on the size of the region being tiled. T he alignment of the reads after 

the indexing is much less computationally demanding.  In fact, the time to complete a junction-

sequence identifier analysis for a single candidate in both directions, AB and BA, ranges from 

about 90 to 180 minutes if run on a single machine.  However, by splitting the fusion junction 

library in different files, it is possible to run the indexing step in parallel, thus substantially 

decreasing the time complexity. Indeed, by splitting the fusion junction library in files with 2M 

elements, it is possible to complete the indexing and the mapping in about 15 minutes for both 

orientations. 

4.4.10 Report of the analysis results 
 We also developed a set of tools to report the analysis results through a web interface 

and the UCSC Genome Browser (Figure 4.9) [41].  All programs of FusionSeq take as input one 

of the standard formats we defined, and additional tools convert them in files that can be 

interpreted by the UCSC Genome Browser such as WIGGLE, BED or GFF.  This integration is 

facilitated by the use of a web interface to interrogate the samples.  The user selects the sample 

and the list of potential candidates is shown with the candidates sorted according to DASPER 

(Figure 4.9A).  Information regarding the genes involved, such as gene symbols (including 

aliases), gene description and genomic coordinates are also reported (Figure 4.9B).  By clicking 

on the genomic coordinates the corresponding UCSC Genome Browser page is displayed.  Also, 

each candidate has a detailed page reporting detailed information, including the junction-

sequence identifier analysis results (Figure 4.9C).  
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Figure 4.9 Snapshot of the FusionSeq web-interface.  (A) Sample name, minimum number of PE reads and type of 
the fusion candidates can be selected.  (B) The list of the candidates is reported along with the statistics we introduce with 
FusionSeq.  The hyperlink provides direct access to the UCSC Genome Browser in order to display the location of the 
genes.  (C) Each candidate has a detailed page with additional details about the fusion, such as the number or inter-
transcript reads and the connectivity among exons.  If the two genes are located on the same chromosome, a hyperlink 
points directly to the UCSC Genome Browser and shows all the reads.  Moreover, the junction-sequence identifier results 
can be accessed by clicking on the icons showing the possible combinations, AB or BA.  Furthermore, the expression 
signal of the chromosomes can be loaded as additional track on the Genome Browser. 
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 Although we extensively rely on the data format of the UCSC Genome Browser, it is not 

possible to show the results for inter-chromosomal fusions (i.e., those between genes on different 

chromosome) since it can display only one chromosome at the time.  In order to address this 

issue we developed SeqViz, an application that is based on Circos, an open source software that 

is particularly suited to the display of genomic information by representing the full genomes as a 

circle [93].  An example of a Circos image can be found in Figure 4.6B.  Among the main features 

of Circos is the high flexibility in adding and showing many types of information: connection 

between the two ends of a PE read, gene annotation sets, expression values, etc. 
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Chapter 5 

DupSeq: a computational framework for 
assessing the transcriptional activity of highly 
similar genomic sequences 

Abstract 
One of the principal objectives in modern genomics is to accurately measure the levels of 

transcription from particular regions of the genome.  The reliable determination of expression 

levels from specific genomic elements forms the pillar for many downstream functional analyses, 

which are of interest from both a basic science and a clinical perspective.  Many of these studies 

have been performed on the genomes of complex organisms, which are abundant in DNA 

sequences with high mutual similarity, such as that seen between a parent gene and its 

pseudogene(s), any two members of a gene family, and non-unique sequences which span 

unannotated regions.  Assessing the transcriptional activity of such a genomic element can be 

challenging because of the difficulty in discriminating between true transcription and potential 

artifacts, which may result from spillover effects from the expression of a highly transcribed 

region.  To address this issue, we developed DupSeq, a computational framework that performs a 

set of statistical comparisons between the signal patterns obtained from RNA-Seq reads for 

similar genomic regions across different tissues.  DupSeq has been shown to enable the 

determination between true transcription and experimental artifact for a number of pseudogenes, 

and we plan to extend its utility to a broader range of repetitive sequence elements. 
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5.1 Introduction 
 

5.1.1 Background 
 It has long been a considerable challenge to distinguish between genuinely transcribed 

regions and potential artifacts for those genomic elements sharing high degrees of sequence 

similarity.  This problem first emerged in tiling array studies, in which a probe for a specific 

genomic sequence would cross-hybridize with an off-target element with a similar sequence, and 

this issue has been studied extensively [6, 34, 35].  These artifacts may lead to highly inaccurate 

measurements when assessing the transcriptional activity of genomic elements with high degrees 

of sequence similarity.  For instance, the high transcriptional levels of a gene may lead assays to 

erroneously report that an untranscribed duplicate copy of that gene is being expressed.  In other 

words, the untranscribed duplicate mirrors the transcription signals of the gene as a consequence 

of their sequence similarity.  This problem is especially characteristic in species with very large 

genomes, which are marked by a great deal of sequence redundancy.  For instance, repetitive 

sequences comprise at least 50% of the human genome [97].  Specifically, roughly 45% of the 

human genome belongs to the class of transposon-derived repeats, while another 5% represents 

segmental duplications [97, 98].  Segmental duplications are relatively recent events, in which 1-

200kb blocks of genomic sequences are copied from one genomic location to another.  As a 

result, these elements share a high degree of sequence similarity (at least 90%).  A recent study 

has shown that genes, paralogs, as well as pseudogenes are enriched segmental duplications 

[99], which further highlights the need to assess the transcriptional activity of sequences sharing 

high sequence similarity. 

 Although next-generation DNA sequencing technology, as applied to transcriptome 

profiling (i.e., RNA-Seq), has led to many improvements with respect to resolution and the ability 

to reliably and accurately detect most transcript isoforms [1, 21, 100], the challenge of accurately 

assessing the levels of transcription for genomic elements with high sequence similarity remains 
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unresolved.  This is because the reads obtained from RNA-Seq experiments must be aligned to 

the reference genome, and in some instances, sequencing errors cause reads from highly 

expressed genes to be mistakenly mapped to untranscribed regions with high sequence 

similarity, such as pseudogenes or paralogs.  Therefore, naïve methods that do not account for 

these issues often lead to inaccurate results.   

 In order to address this challenge, we have developed DupSeq, a computational 

framework designed to statistically analyze and compare the transcription signal patterns (as 

obtained from mapped RNA-Seq reads) across multiple samples.  When comparing signals for a 

given sequence across different tissues, truly transcribed regions of a particular genomic element 

are characterized by distinctly different expression patterns relative to those with high sequence 

similarity, whereas concordant patterns are indicative of mapping artifacts (as shown in Figure 

5.1).   That is, highly similar regions with discordant expression patterns are transcribed, whereas 

mapping artifacts are unlikely to give rise to such discordant patterns. 

 

 

Figure 5.1 Schematic representations of concordant and discordant expression patterns.  The top panel shows a 
region of interest that mirrors the expression pattern of a highly similar genomic region.  Such concordance is indicative of 
a mapping artifact.  Conversely, the bottom panel illustrates an example, in which a region of interest exhibits a discordant 
expression pattern across multiple samples, suggesting independent transcription.  
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5.1.2 Pseudogenes 
 Pseudogenes are traditionally defined as defunct genomic elements that share sequence 

similarity with functional genes, but which lack coding potential as a result of disruptive mutations, 

such as frame shifts or premature stop codons [101–104].  The conventional thinking surrounding 

these elements has long dictated that they are entirely devoid of functionality.  However, the 

concept of a "dead" pseudogene may not be an adequate description; there is evidence that 

some are transcribed, leading to speculation that they may in fact serve functional roles.  They 

may acquire new functions, either as transcribed RNAs or even translated peptides, and some 

have reported on apparently "revived" pseudogenes.  More recently, studies have shown that, in 

some cases, the mRNA products transcribed from these elements are capable of performing 

crucial regulatory roles themselves [105–108]. 

 Pseudogenes are usually identified by the rapid accumulation of mutations, such as those 

which give rise to premature stop codons, and they may be classified as belonging to one of three 

categories on the basis of how they are formed in the first place: (1) duplicated (or “unprocessed”) 

pseudogenes are derived from the duplication of functional genes (i.e., the parent genes), (2) 

processed pseudogenes are created through the retrotransposition of mRNA from functional 

protein-coding loci back into the genome, and (3) unitary pseudogenes arise through in situ 

mutations in previously functional protein-coding genes [101, 104, 109, 110].  Depending on their 

class, pseudogenes exhibit distinct genomic features.  As may be expected, duplicated 

pseudogenes have intron/exon-like genomic structures, and may have inherited upstream 

regulatory sequences from their parents.  In contrast, processed pseudogenes, having lost 

introns when the mRNAs from which they are derived were spliced, lack both the introns and the 

upstream regulatory sequences of their parent genes.  Processed pseudogenes may preserve 

evidence of their insertion into the genome, in the form of poly-A features at their 3ʼ ends.  
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5.1.3 Paralogs 
 Like pseudogenes, paralogs constitute a class of genomic elements with high sequence 

similarity as a consequence of the evolutionary processes from which they are derived.   

Specifically, paralogs are a subclass of homologs, and they originate when a single sequence is 

duplicated.  This process can occur multiple times, thereby producing a paralog family.  

Therefore, depending on the length of time which elapsed since duplication, paralogs of the same 

gene family may share a very high degree of sequence similarity.  The initial redundancy in the 

functionality between the paralog and the gene from which it is derived places less evolutionary 

pressure on one paralog, thereby better enabling it to assume novel functionality.  Thus, although 

the paralog and the original copy of the gene may share very similar sequences, these genomic 

elements may not necessarily exhibit similar functionality. 

 

5.1.4 Applying DupSeq to investigate pseudogenes, paralogs, and novel 
unannotated regions 
 It should be noted that, in the context of DupSeq, it is significantly easier to discriminate 

between the transcriptional activity of pseudogenes and parent genes than between related 

paralogs.  This is a consequence of the very nature inherent to the relationship between a 

pseudogene and its parent.  Thus, expression signals from the pseudogene are at first assumed 

to be artifacts, as only the parent genes is expected to be expressed.  Conversely, it is more 

difficult to define the expected transcription levels of related paralogs.  There is no clear definition 

for which element among paralogs should serve as a benchmark for expression, and which 

elements should be compared to that benchmark, as it is assumed that all paralog members are 

equally likely to be expressed, without a priori knowledge of particular membersʼ functions or 

transcriptional behaviors.  

 Furthermore, it should be noted that DupSeq can be applied not only to pseudogenes and 

paralogs, but also to novel unannotated transcribed regions.  Though there has been much work 

devoted to understanding the functions of these elements, they have been difficult to annotate 

because they often have sequence-similar regions throughout the genome, thereby confounding 
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measures of their transcriptional activity.  For many of these unannotated regions, DupSeq 

provides a powerful novel means of comparing expression levels, thus providing a first step 

toward assigning functionality and annotation.  Thus, DupSeq can be generalized to process 

user-defined genomic regions to assess transcriptional activity.     

5.2 Methods 

5.2.1 Overview of modular implementation 
 DupSeq is implemented in C for efficiency.  As shown in Figure 5.2, DupSeq is a modular 

framework that comprises three main modules.  The first module uses the set of genomic 

elements under study to identify all the regions with which the member elements of that set share 

high sequence similarity.  The second module processes the various RNA-Seq data sets, 

including mapping the reads and generating the signal tracks associated with those mapped 

reads.  The third module, which is at the core of DupSeq, utilizes the output of the previous two 

modules to statistically evaluate the transcriptional activity of these regions of interest, and 

providing confidence scores for true transcription on the basis of synchronous or discordant 

signal patterns across the different tissues.  
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Figure 5.2 Schematic overview of DupSeq.  DupSeq is a modular framework comprising three different modules.  The 
first identifies the genomic elements that share a high level of sequence similarity with a given set of specified regions.  
The second processes the RNA-Seq data by mapping the reads and then generating the signal tracks associated with 
those mapped reads.  Lastly, the core module uses the output of the previous two modules in order to statistically evaluate 
the transcriptional activity of the regions of interest and to visualize the results.  

5.2.2 Module I: Identification of highly similar regions (BLAT alignments) 
 
 DupSeq contains a utility to extract the genomic sequences from a set of coordinates 

representing each element of interest.  The current implementation of DupSeq uses BLAT [95] to 

align each sequence to the reference genome in order to find all genomic regions with similar 

sequences.  It should be noted that BLAT provides a fast way to identify all regions which share 

at least 90% sequence similarity with the input sequence.  Hence, genomic regions that are 

evolutionarily more distant will not be detected.  However, this is inconsequential, as the objective 

is to identify regions of very high sequence similarity; as discussed, these regions are those 

which lead to mapping artifacts.  Also, the modular design inherent to DupSeq more easily 

enables the substitution of different mapping programs.  
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Each alignment pair is then assigned to one of four categories: 

1. Entries without any other similar regions in genome 

2. Entries giving rise to only one alignment pair 

3. Entries with 2 to 5 alignment pairs  

4. Entries giving rise to more than 5 sequence alignment pairs 

 

 For instance, pseudogenes belonging to the first category have presumably evolved a 

great deal as a result of their age, thereby conferring them with sequences which are highly 

divergent from those of their parent genes, and the single alignment in the second category is 

most likely the parent gene itself.   

 Elements belonging to the fourth category may be difficult to assess in the framework of 

DupSeq, as the composite signals from elements with a very high number of sequence-similar 

regions can be difficult to deconvolute.  Alternative methods (including different mapping 

strategies used to align the RNA-Seq reads) would most likely be required to assess the 

transcriptional activity of such elements. 

5.2.3 Module II: Processing the RNA-Seq data  
 
 In order to check for evidence of transcription, DupSeq uses RNA-Seq data sets from 

multiple tissues to evaluate and compare the expression patterns for each analyzed element and 

regions with highly similar sequences.  Bowtie is used to align the reads from each tissue to both 

the splice junction library and the reference genome [94].  In the context of this framework the 

ways in which reads are mapped are essential, and a number of factors must be considered.  For 

instance, when DupSeq is used to analyze pseudogenes, it is important to map these reads to the 

genome and the splice junction library simultaneously.  Otherwise, those reads from the parent 

gene which span splice junctions would mistakenly be mapped to the pseudogene, thereby 

falsely providing wrong measurements of pseudogene expression (see Figure 5.3).  After the 



 89 

alignment step, the mapped reads for each tissue are converted to signal tracks using RSEQtools 

[25].  These signal tracks are then used as input to the third module of DupSeq. 

 

 

Figure 5.3 Mapping RNA-Seq reads without a splice junction library.  In the context of pseudogenes, using a splice 
junction library during the alignment step is essential.  Reads from the parent gene, which span splice junctions, would 
otherwise mistakenly be aligned to the pseudogene, thereby providing inaccurate measurements of the pseudogeneʼs 
expression.  In addition, sequencing errors, as denoted by red crosses, may cause reads to mistakenly be mapped to the 
pseudogene. 

 

5.2.4 Module III: Statistical evaluation of expression patterns 
 
 The third module of DupSeq includes a utility to merge the information from Modules I 

and II by extracting the signal track information (representing the mapped RNA-Seq reads) across 

multiple samples for each alignment pair, as well as a set of programs to perform statistical 

calculations on these matrices.   For example, given an alignment pair (i.e., the region of interest 

and a matching region of high sequence similarity), one of these programs calculates basic 

statistics for the signal tracks of each sample.  Another program calculates correlation coefficients 

between the expression values of the region of interest and matching region along every position 

of the alignment pair.  Along with other metrics, these statistics are then used to attribute the 

original data to independent transcription or mapping artifacts.   

 It should be noted that we developed a custom data structure to represent the matrices 

described above, as well as a complementary set of functions to facilitate itʼs processing.  Two 

key functions include the reader and writer, which enable basic I/O operations, as well as 

pipelining the multiple programs.  
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 In addition, we have developed and implemented a novel approach for visualizing the 

expression patterns and statistics associated with the alignment pair.  Previously, this step had to 

be performed manually as there is currently no software available for these tasks.  A number of 

factors complicate this task.  First, the region of interest and that to which it matches may be on 

different chromosomes.  Second, these two regions may be located on different strands, and the 

signal tracks must therefore be inverted for comparison.  Also, this visualization tool provides a 

way of including gene annotations in order to represent those sub-regions of a gene or transcript 

isoform that were initially aligned.     

5.3 Results 

5.3.1 Case 1: Application of DupSeq in the context of worm pseudogenes 
 
 The modENCODE Project employed DupSeq to investigate the transcriptional activity of 

1,198 pseudogenes with identified parent genes [36].  This study used a previously established 

RNA-Seq read mapping methodology [45], in which MAQ [111] and Crossmatch were used to 

align all reads to the genome, splice junctions, spliced leaders, and polyA libraries.  The best 

match was selected with a slight bias favoring genome alignments first; reads with equal matches 

to the genome and other databases were placed against the genome, and the expression values 

(DCPM) were calculated from these reads [45].  Pseudogenes were considered transcribed if 

their DCPM exceeded 0.04 in one or more samples.  Note that this cutoff is 100-fold higher than 

the minimum DCPM in the set.  Using this approach, we identified 323 pseudogene candidates 

with evidence of transcriptional activity. 

 As a first step toward evaluating potential pseudogene transcription, pseudogenes were 

assigned to one of three categories.  The first constitutes pseudogenes exhibiting expression 

levels which exceed those of their respective parent genes by at least a factor of two.  The 

second consists of those pseudogenes with expression patterns which are asynchronous from 

those of their respective parent genes across tissue samples (see Figure 5.4).  Both of these 

classes constitute properties suggesting that the pseudogene signal pattern represents 
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transcription that is truly independent from that of its respective parent gene, rather than mapping 

artifacts.  The last category includes those cases for which the pseudogene signal profile is 

concordant with that of the parent gene across the multiple tissue samples, suggesting the 

possibility of a mapping artifact (i.e., such concordance by itself does not exclude the possibility of 

mapping artifacts).  191 of the 323 candidates were found to belong to the first two categories (87 

and 104, respectively).  These 191 pseudogenes are thus likely transcribed independently from 

their parent genes. 

 

Figure 5.4 Example of a differentially transcribed pseudogene in C. elegans. Rows are normalized signal tracks for 
the various developmental stages, showing the expression pattern of the parent gene (T01B11.7.1; orange) and an 
associated duplicated pseudogene (PP00501, green). 
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5.3.2 Case 2: Application of DupSeq in the context of human 
pseudogenes 
 
 Using the GENCODE Pseudogene Resource, we examined the transcriptional activity of 

the GENCODE pseudogenes across 16 human tissues, as provided by the Illumina Human Body 

Map RNA-Seq data sets.  The genomic coordinates of both the processed and duplicated 

pseudogenes were extracted and aligned to the human reference genome to identify the regions 

with high sequence similarity (note that there were 8,107 processed and 1,860 duplicated 

pseudogenes; see Methods for details).  Each pseudogene alignment was assigned to one of four 

categories (for details, see the category descriptions provided in the section describing Module I 

under Methods).  Out of the total 9,967 pseudogenes, we found that 3,198 belong to the first 

category, 1,907 belong to the second category (see Figure 5.5A for an example of a transcribed 

pseudogene), 2,150 belong to the third category, and 2,712 belong to the fourth category.    

 The set of 3,198 pseudogenes without similar regions was reduced to 344 by requiring 

that each pseudogene be covered by at least two reads across half of its length in at least one 

tissue.  This filtered subset of potentially transcribed pseudogenes was then selected for 

validation by RT-PCR, followed by Illumina sequencing. 

 Finally, we note that artifacts in the signal patterns can sometimes be identified by visual 

inspection.  As shown in Figure 5.5B, artifacts emerge as signal patterns that are concordant with 

those of the parent gene. 
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Figure 5.5 Example of a transcribed pseudogene and a mapping artifact.  (A) This pseudogene is exclusively 
expressed in testes, whereas the parent gene is transcribed in a number of different tissues.  This constitutes compelling 
evidence of independent pseudogene transcription.  (B) This pseudogene mirrors the expression pattern of the parent 
gene across multiple tissues, which provides evidence of a likely mapping artifact. 
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5.4 Conclusions 
 Accurately measuring the transcription of the specified regions in a given genome has 

been a canonical pursuit in modern biology, and has led to many important insights.  However, 

measuring the transcription levels associated with certain elements has remained a formidable 

challenge when those elements share very similar sequences in the genome.  In particular, it may 

be difficult to determine which among these similar elements are truly transcribed or the result of 

artifacts.  Such artifacts arise when silent regions capture some of the signal from truly 

transcribed elements. This can sometimes lead to the interpretation of signal patterns as 

evidence that a particular region is transcribed, even though it may in fact be silent.  In other 

cases, with the possibility of artifacts in mind, the investigator sometimes erroneously dismisses 

apparently expressed regions as false positives when such regions are expected to be silent.  

Pseudogenes, which are assumed to be silent, serve as an example of the latter; transcription 

signals observed for a given pseudogene are usually attributed to artifacts, even though some 

have been shown to perform important regulatory roles [105–108].  Not only has it been difficult to 

discriminate between true transcription and artifact, but increasingly, this distinction must also be 

made for data on a large scale.  Thus, an automated approach to discriminating between true 

transcription and artifacts is needed as a first step toward the reliable detection of novel 

functionality. 

 To address this need, we designed DupSeq, an efficient and modular piece of software 

for assessing the transcriptional activity of highly similar sequences.  The principle behind 

DupSeq is to first align sequences of interest to a reference genome in order to identify all regions 

with highly similar sequences.  RNA-Seq data from various samples is then used to generate 

transcription signal patterns associated with these identified genomic regions.  

 The novel feature of our approach will be to statistically evaluate the resultant signal 

patterns across these different samples in order to provide confidence scores associated with 

true transcription or artifact, which may result when the errors in RNA-Seq cause reads to be 

aligned to a similar region.  The guiding principle behind the statistical framework is to 
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discriminate between concordant and discordant signal patterns across these various signal 

tracks.  In particular, concordant signal patterns are suggestive of artifacts, whereas discordant 

signal patterns provide evidence of independent transcription.  Figure 5.1 provides a schematic 

representation of this idea. 

 As a proof-of-principle, we applied DupSeq to investigate the transcriptional behavior of 

pseudogenes in two different organisms.  Specifically, we identified a number of transcriptionally 

active pseudogenes in the human genome, which were then validated experimentally by RT-PCR 

followed by Illumina sequencing.  In addition, DupSeq was also used by the modENCODE 

consortium to examine the pseudogene expression in the C. elegans genome [36]. 

 Importantly, as DupSeq operates on any set of elements with similar sequences, it may 

easily be extended to study not only pseudogenes, but also other types of elements with mutually 

similar sequences, including paralogs and novel unannotated regions.  We first plan to better 

equip DupSeq to operate on such elements by enhancing its statistical methodologies.  We thus 

anticipate that our resource will serve as a valuable contribution to the genomics community, and 

will lead to the assignment of novel functionality to many regions that have thus far eluded 

investigation. 
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Chapter 6 

Dynamic transcriptomes during neural 
differentiation of human embryonic stem cells 
revealed by short, long, and paired-end 
sequencing 

 

The work described in this chapter was adapted from a manuscript, which was originally 

published in PNAS [37]. 

 

Abstract 
To examine the fundamental mechanisms governing neural differentiation, we analyzed the 

transcriptome changes that occur during the differentiation of hESCs into the neural lineage.  

Undifferentiated hESCs as well as cells at three stages of early neural differentiation-N1 (early 

initiation), N2 (neural progenitor), and N3 (early glial-like)-were analyzed using a combination of 

single read, paired-end read, and long read RNA sequencing.  The results revealed enormous 

complexity in gene transcription and splicing dynamics during neural cell differentiation.  We 

found previously unannotated transcripts and spliced isoforms specific for each stage of 

differentiation.  Interestingly, splicing isoform diversity is highest in undifferentiated hESCs and 

decreases upon differentiation, a phenomenon we call isoform specialization.  During neural 

differentiation, we observed differential expression of many types of genes, including those 

involved in key signaling pathways, and a large number of extracellular receptors exhibit stage-

specific regulation.  These results provide a valuable resource for studying neural differentiation 

and reveal insights into the mechanisms underlying in vitro neural differentiation of hESCs, such 
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as neural fate specification, neural progenitor cell identity maintenance, and the transition from a 

predominantly neuronal state into one with increased gliogenic potential. 

6.1 Introduction 
 Neural commitment and subsequent differentiation is a complex process.  Although the 

complexity of RNAs expressed in neural tissues is very high [112, 113], a comprehensive 

analysis of the genes and RNA isoforms that are expressed during the different stages of neural 

cell differentiation is largely lacking.  Such information is expected to be important for 

understanding mechanisms of neural cell differentiation and ultimately providing therapeutic 

solutions for neural degenerative diseases, such as Parkinson's and Alzheimer's disease. 

 Our current knowledge of the mechanisms involved in neural cell formation is derived 

mostly from studying neurogenesis in the developing embryos of animal models [114, 115].  

However, neurogenesis in animals is a complex process involving many different cell types that 

differentiate asynchronously.  This heterogeneity, along with the relatively small number of cells 

that can be readily obtained, makes the analysis of the temporal differentiation of individual cell 

types extremely difficult.  One solution is to analyze hESCs during in vitro differentiation to 

different stages of neural development, which can be performed using a relatively large numbers 

of cells [116–120].  Analysis of the transcriptome in these cells is expected to provide insights into 

the mechanisms and pathways involved in early cell fate specification, such as the acquisition of 

neurogenic potential and the transition to gliogenic potential, which may ultimately be extremely 

useful for pharmacologic screening and neurodegenerative disease therapies. 

 Many high-throughput methods have been used previously to study global transcription 

[2, 121–124].  The recent development of massively parallel sequencing of short reads derived 

from mRNA (RNA-Seq) makes it possible to globally map transcribed regions and quantitatively 

analyze RNA isoforms at an unprecedented level of sensitivity and accuracy [1, 16–19, 56, 58, 

125].  Although the use of short reads enables detection of transcribed regions and spliced 
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adjacent exons, it has limitations.  In particular, the relationship of nonadjacent exons and 

multiple exons within the same transcript cannot be deduced. 

 In this study we combined the strengths of several massively parallel sequencing 

technologies, including short Illumina single and paired-end reads (sequence reads from both 

ends of cDNA fragments; 35-bp reads) and longer Roche 454 FLX and Titanium sequencing 

reads (250–450-bp reads) to discern transcript structure and analyze transcriptome complexity at 

an unprecedented level [125–127].  We applied these technologies to the analysis of early stages 

of neural differentiation of hESCs.  Our results revealed an extraordinary degree of stage-specific 

transcription and splicing.  From more than 150 million uniquely mapped sequence reads, we 

found thousands of unannotated transcriptionally active regions (TARs) and unannotated 

isoforms.  Some unannotated TARs and splice isoforms are transcribed only at particular stages, 

implying functional roles in specific steps of neural differentiation.  Moreover, we describe a 

phenomenon we call isoform specialization, whereby splicing isoform diversity is the highest in 

undifferentiated hESCs and decreases in cells undergoing neural differentiation.  Finally, the 

characterization of dynamic changes of gene transcription levels has provided important insights 

into the in vitro neural differentiation of hESCs with regard to neural specification, neural 

progenitor identity maintenance, and the transition from a predominantly neuronal nature to one 

with increased gliogenic potential. 

6.2 Results 

6.2.1 RNA-Seq at specific stages of neural differentiation of hESCs 
 We characterized changes in the transcriptome profiles during early human neural 

differentiation using H1 hESC cultures.  Two differentiation strategies were used (Figure 6.1, 

Materials and methods).   
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Figure 6.1 Characterization of neural differentiation cell cultures.  (A) Schematic representation of the neural 
differentiation procedure and four stages by approach A: hESCs, N1, N2, and N3.  (B) Immunofluorescence labeling of 
genes specifically expressed in N2 and N3 cells (H1 hESCs) prepared by approach A with or without growth factors. 
SOX1, NESTIN, and PAX6 are expressed in N2 cells with growth factors bFGF/EGF.  TUJ1 is expressed in N2 cells 
without growth factors; GFAP is not expressed.  GFAP is expressed in N3 cells after growth factor withdrawal, whereas 
TUJ1 expression is still visible.  Blue: nuclei are stained by DAPI.  (C) Immunostaining characterization of cell cultures (H1 
hESCs) by approach B. SOX2 is expressed in hESCs but not NESTIN.  Both NESTIN and SOX2 are expressed in N2 
cells. 
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 In approach A, the hESC H1 line was differentiated and cultured using feeder-free 

chemically defined adherent cell culture system through three stages: N1, an initiation stage; N2, 

a neural progenitor cell (NPC) stage that produces only neurons upon further differentiation; and 

N3, which produces both neurons and glial cells (Figure 6.1A and B) [118, 119, 128].  In 

approach B, neural progenitors (N2-B) were generated from undifferentiated H1 hESCs via 

embryoid body-like neurosphere formation [120].  In each case, we used standard protocols 

involving bone morphogenic protein signaling antagonists (Noggin) and basic fibroblast growth 

factor (bFGF) (Materials and methods). 

 According to qualitative and quantitative analyses, the differentiation protocols were 

highly reproducible.  The derived cell populations from each preparation were characterized by 

both immunoassays and FACS analysis for a large variety of markers to ensure that the cell 

cultures were highly homogeneous at the various stages (Figure 6.1).  (i) Undifferentiated hESCs 

(present in both approaches A and B) expressed all hESC surface antigens (e.g., TRA-1-60/81 

and SSEA4) as well as transcription factors OCT4 and SOX2 (Figure 6.1C).  (ii) N1 initiation 

stage cells (present only in approach A) lost TRA-1-60/81 expression but were still positive for 

SSEA4, although at a lower level, and began to express SSEA1.  They also expressed OCT4 at a 

low level.  (iii) N2 NPCs generated by approach A lost OCT4 as well as SSEA4 expression but 

expressed NESTIN, PAX6, and SOX1 (Figure 6.1B).  The cells showed a typical morphology of 

NPCs: bipolar with small soma (Figure 6.1A).  Glial fibrillary acidic protein (GFAP) was not 

expressed (Figure 6.1B).  Upon withdrawal of growth factors, the N2 cells predominantly 

differentiated into neurons rather than glial cells, as indicated by the expression of neuronal 

marker TUJ1 (Figure 6.1B).  Similarly, >95% of N2 neural precursors generated by approach B 

expressed an array of neural markers (neuroepithelial marker PAX6, neural stem cell markers 

NESTIN, and SOX2, as well as neuronal stem/precursor markers MUSASHI) (Figure 6.1C).  The 

N2 cell populations were negative for pluripotent hESC markers such as OCT4 (<0.01%).  (iv) N3 

stage cells (only present in approach A) exhibited distinct morphology (Figure 6.1), and GFAP 

was expressed in these cells (Figure 6.1B).  After bFGF/EGF withdrawal, more glial cells than 
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neurons were generated (Figure 6.1B).  These events we observed in vitro are reminiscent of in 

vivo neurodevelopment, in which neurogenesis occurs before the onset of gliogenesis [128, 129].  

This phenomenon is also observed in the H7 hESC line. 

6.2.2 Integration of short, long, and paired-end RNA-Seq reads 
 To characterize the transcription of cells at the specific differentiation stages, we 

generated a combination of 35-bp single reads, 35-bp paired-end reads, and 250–450-bp long 

reads.  The paired-end reads were from cDNA fragments of different lengths, ≈300 bp, 300–600 

bp, and 600–1,000 bp.   

 

Table 6.1 Summary of sequencing reads by cell type. 

 A total of 140, 15, and 1.5 million uniquely mapped single, paired-end, and long reads, 

respectively (summarized in Table 6.1), were generated from two to three biologic replicates from 

each of the differentiation stages (Spearman correlations: 0.94–0.97).  The fraction of genes 
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detected at 1-fold average coverage approached saturation for the sequencing of hESC-B and 

N2-B cells (Figure 6.2A). 

 

Figure 6.2 Overview of transcript characterization by RNA-Seq.  (A) Fraction of genes detected as a function of read 
depth.  (B) Number of exons spanned by 450-bp reads.  (C) Transcript complexity revealed by integrating short, long, and 
pair-end sequence information.  Only the spliced reads for single-end and long reads are shown.  For paired-end reads 
the same RNA fragments are shown as two vertical bars connected by a line. 

 We achieved extensive sequence depth primarily with the 35-bp single reads; the paired-

end and 250–450-bp reads provided longer-range exon connectivity information and aided in 

defining complex splice isoforms.  Longer reads, particularly 450-bp reads, can link up to eight 
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exons (see Figure 6.2B for distribution).  Figure 6.2C illustrates the structure of a 16-exon gene 

that was constructed using a combination of the sequencing technologies. 

6.2.3 Identification of unannotated transcribed regions and their 
connectivity 
 Consistent with our previous studies [2, 124, 130], thousands of unannotated TARs were 

identified.  Specifically, if a TAR overlapped with University of California, Santa Cruz (UCSC) 

gene annotation it was categorized as “known,” and if there was no overlap it was classified as 

“unannotated.”  Ninety percent of unannotated TARs were validated by RT-PCR from a random 

sample of 40 TARs identified from the different stages.  We also intersected TARs discovered by 

our RNA-Seq approach with previously published TARs expressed in the liver that were identified 

by tiling microarrays [2].  Our study found a large number of hESC RNA that were not identified 

by the tiling microarray study, consistent with previous observations that RNA-Seq has a higher 

sensitivity and dynamic range [1].  Interestingly, we also found that a large number of 

unannotated TARs (35–65%) were specific for each stage; 624, 246, 300, and 353 unique 

unannotated TARs were found for hESC, N1, N2, and N3 stage cells, respectively (Figure 6.3A – 

top), raising the possibility that these might have stage-specific functions. Sequences and signal 

track files can be found in the Gene Expression Omnibus (GEO; accession number GSE20301). 
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Figure 6.3 Stage-specific unannotated TARs and their connectivity by paired-end reads.  (A) (Upper) The number 
of unannotated, known, and unique TARs found at each stage.  TARs that overlap with a UCSC gene are classified as 
“known.”  Those that have no overlap with a UCSC gene annotation are called “unannotated.”  TARs that do not overlap 
with TARs in other differentiation stages are called “unique” to that particular stage.  (Lower) Fractions shared between 
stages for known TARs and unannotated TARs, respectively.  (B) The transcript structure of an unannotated transcript 
(Transcript 1) that is uniquely transcribed in hESCs is reconstructed using paired-end reads.  (C) RT-PCR validation of 
unannotated transcripts identified by groups of paired-end reads.  Transcript 1 and its RT-PCR primer set are shown in B.  
Transcripts 1–3 are specifically expressed in hESCs, transcript 4 in N1–N3 cells, transcript 5 in ES-N2 cells, and transcript 
6 in ES, N1, and N3 cells. 
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 As expected, the majority of the paired-end reads fell within the same known exons. 

However, a small fraction of paired-end reads linked unannotated TARs to either UCSC-known 

annotated genes (0.35%, 0.46%, 1.03%, and 0.58% for hESC, N1, N2, and N3, respectively) or to 

other unannotated TARs (0.36%, 0.38%, 1.50%, and 0.89% for hESC, N1, N2, and N3, 

respectively).  Although the percentage of “linking” reads was low, their large number allowed for 

unambiguous connection of TARs, and unannotated spliced gene structures could be identified 

by an overlapping group of paired-end reads.  Figure 6.3B shows an unannotated transcript with 

at least five exons that was uniquely transcribed in hESCs and accurately constructed using a 

group of overlapping paired-end reads.  This transcript and expression pattern was validated by 

RT-PCR (Figure 6.3C).  Twelve such multiexonic unannotated transcripts were further examined 

using RT-PCR; 11 were validated and 6 were verified to be stage specific (Figure 6.3C). 

 

6.2.4 Alternative splicing during early neural differentiation of hESCs 
 In addition to cell type–specific gene expression, such as for OCT4 and GFAP, we 

observed many interesting differentiation-stage-specific alternative splicing isoforms.  For 

instance, an isoform of neural cell adhesion molecule 1 (NCAM1) was prevalent at the N3 stage, 

low level at the N2 stage, but not detectable at the N1 and hESC stages (Figure 6.4A).  In 

addition, an isoform of serine/threonine kinase 2 (SLK) was specifically transcribed in hESCs (SI 

Text), consistent with an independent observation by Gage and colleagues [131].  Although the 

number of known splice junctions detected in our study was near saturation (Figure 6.4B – top), 

the number of unannotated splice junctions continued to increase with read depth, indicating that 

there are many more unannotated isoforms yet to be discovered (Figure 6.4B – bottom). 
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Figure 6.4 Splicing analysis.  (A) One of the transcript isoforms of neural cell adhesion molecule 1 (NCAM1) (marked by 
a rectangle and arrow) is primarily expressed in N3 and very weakly at N2 but not at N1 and hESC stages.  The y-axis of 
the RNA-Seq signal tracks represents the read density normalized by the number of mapped reads per million for each 
cell type.  Two sets of RT-PCR primers were designed on the alternative exon and the adjacent constant exon, which 
generated two products of slightly different sizes.  The DNA ladder and the RT-PCR products were from the same gel.  (B) 
(Upper) The number of known splice junctions detected nears saturation.  (Lower) The number of unannotated splice 
junctions does not saturate at this read depth.  (C) Splicing diversity is the highest in hESCs and decreases when cells 
commit to neural differentiation.  The top 500 highly expressed genes shown here were clustered by splice junction 
diversity (k-means clustering, k = 3).  The splice junction diversity value was defined as the number of unique splice 
junctions detected in the composite gene model given all of the mapped splice junction reads; thus the junction diversity 
values were normalized for the number of annotated splice junctions in the composite gene model and the number of 
mapped reads per million.  Splice junction diversity is independent of transcript abundance for this set of genes. 

 Of particularly high interest is how splice isoform diversity changes as a function of cell 

differentiation, which has not been examined previously.  We therefore quantified the number of 

unique splice junctions per composite gene model for each differentiation stage.  To analyze the 

splice junction diversity, the 500 most highly transcribed genes were selected on the basis of the 
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sum of their transcription values in the four stages.  These abundant transcripts were chosen 

because they provide large numbers of reads and allow for significant splicing differences to be 

identified.  Our analysis revealed higher isoform diversity in hESCs compared with the neural 

stages (the median of the junction values for hESC, N1, N2, and N3 are 3.1, 2.2, 1.9, and 2.1, 

respectively).  Interestingly, within the chosen set, this observation is independent of transcript 

abundance (Figure 6.4C).  These data suggest that isoform diversity simplifies during 

differentiation, a process we have named isoform specialization. 

6.2.5 Dynamic transcriptome changes during neural differentiation 
 We next examined the types of genes that exhibited differences in transcription using 

Gene Ontology analysis.  We found that genes involved in nervous system development, neuron 

differentiation, brain development, regulation of gene expression, and pattern specification were 

significantly overrepresented among up-regulated genes in N2-B cells compared with hESCs 

(Figure 6.5A). 

 Genes were clustered according to the dynamic transcriptome changes between the four 

stages (ES→N1, N1→N2, and N2→N3) (Figure 6.5B).  We found that a group of genes 

containing SOX1, SOX2, PAX6, MAP2, DCX, ZIC1, NOTCH2, HES1, and OLIG2 had the highest 

transcript levels at the N2 stage and validated the relative transcript levels by quantitative PCR 

(qPCR) (Figure 6.5C).  H7 hESCs showed similar gene expression patterns by qPCR.  Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the neuroactive 

ligand–receptor interaction pathway was enriched among genes that were up-regulated at the N1 

and/or N2 stage but down-regulated at the N3 stage.  A wide variety of receptor genes were 

transcribed in N1 and N2 cells, suggesting that these cells may be capable of differentiating into 

glutamatergic, GABAergic, dopaminergic, cholinergic, adrenergic, and serotoninergic neuronal 

subtypes.  Although the overall proliferation rate between N2 and N3 cells in cultures with 

bFGF/EGF supplement is similar, the receptors were diminished at the N3 stage.  This is 

consistent with the fact that the N3 stage cells expressed glial markers and had a propensity to 

differentiate into glial cells after bFGF/EGF withdrawal [118]. 
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Figure 6.5 Dynamics of gene expression during neural differentiation.  (A) The enriched Gene Ontology (GO) 
categories among up-regulated genes (>2-fold) in N2 cells compared with hESCs.  (B) Quantification of dynamic 
transcriptome changes during neural differentiation process [x axis: differentiation stages hESC, N1, N2, and N3; y axis: 
log2(gene expression values by RNA-Seq)].  Twenty-seven patterns were identified from clustering the expression 
changes of the UCSC gene annotation set. U, up-regulation; D, down-regulation; F, flat (<2-fold change).  (C) qPCR 
validation of the genes that show the highest expression at N2. y axis: log2(relative gene expression level for each stage 
normalized using HPRT).  (D) qPCR validation of FGF family gene expression (Note: qPCRs were performed for two 
isoforms of FGF13.) Expression of FGF12 and FGF13a was not detected in N3 by qPCR. 

 A coordinated interplay among signaling pathways, such as Wnt and FGF is critical for 

neural specification [114].  Components of the Wnt pathway previously implicated in noncanonical 

Wnt signaling [FZD5 (frizzled homolog 5, Drosophila), WNT5A, and WNT5B] were found to be 

down-regulated upon neural differentiation.  This is consistent with Wnt pathway function in 

maintaining the undifferentiated state of stem cells.  Interestingly, a group of FGF family genes 

exhibited increased expression at the N2 stage and then decreased at the N3 stage.  This group 

included FGF11, FGF13, and FGF14, which do not bind to FGF receptor (Figure 6.5D); their roles 

during neural differentiation are not well understood. 
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6.3 Discussion 
 Our study revealed a high level of transcriptome complexity and dynamics during early 

neural differentiation of hESCs.  Alternative splicing has been suggested as a driving force for the 

evolution of higher eukaryotic phenotypic complexity [132], and it has been shown recently that 

≈94% of human genes undergo alternative splicing [20].  Previous studies have shown that 

massively parallel sequencing technology provides the ability to monitor spliced isoforms at the 

level of individual splice junctions [20, 58].  Our work incorporates the use of paired-end 

sequencing and demonstrates that this approach in conjunction with long reads can elucidate 

multiple exon connections and thereby reconstruct transcribed regions. 

 Importantly, our study demonstrated that greater splice junction diversity is present in 

hESCs relative to cells undergoing neural differentiation (Figure 6.4B and 4C).  We suggest that 

this high transcript diversity contributes to the pluripotency of hESCs.  Upon differentiation, more 

specialized transcripts are used, a process that we call isoform specialization.  A previous study 

[133] reported elevated global transcription level in murine ESCs compared with NPCs; increased 

transcription in ESCs would support a larger number of isoforms. 

 RNA-Seq also enabled the detection of unknown RNAs (unannotated TARs) (Figure 

6.3A).  A larger fraction of these unannotated TARs were transcribed in a stage-specific fashion 

compared with the annotated mRNAs (Figure 6.3A).  It is possible that at least some of the 

unannotated TARs may play an important role in specifying cell differentiation.  The largest 

number of unannotated TARs was observed in hESCs, consistent with our conclusion that the 

transcriptome complexity is the greatest in pluripotent hESCs. 

 One important advantage of massively parallel sequencing is that it is more quantitative 

than other methods [1].  RNA-Seq can accurately measure gene transcription changes at a 

genome-wide scale, even for low-abundance transcription factors.  Thus, these data are a 

valuable reference data set for researchers studying this process. 

 Our results provide important insights into the hESCs neural differentiation in vitro.  

Specifically, we have revealed aspects of neural specification, neural progenitor identity 
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maintenance, and the transition from neurogenesis to gliogenesis.  Our data suggest the temporal 

order of transcription of the key transcription factors SOX1 and PAX6 during human neural 

specification.  SOX1 is a member of the SOXB1 transcription factor family that plays important 

roles in neuroectodermal lineage commitment and maintenance [134, 135].  PAX6 is a highly 

conserved transcription factor essential for central nervous system development [136].  The 

temporal order of their transcription and their roles in human neuroectodermal specification are 

not fully understood.  In mice SOX1 was found to be the earliest transcribed neural marker, 

preceding PAX6.  PAX6 is first transcribed in radial glial cells during the differentiation of mouse 

ESCs [137], and it has been reported to be involved in the progression of neuroectoderm toward 

radial glia [138].  However, in our experiments using hESCs, PAX6 mRNAs appeared before 

SOX1 mRNA, consistent with the immunostaining observations of Gerrard et al. [118].  Thus, 

PAX6 may have an earlier role in neural lineage choice in human ESCs than in mouse ESCs. 

 The transcription of a wide variety of receptor genes at the N1 and N2 stages indicates 

that if the proper differentiation conditions are applied, these cells could potentially differentiate 

into glutamatergic, GABAergic, dopaminergic, cholinergic, adrenergic, and serotoninergic 

neuronal subtypes.  Two possibilities can explain why these neuroactive ligand–receptors are not 

retained in N3 cultures.  First, the receptors may be lost in N3 cells owing to cell death and/or less 

proliferation of proneuronal cells; the proneuronal cells would then be gradually replaced by the 

proglial cells.  However, this cannot explain the complete absence of GFAP when neuronal 

differentiation is induced at an earlier stage.  The second possibility is that a series of gene 

repression and activation events lead to the transition of the cells from a proneuronal nature to a 

proglial nature.  Our finding that FGF family genes, including nonFGF-receptor-binding FGF11, 

FGF13, and FGF14, increase at the N2 stage and decrease at the N3 stage (Figure 6.5D) raises 

the possibility that modifying their levels may help to maintain hESC-derived neural cells at the 

neuronal stage. 

 Overall, our approach can serve as a template for the investigation of dynamic temporal 

or spatial transcriptome changes during various developmental processes.  Future improvements 
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of sequencing technologies, including longer reads, higher throughput, and reduced cost will aid 

in the definition of transcriptomes and alternative splicing in specific temporal and spatial 

contexts. 

6.4 Materials and methods 

6.4.1 hESC culture and neural differentiation 

6.4.1.1 Approach A 
 H1 hESCs were cultured in Matrigel-coated plates in mouse embryonic fibroblast 

conditioned medium supplemented with 8 ng/mL bFGF as previously described [139].  Cells were 

propagated at a 1:3 ratio by treatment with 200 U/mL collagenase IV and mechanical dissection.  

Neural differentiation was carried out as previously described [118].  Briefly, hESCs were split 

with EDTA at 1:5 ratios into culture dishes coated with poly-L-lysine/laminin (Sigma-Aldrich) and 

cultured in N2B27 medium supplemented with 100 ng/mL mouse recombinant Noggin (R&D 

Systems).  At this stage, cells were defined as passage 1 (P1), and N1 cells were collected at 

Day 11 of the differentiation.  Cells of P1 and P2 were split by collagenase into small clumps, 

similar to hESC culture, and continuously cultured in N2B27 medium with Noggin. From P3, cells 

were plated at the density of 5 × 104 cells/cm2 after disassociation by TrypLE express (Invitrogen) 

into single-cell suspension, and cultured in N2B27 medium with the addition of 20 ng/mL bFGF 

and EGF.  Cells can be maintained under this culture condition for a long time with a stable 

proliferative capacity.  N2 cells were collected at P9 and N3 at P22.  To induce postmitotic cell 

types, bFGF and EGF were withdrawn, and neural progenitors were continually cultured in N2B27 

for 7 days.  Cells from the different stages were analyzed for homogeneity by flow cytometry 

analysis. Cells from N2 and N3 were stained with anti-SOX1 (Abcam), SOX2 (Abcam), and 

MUSASHI (Chemicon) antibodies; 10–20,000 cells were analyzed.  

6.4.1.2 Approach B 
 All experiments involving hESCs were approved by the Yale Embryonic Stem Cell 

Oversight Committee.  hESC line H1 (WA01, WiCell) was maintained in undifferentiated state by 
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culturing on Matrigel-coated plates (BD) in feeder-free and serum free, component-defined 

conditions.  Briefly, the cells were cultured in DMEM/F12 medium (Invitrogen) supplemented with 

1% MEM-nonessential amino acids (Invitrogen), 1 mM L-glutamine, 1% penicillin-streptomycin, 

50 ng/mL bFGF (FGF-2) (Millipore), 1× N2 supplements, and 1× B27 supplements (Invitrogen) 

[140], with daily media change.  H1 cells were passaged every 4–6 days by dissociation with 1 

mg/mL collagenase IV (Invitrogen).  The hESCs used were between passages 30 and 70 with 

normal karyotype and expressed conventional hESC markers.  hESCs were differentiated by 

neural sphere formation with some modifications of previously published protocols [120].  Cells 

were fixed and analyzed by standard fluorescent immunocytochemical techniques.  

6.4.1.3 Flow Cytometry 
 Cells were detached by trypsin, fixed with 4% paraformaldehyde for 15 minutes, 

permeated with 100% ethanol for 2 minutes and incubated with 10% goat serum (Sigma) for 15 

minutes.  Cells were then stained with primary antibodies (SOX1 and SOX2 from Abcam, 

Musashi1 from Chemicon, all 1:100) for 30 minutes on ice followed by secondary antibody (Goat-

anti rabbit conjugated fluorescein, Santa Cruz) for 30 minutes.  Ten to twenty thousand cells were 

acquired for each sample using a FACScan (BD Biosciences) and analyzed with CELLQUEST 

software (BD Biosciences). 

6.4.1.4 Immunofluorecent Staining 
 The cells were either fixed with 4% formaldelhyde or 3% paraformaldehyde for 10 min, 

followed by standard fluorescent immunocytochemical techniques using the following primary 

antibodies: monoclonal OCT4 (1:20) and polyclonal SOX2 (1:50) from Santa Cruz, monoclonal 

NESTIN (1:200), polyclonal MUSASHI (1:100), monoclonal PAX6 (1:50) from Dev.Studies 

Hybridoma Bank, Iowa, monoclonal TUJ1 (1:1000) and polyclonal GFAP (1: 250) from Chemicon, 

and polyclonal TUJ1 (1:1000) from Covance.  The images were acquired with a Nikon Eclipse 

E800 fluorescent microscope or LEICA confocal fluorescent microscope. 
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6.4.2 RNA sequencing 

6.4.2.1 Construction of Solexa sequencing library 
 mRNA samples were extracted and double-polyA purified from cell cultures using 

Oligotex Direct mRNA Kits followed by Oligotex mRNA Kits, according to the manufacturer's 

instructions (Qiagen).  mRNA (500 ng) was used in each sequencing library.  mRNA was 

fragmented using 10× Fragmentation Buffer (Ambion), and double-stranded cDNA was 

synthesized using SuperScript II (Invitrogen) RT and random primers.  DNA sequencing followed 

the instructions of the mRNA-Sequencing Sample Prep Kit (Illumina) as previously described [18]. 

6.4.2.2 454 sequencing library preparation 
 mRNA was prepared as described above.  mRNA samples (200–500 ng) were heat 

fragmented.  Single-stranded cDNA library was synthesized, and adapters were ligated and 

sequenced using the emPCR II Kit (Amplicon A) and on the 454 Genome Sequencer FLX 

instrument according to the manufacturer's instructions.  GS FLX Titanium cDNA libraries were 

prepared and sequenced at the 454 Life Sciences Sequencing Centre. 

6.4.3 RT-PCR 

6.4.3.1 RT-PCR validation experiments  
 1μg each of polyA RNAs from cell of ES, N1, N2 and N3 stages was separately set up in 

200μl Reverse Transcription (RT) reactions (5ng/μl).  RT reactions were performed using 

SuperScript™ III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen, CA, USA) that 

contains both oligo(dT)20 and random hexamers.  In parallel, reactions without reverse 

transcriptase (RTase minus) were also performed as the negative control for genomic 

contamination.   

 PCR primers were designed using Primer3 or BatchPrimer3. RT was followed by PCR 

amplification using Advantage™ 2 PCR Enzyme System (Clontech, CA, USA).  1μl RT reaction 

and 1μl RTase minus negative control from the above were used in 25μl PCR reactions.  The 

PCR program for unannotated singleton TARs was 95°C for 30 seconds, followed by 35 cycles of 
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95°C for 15 seconds, 68°C 30 seconds, and concluded by an extension cycle of 72°C for 1 

minute.  The PCR program for multi-exonic unannotated transcripts connected via a group of 

paired-end reads was: 95°C for 1 minute, followed by either 28 or 35 cycles of 95°C for 15 

seconds, 68°C 3 minutes, and concluded by an extension cycle of 72°C for 5 minutes. The PCR 

products were visualized on a 1% agarose gel. 

6.4.3.2 Real-time quantitative RT-PCR 
 Total RNA was purified with TRI reagent (Sigma) and trace contaminated DNA was 

removed by DNase treatment (Invitrogen).  First-strand cDNA was synthesized from 2 μg total 

RNA in a 20-μl volume using oligo-dT15 primer and SuperScriptII (Invitrogen).  The PCR reaction 

consisted of 2μl of 1:10-diluted cDNA, 15 μl of SYBR green-Taq mixed solution (Sigma) and 9 

pmol each of 5ʼ and 3ʼ primers (see table below) in a total volume of 30 μl and was performed in a 

Opticon thermal cycler (Biorad) for 40 cycle with denaturation at 95°C for 15 second, annealing at 

60°C for 30 second and extension at 72°C for 30 second.  RNA without reverse transcriptase 

treatment was used as negative control. 

6.4.4 Bioinformatics analysis 

6.4.4.1 Mapping sequence reads to the human genome 
 The 454 250-450bp long reads were mapped to human genome (hg18) using BLAT [95] 

with default parameters.  Reads were removed in a subsequent post-processing step if less than 

eighty percent of the read mapped to the genome.  A three-step approach was adopted to map 

the short single-end reads to the genome.  First, reads were aligned to the human genome (hg18) 

with Bowtie [94] allowing up to two mismatches.  Only reads that mapped to a unique location in 

the genome were retained.  In a second step, the remaining reads were aligned to a splice 

junction library consisting of all possible unique pair-wise splice junctions within each transcript of 

the AceView [141] annotation set.  This alignment step was also performed with Bowtie allowing 

only unique alignments with up to two mismatches.  Lastly, the reads that did not align in the 

previous two steps were aligned to the genome using less stringent parameters.  In this step 
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reads were allowed to map up to five genomic locations.  One of these locations was selected 

according to the read density of the uniquely mapped reads contained within non-overlapping 

bins (50bp) across the genome.  The short paired-end reads were mapped to the genome using 

ELAND, which is a component of the Illumina software pipeline, operating in the eland_pair mode.  

Each end was aligned separately and then the best-matched pair was selected and reported.   

6.4.4.2 Annotation sets and composite gene models 
 Initially, the AceView annotation set [141], consisting of 258,618 transcripts, was used to 

create a splice junction library in order to map the short single-end reads.  However, for many 

subsequent analyses the UCSC Genes annotation set [79], comprised of 66,803 transcripts, was 

utilized because it contains information about the various splice isoforms.  The various transcript 

isoforms of a particular gene were merged into a composite gene model by taking the union of all 

the exons from the various transcript isoforms. 

6.4.4.2 Number of genes detected as a function of read coverage 
 To assess the number of genes detected as a function of read depth the mapped reads 

were intersected with the composite gene models of the UCSC Genes annotation set [79].  Reads 

were sampled randomly at various intervals of five millions and the fraction of genes detected 

was calculated.  The fraction of genes detected was determined at two-fold and five-fold 

coverage.  The coverage is defined as the number of nucleotides obtained form all the reads that 

overlap with a composite gene model divided by the length of the composite gene model.  

6.4.4.3 Quantification of gene transcription 
  The level of gene transcription (RPKM; [18]) was quantified by intersecting the mapped 

reads with the composite gene models of the UCSC Genes annotation set [79].  The transcription 

values were determined by summing the nucleotide overlaps from all the reads that intersect with 

a composite gene model divided by the length of the composite gene model and the number of 

mapped reads in millions. 
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6.4.4.4 Differential gene expression 
 Gene expression values from various differentiation stages were compared to assess 

differential gene expression.  Genes with at least a two-fold change in their expression values 

were referred to as differentially expressed.  In order to capture the global changes in gene 

expression across the four differentiation stages each gene was assigned to one of 27 gene 

expression patterns.  Between any two differentiation stages the change in gene expression was 

assigned to one of three categories: up, down, or flat. The ʻupʼ or ʻdownʼ categories represent at 

least a two-fold change in gene expression between the two differentiation stages while the ʻflatʼ 

category indicates an unchanged gene expression or a change less than two fold.  After 

assigning each gene to one of the 27 gene expression patterns, the logarithm of the expression 

values across the four stages were plotted for each pattern type.   

6.4.4.5 Splice junction coverage 
 The splice junction coverage was determined by counting the number of known and 

unannotated splice junctions obtained from random samples of short single-end reads spanning 

two exons.  Since the splice junction library consisted of all possible unique pair-wise splice 

junctions within a transcript each splice junction can be categorized as either known or 

unannotated.  Known splice junctions are defined as the junctions that are consistent with 

annotated transcripts while unannotated splice junctions refer to skipped exons.  

6.4.4.6 TAR analyses and connecting TARs using paired-end reads 
 In order to discover unannotated transcriptionally active regions (TARs) the signal track of 

the mapped reads was segmented using the common maxGap/minRun algorithm (maxGap = 10, 

minRun = 50, threshold = 2) [35, 55].  The set of unannotated TARs identified for each 

differentiation stage were intersected with the set of TARs reported by Bertone et al. [2].  If two 

TARs from the two different sets overlapped by at least one nucleotide they were counted as 

overlapping. 
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6.4.4.7 Splice junction diversity 
 A subset of genes was selected to analyze the splice junction diversity across the four 

differentiation stages.  Because the sequence coverage for low abundant transcript is lower and it 

would be difficult to ascertain splicing diversity, the 500 most highly transcribed genes were 

selected based on the sum of their transcription values in the four stages.  For this subset of 

genes the junction diversity per composite gene model was calculated.  The junction diversity is 

defined as the number of unique splice junctions detected in the composite gene model given all 

the mapped splice junction reads.  In order to facilitate a comparison between the various 

developmental stages the junction diversity values were normalized for the number of mapped 

reads per million.  In addition, the splice junction diversity values were normalized for the number 

of annotated splice junctions in the composite gene model.  In the next step normalized junction 

diversity values were clustered using k-means clustering (k = 3).  Lastly, the normalized junction 

diversity values and the associated gene transcription values were plotted. 

6.4.4.8 Enriched Gene Ontology (GO) categories and pathway analysis 
 An internal software tool was employed to determine statistically significant over-

represented GO categories within lists of genes.  The hypergeometric distribution was utilized to 

calculate p-values.  These p-values were then corrected for multiple hypothesis testing using the 

Benjamini-Hochberg procedure.  Enriched KEGG pathways of differentially expressed genes 

were identified using Database for Annotation, Visualization and Integrated Discovery (DAVID) 

[142]. 
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Chapter 7 

Conclusion 

 In this thesis, we presented four different computational methodologies for transcript 

analysis in the age of next-generation DNA sequencing.  First, we described VAT, which is used 

for functionally annotating variants and analyzing their effects on transcript structure.  In this 

approach, we not only offer efficient software modules to annotate variants, including a novel way 

for visualizing the results, but also place the software in the same space as the data by providing 

VAT as a virtual machine that may be run in a cloud-computing environment.   

 We then described RSEQtools, which introduces a novel data format (MRF) for 

representing read alignments in a compact manner, thereby enabling the dissemination of large 

volumes of data.  In addition, we provide a mechanism for protecting personal genotypic 

information, as well as a set of tools that can be assembled to build customizable RNA-Seq 

workflows for carrying out a number of downstream analyses.  

 We then described FusionSeq, a downstream analysis pipeline based on RSEQtools.  

This framework is used for finding instances of gene fusions by analyzing paired-end RNA-Seq 

data, and comprises three main modules.  It exploits the connectivity information provided by 

paired-end RNA-Seq reads to identify potential fusion candidates.  Many of the initially identified 

gene fusion candidates are then removed using an elaborate filtration cascade.  Furthermore, a 

scoring scheme facilitates the prioritization of these candidates for experimental validation.  A 

third module then determines the exact junction sequence surrounding the breakpoint between 

two genes.  By employing this approach, we were able to identify several high quality fusion 

candidates in prostate cancer tissue samples.  

 We next explored new ways for assessing the transcriptional activity of highly similar 

genomic sequences, which has been non-trivial, especially for those genomic elements that 
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share high degrees of sequence similarity, such as pseudogenes and paralogs.  In order to 

address these issues, we have designed DupSeq, a computational framework that employs 

statistical methods to compare the transcription signal patterns (as obtained from mapped RNA-

Seq reads) across multiple samples.  By comparing the signal of a given sequence across 

multiple tissues, truly transcribed regions will be characterized by distinctly different expression 

patterns relative to those observed in regions with high sequence similarity (i.e., the expression 

patterns are independent), whereas concordant patterns are suggestive of mapping artifacts.   

 In the last part of this thesis, we applied these computational methods to investigate the 

fundamental mechanisms governing neural differentiation by analyzing transcriptome dynamics 

data.  This analysis not only revealed many previously unannotated transcripts and differentially 

expressed transcript isoforms, but also uncovered a reduction in splicing isoform diversity as 

human embryonic stem cells differentiate into neural cells. 

 We have identified a number of directions for future research.  Specifically, in the context 

of DupSeq, we intend to implement enhanced statistical methodologies to better discriminate 

between true transcription and mapping artifacts.  In part, we envision using principal component 

analysis on the matrix, which represents the expression signals across multiple samples, to 

obtain a set of uncorrelated variables (i.e., the principal components).  Thus, if more than one 

principal component is needed to represent the original matrix, this would indicate that the region 

of interest is most likely independently transcribed.  Conversely, if the original matrix can be 

collapsed into one principal component, then the region of interest would most likely be a 

mapping artifact.  In addition to improved statistical metrics, we are planning to apply DupSeq not 

only to pseudogenes, but also to other genomic elements that share high levels of sequence 

similarity, such as paralogs and unannotated transcribed regions.  Furthermore, we aim to set up 

a web service that would enable researchers to upload a set of specified genomic regions in order 

to obtain a readout regarding their transcriptional activity. 
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