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Biological networks represent various types of molecular organizations in a cell. In the 

previous decade, large amount of network data have accumulated that facilitates our knowledge 

of the composition, topological structure, and functional significance of biological systems. 

Recently, great scientific achievement has been made to unravel inter- and intra- species 

variations at both molecular and system levels. Understanding how biological networks evolve 

could eventually help explain the general mechanism of cellular system. To this end, this thesis 

investigates the evolution of biological networks in terms of network rewiring. It compares 

rewiring rate differences among the common types of biological networks utilizing experimental 

data across species. Then it applies the rewiring rate formulism to show that regulatory networks 

generally evolve faster than non-regulatory collaborative networks, which is consistent among all 

species compared. It goes on to address network data quality issue and to computationally model 

the process of network rewiring with a simulation algorithm. Currently, building high quality 

biological networks is still the main goal in the system biology community. The final part of this 

thesis introduces a novel approach to predict transcription factor (TF) target genes in yeast, with 

significantly better prediction power than previously reported methods. It identifies histone 

sensitive and insensitive TFs to be distinct and biologically meaningful clusters. 
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Chapter 1 
 

Introduction 
 

Biological systems are intricate, robust and regulated networks, which describe the collection 

of myriad fundamental molecular events. Cellular proliferation, differentiation, and 

environmental interactions each requires the production, assembly, operation, and regulation of 

many thousands of components, and they do so with remarkable fidelity in the face of many 

environmental cues and challenges [1]. Understanding the topology and underlying mechanism of 

these biological networks has become a major topic in functional –omics, which evidently helps 

summarizing, explaining and predicting experimental observations.  

Modern molecular biology is established on the discovery, analysis, and manipulation of 

macro-molecules: DNAs, RNAs and proteins, which are the key components of all biological 

networks. Analyzing these molecules generally includes three major stages: sequencing, 

alignment, and evolutionary insights. Sequencing sets the stage of molecular biology, which 

unravels the chemical composition and linear structure of proteins in 1950s [2, 3], RNAs in 1960s 

[4], and finally DNAs in 1970s [5]. Recent advances in sequencing technology now enable rapid, 
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efficient, and cost-saving decoding of large genomic DNAs [6] and transcriptomic RNAs [7, 8]. 

With conserved sequences became available for two or more species, scientists started to develop 

computer algorithms that align the character sequences to identify regions of similarity [9, 10]. 

Upon the alignments of sequences from multiple species or individuals from within a species, 

evolutionary and population genetic analyses study the substitution rates, evolutionary constraints, 

and genetic variations.  

Research of molecular sequences not only provides ample information and tools of DNAs, 

RNAs and proteins, it also serves as an example of future research direction of biological 

networks. In the past ten years, the advent of high-throughput techniques has facilitated the 

discovery and identification of many different types of biological networks which describe 

different aspects of the cellular system [1]. Similar to sequence alignments, researchers then 

compare and align networks from different species to uncover conserved signaling pathways and 

functional groups of molecules [11]. It is thus expected that evolutionary and population genetic 

analyses of biological networks will follow, much resembles the third stage of sequence research. 

The types of biological networks currently include, but are not limited to, protein interaction, 

genetic interaction, transcription factor-target regulatory, miRNA-target regulatory, 

kinase-substrate phosphorylation, and metabolic pathway. Each of these networks represents a 

specific type of relationship among molecules, and has its distinct large-scale construction 

approach.  

Protein interaction networks represent physical globular binding among protein molecules. 

Protein complexes that comprised individual binding proteins are the functional units of 
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biological processes. The first high-throughput physical interaction maps were generated using 

Yeast Two-Hybrid (Y2H) systems, which identifies binary interactions, in yeast S. cerevisiae and 

then other organisms including D. melanogaster, C. elegans, and H. sapiens [12-16]. Tandem 

Affinity Purification (TAP) technique followed by mass spectrometry is later used to identify 

large protein complexes in vivo [17, 18]. Protein interaction network is currently the most data 

abundant biological network, mostly due to that the above approaches are homogeneity and 

efficiency in detecting all potential interactions.  

Genetic interaction networks denote epistatic relationship between genes in that a gene’s 

function is affected by one or many other genes. The most common type is synthetic lethality in 

which mutations do not cause loss of viability individually, but are lethal when combined. Many 

approaches have been developed to detect genetic interactions, such as Synthetic Genetic Array 

(SGA), dipoid-based Synthetic Lethality Analysis with Microarrays (dSLAM) and more recently 

synthetic dosage-suppression analysis [19].  

Transcription factor-target regulatory networks represent physical binding of transcription 

factors to the upstream DNA motifs of their target genes, regulating the level of transcription. 

Chromatin immunoprecipitation (ChIP) based techniques followed by microarray (ChIP-chip) or 

more recently direct sequencing (ChIP-seq) have been widely used to map genomic locations of 

transcription factor binding sites (TFBSs) [1]. Although the techniques are high-throughput and 

applicable to almost all transcription factors (TFs) and organisms, uncovering regulatory 

relationship networks exhaustively under all conditions and cell-types seems forbidding. Under 

the assumption that TFs recognize and bind to their specific motifs, many computational methods 
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tried to predict TFBSs using motifs discovered from previous ChIP experiments.  

miRNA-target regulatory networks are relatively new type of biological network, which 

emerge from the discovery of microRNAs and their widespread activity in all multi-cellular 

organisms. miRNAs are small 23 nucleotides, on average, RNAs that regulate gene expression by 

binding to complementary sequence regions of their target mRNAs, which leads to the 

degradation of mRNAs [20]. High-throughput experimental approaches unraveling miRNA-target 

regulatory networks are not yet existed. However, multiple computational methods predicting 

miRNA targets using complementary sequence matching are widely accessible to build regulatory 

networks with reasonable accuracy. The comprehensive mapping of transcription regulation 

network including TFs, miRNAs, and target genes may render interesting regulatory motifs and 

hierarchical structures [21, 22].  

Kinase-substrate phosphorylation networks represent phosphorylation events in proteome 

which play key roles in signaling pathways. It is estimated that ~30% of yeast and human cellular 

proteins are phosphorylated in vivo [1, 23-25]. Proteome chip technology has detected 1,325 

substrates out of 4,400 yeast proteins being phosphorylated by 82 kinases in vitro [26]. Mass 

spectrometry is another widely used method allowing the identification of substrate 

phosphorylated residues [24]. Understanding the regulatory roles of kinases and phosphatases in a 

global phosphor-regulatory network reveals novel functional co-operations and a core interaction 

backbone [27].  

Metabolic pathway networks are the collection of biochemical reactions which metabolize 

dietary compounds into the final nutritional products and energy, catalyzed by enzymes. Common 
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metabolic pathways, such as glycolysis and citric acid cycle, are well-characterized in the history 

of biochemistry, and they are highly conserved even comparing vastly distant species, indicating 

fundamental similarity of all living organisms [28].  

Biological networks are composed of nodes (DNAs, RNAs, proteins, and metabolites) and 

edges (particular relationships between a pair of nodes). Studying the topology of networks gives 

us mathematically and biologically interesting findings. The number of connected neighbor nodes 

to a particular node is called its degree. Almost all biological networks studied are scale-free 

networks whose degree distribution follows a power law, compared to Poisson in random 

networks [29]. The major characteristic of a scale-free network is that only a few nodes, called 

hubs, have large degree, and most other nodes are connected to the network through the hubs. 

This characteristic contributes to the efficient connectivity and robustness of the network [29].  

Computational biologists have found that hubs in yeast protein interaction and TF-target 

regulatory networks tend to be essential genes and under higher evolutionary constraints, removal 

of which results the cell unviable [30, 31]. Another important type of nodes is called bottlenecks, 

which act like “bridges” connecting two network clusters. Bottlenecks are also shown to be 

enriched of essential genes [32]. These findings are consistent with the topological importance of 

hubs and bottlenecks in maintaining the connectivity of scale-free networks.  

Regulatory networks are usually associated with a special hierarchical structure that upper 

layer “regulators” manage their lower layer “targets”, but not vice versa [33]. The directional 

relationships form a top-down hierarchical regulatory structure much like those we have in 

governments and corporations [33]. Regulators in the middle tend to have more targets, and more 
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likely to collaborate with each other, indicating their heavy functioning duties [33, 34]. 

Establishing the regulatory hierarchical structure and relating it to biological features will 

improve our understanding of the complex cellular controlling and response system.  

Relating three-dimensional protein structure to protein interaction network generates two 

classes of interaction types: transient and permanent [35]. Transient interactions are those using 

interacting sites in protein structure that also been used by other interactions. It is possible that 

transient interactions are only active and functional under certain conditions. On the contrary, 

permanent interactions are ones which may contribute to the formation of stable protein 

complexes. Linking the classification to other biological properties may uncover interesting 

implications in biology.  

1.0.1  Evolutionary rewiring of biological networks 

In chapter two [36], we present a unified formulism to measure network rewiring rate for all 

types of biological networks. In the past decade, we have accumulated a large amount of 

biological network data and expect even more to come. In the near future, we anticipate being 

able to compare many different biological networks as we commonly do for molecular sequences. 

It has long been believed that many of these networks change, or “rewire”, at different rates. We 

have developed such a formalism based on analogy to simple models of sequence evolution, and 

used it to conduct a systematic study of network rewiring on all the currently available biological 

networks. We found that, similar to sequences, biological networks show a decreased rate of 
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change at large time divergences, because of saturation in potential substitutions. However, 

different types of biological networks consistently rewire at different rates. Using comparative 

genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription 

regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, 

and metabolic pathway network, from fast to slow. This ordering was found in all comparisons 

we did of matched networks between organisms. We also investigated how readily our formalism 

could be mapped to other network contexts; in particular, we showed how it could be applied to 

analyze changes in a range of “commonplace” networks such as family trees, co-authorships and 

linux-kernel function dependencies.  

1.0.2  Computational simulation of network rewiring 

In chapter three [36], we describe a computational method to simulate the course of network 

rewiring, which is then used to support the analysis and conclusions in chapter two. It is generally 

agreed in the biological network community that current network data from large-scale 

experiments are suffered from a significant extent of false positives and false negatives. To 

evaluate the extent to which our rewiring rate measure is affected by unreal connections and 

incomplete data, we simulate data noise by rewiring the networks. Rewiring rate calculation is 

applied to these simulated networks, and perturbation analyzed to estimate the affect of data noise. 

Our network rewiring model includes four sources of rewiring, add edge, remove edge, add node, 

and remove node. Sensitivity analysis is performed to assess the relative importance of four 
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parameters, which is helpful in understanding the possible underlying mechanism of network 

rewiring.  

1.0.3  Predicting TF regulatory network 

In chapter four [37], we introduce a novel method to predict TF regulatory network 

incorporating chromatin modification information, and achieve better prediction power than 

previously reported methods. Transcription factors are key regulators of gene expression. 

Although experimental efforts are on the way to unravel binding profiles of more TFs in multiple 

conditions, cell lines, and species, it is almost impossible that we will exhaust all the 

combinations by experiments. Therefore, understanding TF binding mechanism from currently 

available data sets and making high quality predictions are the major issues in TF regulatory 

network research. A number of experimental and computational methods have been developed to 

identify target genes of transcription factors in yeast. Chromatin modifications affect transcription 

by changing the accessibility of transcription factors to chromatin and recruiting transcription 

factors. We propose a machine learning method that integrates transcription factor binding motif 

and chromatin modification profiles, which captures both condition-specificity and transcription 

factor-specificity of chromatin modifications, and substantially improves the prediction of 

transcription factor target genes in yeast. We found that transcription factors could be clustered 

into histone-sensitive and insensitive ones. The target genes of the histone-sensitive transcription 

factors have stronger signals of histone modification, while those of insensitive ones have weaker 
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ones. The two clusters also differ in degree of connectivity in protein-protein interaction network, 

position in the transcriptional regulation hierarchy as well as other features, indicating possible 

differences in their transcriptional regulation mechanisms. The model also shows potential 

application in distinguishing between direct and indirect transcription factor-DNA interactions. 

In chapter five, we conclude the thesis with possible future directions.  
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Chapter 2 
 

Analyzing evolutionary rewiring of 
biological networks 
 

2.1  Introduction 

With the advent of large-scale genomic and proteomic technologies in discovering interacting 

and regulatory relationships in cells, many types of biological networks, though incomplete, have 

been constructed in various eukaryotic species [12-14, 16, 21, 22, 26, 38-49]. The kinds of 

networks currently include, but are not limited to, protein interaction, genetic interaction, 

transcription factor-target regulatory, miRNA-target regulatory, kinase-substrate phosphorylation, 

and metabolic pathway. Biological networks have been used to explain differences between 

closely related species that share high sequence similarities [38, 39, 41]. For example, human and 

chimpanzee genomic sequences are found to have only 1.23% differences in SNPs and 3% in 

indels [50]. However, the subtle sequence divergence is hardly sufficient to explain phenotypical, 
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behavioral and social differences between the two species. As a result, biological networks 

(organizations of molecules) are proposed to play a central role in speciation complementary to 

individual molecules [38, 39, 41]. However, it is still largely unknown how fast biological 

networks evolve.  

Biological network research has followed the path of sequence research to some degree. In 

the past three decades, biological sequence research has experienced three stages: initial 

sequencing data generation, pairwise alignment and evolutionary rate analysis. Simple models 

such as the Jukes-Cantor model [51] describe evolutionary sequence divergence in terms of time. 

In fact, various biological sequences evolve at different rates depending upon their functional 

importance [52, 53]. Genomic sequence analyses in various species have helped us to learn levels 

of conservation among genomic regions and genes [54-56]. Similarly, proteomic sequence and 

structure analyses show that protein regions have varied evolutionary constraints [57, 58]. 

Analogous to sequence analysis, the development of biological network research has three similar 

stages: network construction by large-scale experiments and computational predictions [12-14, 16, 

21, 22, 26, 38-49], pairwise network comparison to find conserved edges as interologs or 

regulogs [11, 59] and building general network alignment tools [60, 61], and finally investigating 

levels of conservation and evolutionary change on biological networks.  

One of the advantages of network study is that we can make analogies to draw intuition. For 

example, in commonplace social contexts, we readily observe that some “network” relationships 

change faster than others. Personal acquaintance networks may change in days, friendship 

networks and co-worker networks in months or years, while family networks change over 
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decades. This intuition of network stability differences could be quantified and compared by the 

rewiring rate that reflects the nature of network relationships. Similarly, in cellular systems 

biological networks may rewire at various rates during evolution.  

Increasingly we have seen many approaches to compare biological networks across 

organisms, uncovering interesting relationships of network evolution and the functional 

implications [41, 62-68]. Due to current limitations of network construction technologies and the 

large evolutionary distance between the species compared, the overlap between current network 

datasets is small. Nevertheless, the estimation of the rewiring rate in protein interaction networks 

is possible [62]. Various methods were used in different studies inconsistent for direct comparison, 

with each focused on one of the biological network types. Also, most of the studies were species 

specific that did not compare species with large evolutionary divergence.  

Given that previous studies have set the stage, now is an opportune time to quantify network 

rewiring in all these comparisons in a unified way. In the past three years, more data has become 

available for a greater number of species covering many types of biological networks [21, 22, 38, 

39, 41]. The comprehensive set of network data allows systematic comparison of rewiring rates of 

biological networks and drawing more robust conclusions by using a set of species pairs.  

We show here the rewiring rates of several types of biological networks in eukaryotes. The 

approach used is consistent across network types and robust to network data quality. We observed 

that the rewiring rate is characteristic of the type of edge (relationship between node entities) in 

both biological and commonplace networks. This analysis gives an initial picture of biological 

network rewiring and provides intuition and useful tools for the future when more network data 



 13 

becomes available.  

2.2  Results 

2.2.1  Quantifying network rewiring rate 

To calculate the rewiring rate of biological networks, we first established node orthology 

between two species, and then defined edge orthology as a conserved relationship between 

orthologous entities across different species, which is a generalization of “interologs” in protein 

interaction network and “regulogs” in TF regulatory network [11, 59]. One species network is 

considered reference, and three sets of nodes are identified. Common nodes (CNs) are nodes 

present in both networks, loss nodes (LNs) only in reference network and gain nodes (GNs) only 

in the other compared network. Four types of rewired edges are then identified and counted 

including gain or loss edges between CNs, loss edges involving LNs, and gain edges involving 

GNs (see Figure 2.1). The rewiring rate was measured by the total number of rewired edges (R) 

between two networks normalized by the combined network size, the total number of possible 

edges if two networks were both “complete” (C), and divergence time (T). Total number of 

rewired edges (R) counts all non-conserved edges (interologs, regulogs or other type of “logs”) in 

two networks. The total number of possible edges (C) has five components: total possible edges 

of complete networks consisting of only common nodes (CNs), nodes that are only present in one 

of the two networks (GNs or LNs), and total possible edges between the two (between CNs and 

LNs, or CNs and GNs) (see Figure 2.2). The measure is in essence percentage edge change of  
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Figure 2.1: Measuring network rewiring by comparing networks of species pairs.  
(A) Types of biological networks with currently available data for different species are collected. 
Selected types of commonplace networks with multiple time-point data are also collected. (B) For 
each network type, we perform edge rewiring analysis for pairs of species. Three types of nodes 
are first identified as CNs, GNs and LNs. Four types of rewired edges are then identified and 
counted including gain/loss edges between CNs (red) and those involving GNs or LNs (green). 
Rewiring rate from comparing the networks is calculated (see Materials and Methods). (C) 
Rewiring rate calculated from schematic (B) corresponds to a typical result point. 
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Figure 2.2: Schematic of total number of possible edges calculation in rewiring rate.  
(A) For collaborative networks including protein interaction network, genetic interaction network 
and metabolic networks. Solid circles represent sets of nodes, as common nodes (CN), gain nodes 
(GN) and loss nodes (LN); dashed circles conceptually represent individual networks. Lines 
represent complete number of undirected edges between node sets, with each corresponding to a 
term in total number of possible edges summation. (B) For TF target regulatory network and 
kinase-substrate phosphorylation network. TFs or kinases are shown as regulators (Reg), and TF 
target genes or substrates as targets (Tar). Arrows represent complete number of directed edges 
between node sets. (C) For miRNA target regulatory network. miRNAs are shown as regulators 
(Reg) and their target genes as targets (Tar).  
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network in a given time period. We have collected data for each type of network for different 

species (see Table 2.1), and calculated rates for different time divergence species pairs (see Figure 

2.1).  

2.2.2  Log-Log linear relationship between divergence time and rewiring rate 

For all types of biological networks, we observed faster rewiring rates for smaller divergence 

species pairs and slower rewiring rates for larger divergence species pairs, with a strong negative 

linear relationship between rewiring rate (per edge per Mys) and divergence time (Mys) in 

Log-Log scale (see Figure 2.3, Table 2.2). It was thus inappropriate to use the rewiring rate 

calculated from a specific species pair as a general measure for a network type. Using species 

pairs with different divergence times could result in large differences. However, different species 

pairs with similar divergence times tended to have close rewiring rates. This indicated that our 

rewiring rate measure was dependent upon divergence time but not on species.  

We then asked the question whether the observed negative linear relationship in Log-Log 

scale between rate and divergence time in networks is parallel to what is seen in nucleotide 

sequence evolution. For sequence evolution, we use the equation 
TeP 8

4
3

4
3 

 from the 

Jukes-Cantor model, where P is the percentage of sequence change and T is divergence time [51]. 

Though it is a simple model with only one parameter (α), Jukes-Cantor model captures the core 

relationship between P and T, and is sufficient in this case for comparing sequences with 

networks. P/T is the approximation of the instantaneous sequence evolutionary rate (dP/dT) and 
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Figure 2.3: Ordering of extent of biological network rewiring.  
Rewiring rates calculated for seven types of real biological networks (each with a different color) are shown as points on the Log-Log scale plot. 
Each rewiring rate corresponds to a divergence time of its two species comparison. 
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Species A Species B Estimated 

Divergence 
Time (Mys) 

Networks Used for Rewiring Analysis 

S. cerevisiae S. mikatae 10 Metabolic pathway, TF,  
S. cerevisiae S. paradoxus 10 Metabolic pathway, 
S. cerevisiae S. bayanus 20 Metabolic pathway, TF,  
H. sapiens M. mulatta 25 Metabolic pathway, Metabolic enzyme 
C. elegans C. briggsae 30 Metabolic pathway, miRNA 
D. melanogaster D. pseudoobscura 50 Metabolic pathway, 
H. sapiens M. musculus 75 Metabolic pathway, Metabolic enzyme, 

miRNA 
S. cerevisiae C. glabrata 80 Metabolic pathway, 
S. cerevisiae K. lactis 150 Metabolic pathway, TF,  
S. cerevisiae D. hansenii 270 Metabolic pathway, 
S. cerevisiae C. albicans 270 Metabolic pathway, TF, Phosphorylation,  
S. cerevisiae S. pombe 420 PPI, Genetic, Metabolic pathway, 

Phosphorylation,  
H. sapiens D. rerio 450 miRNA 
C. elegans D. melanogaster 600 TF 
H. sapiens D. melanogaster 800 PPI, Genetic, Metabolic pathway, 

Metabolic enzyme, miRNA 
H. sapiens C. elegans 800 PPI, Genetic, Metabolic pathway, 

Metabolic enzyme, miRNA 
S. cerevisiae D. melanogaster 1500 TF 
S. cerevisiae H. sapiens 1500 PPI, Genetic, Metabolic pathway, 

Metabolic enzyme, Phosphorylation,  
 
Table 2.1: Estimated divergence times between species pairs 
All species pairs used in this study for calculating rewiring rates comparing species networks are 
listed with estimated divergence time in evolution. The types of networks used for each of these 
species pairs are also listed. 
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Biological Network Linear Regression Model Correlation 

Coefficient 
P-val 

Transcription factor 
regulatory network 

)43.122.0()log()63.032.1(r)log(  t  -0.95 0.004** 

Kinase 
phosphorylation 
network 

)45.562.0()log()97.166.1(r)log(  t  -0.99 0.06* 

miRNA regulatory 
network 

)68.324.1()log()61.147.1(r)log(  t  -0.94 0.06* 

Protein interaction 
network 

)43.3490.0()log()83.1164.1(r)log(  t  -0.87 0.3 

Genetic interaction 
network 

)61.492.1()log()59.109.1(r)log(  t  -0.99 0.07* 

Metabolic enzyme 
network 

)22.098.1()log()09.097.0(r)log(  t  -0.99 0.0005*** 

Metabolic pathway 
network 

)5.021.4()log()24.070.0(r)log(  t  -0.90 0.00006**** 

95% confidence intervals for the fitted parameters are computed for linear models. 
 
Table 2.2: Linear regression models of biological network rewiring rate and divergence time 
For each type of biological network, rewiring rates (r) from different species pairs are regressed 
with divergence time (t), both in Log scale. Pearson correlation coefficient is also calculated. 
 

can be used for direct comparison with rewiring rate of networks. A negative linear relationship 

was observed in Log-Log scale between P/T and T (see Figure 2.4), and was especially strong at 

large divergence times.  

The analysis above indicated that the negative linear relationship between the rewiring rate 

and time in real networks could be universal and reflect underlying principles in evolution. This 

intuitively corresponds to the saturation of percentage change. For nucleotide sequences, as 

divergence becomes larger, the percentage of sequence change saturates at 0.75 according to the 

Jukes-Cantor model. New nucleotide changes happen on top of previous changes, which have 

little effect on percentage difference. Our analysis showed that the same is true for networks. 
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Figure 2.4: Saturation of nucleotide substitution in Jukes-Cantor Model. 
(A) Saturation of percentage nucleotide substitution (P) at 75% (red horizontal line) as a function 
of divergence time in Log scale. (B) Relationship on Log-Log scale between sequence evolution 
rate, as number of nucleotide change per nucleotide per million years according to the 
Jukes-Cantor model, and divergence time. 
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Estimated Divergence Time 
(Mys) 

~25 ~75 ~270 ~800 ~1500 Fitted 
800 

Metabolic Pathway Network 7.4E-6 3.1E-6 4.1E-6 5.4E-7 3.7E-7 5.7E-7 
Protein Interaction Network - - - 1.1E-6 1.1E-6 2.2E-6 
Genetic Interaction Network - - - 1.3E-5 4.0E-6 8.3E-6 
Metabolic Enzyme Network 4.8E-4 1.5E-4 - 1.7E-5 8.4E-6 1.6E-5 
miRNA Regulatory Network 8.6E-4 3.3E-5 - 4.1E-6 - 3.1E-6 
Kinase Phosphorylation 
Network 

- - 3.5E-4 - 2.2E-5 6.5E-5 

Transcription Factor 
Regulatory Network 

2.3E-2 - 3.5E-3 2.1E-4 4.4E-5 2.4E-4 

 
Table 2.3: Rewiring rate spectrum of eukaryotic biological networks 
Using estimated divergence time between species pairs (see Table 2.1), we calculate rewiring 
rates for multiple time divergence of each type of biological networks, and show a subset of 
results here. ‘Fitted 800’ column is the fitted rewiring rate from linear regression at 800 Mys 
divergence time (see Figure 2.3). Network data is unavailable for rewiring rate calculation for 
blank cells. Rewiring rate is measured as rewiring per edge per Mys. 

2.2.3  Rewiring rate as a discriminating characteristic of networks 

We used the fitted rates from linear models for each type at 800 Mys divergence, roughly half 

the time of eukaryotic history (see Table 2.3). The “banding” of networks on the plot into 

characteristic groups with order of magnitude rate differences between them indicates the 

robustness of the rewiring rate calculation and the actual rate difference between networks.  

In fact, the above described rewiring rate is an “average” rate rather than “instantaneous” rate 

for networks. As the Jukes-Cantor model shows for sequences, evolutionary rate (α) could only 

be approximately measured using instantaneous rate (dP/dT) between closely related species (dT 

is small), where α is proportional to dP/dT. When the divergence gets large, the approximation of 

instantaneous rate with the average rate is poor and the relationship between α and dP/dT 
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becomes non-linear. The logic is directly applicable to our case for networks.  

Ideally, instantaneous rewiring rate should be measured using networks between closely 

related species. However, little network data are available for close species, which inhibits the 

calculation of instantaneous rewiring rates. The disadvantage of using the average rates described 

above is that at large evolutionary distance, network rewiring approaches saturation and is hard to 

compare. And the limited number of species network comparisons does not allow accurate 

estimations of instantaneous rates by the linear model at less than 10Mys divergence (see Table 

2.2).  

Another idea of comparing rewiring of biological networks is to use networks for a given 

divergence of the same species pairs. Since networks are of the same divergence, we use the 

percentage of edge changes among total possible changes, which is R/C, to measure the extent of 

rewiring (see Table 2.4). This method circumvents the disadvantages of average rewiring rate and 

limited species comparisons of networks, while it maintains the ability to distinguish the extent of 

network rewiring. For each of the 11 species comparisons listed in Table 2.4, biological networks 

are ordered according to their percentage of rewiring. We then count the number of cases where 

one type of biological network is observed to rewire more or less than another (see Table 2.5). 

Thus for each comparison between species (at a given level of divergence), we get an ordering of 

network rewiring (e.g. transcription regulatory > phosphorylation regulatory > protein interaction 

> metabolic pathway). We found that the ordering is consistent amongst all the 11 comparisons in 

this study. This result further supports the differences found in network rewiring using averaged 

rates.  
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Species 
Pair 

Estimated 
Divergenc
e Time 
(Mys) 

Metab
olic 
Pathw
ay 

Protein 
Interac
tion 

Geneti
c 
Interac
tion 

Metab
olic 
Enzy
me 

miRNA 
Regula
tory 

Kinase 
Phosp
horyla
tion 

Transcri
ption 
Factor 
Regulato
ry 

S. cer, 
S. mik 

10 0.015
% 

- - - - - 43% 

S. cer, 
S. bay 

20 0.015
% 

- - - - - 46% 

H. sap, 
M. mul 

25 0.013
% 

- - 1.2% - - - 

C. ele, 
C. bri 

30 0.025
% 

- - - 2.6% - - 

H. sap, 
M. mus 

75 0.006
% 

- - 1.1% 0.25% - - 

S. cer, 
K. lac 

150 0.032
% 

- - - - - 87% 

S. cer, 
C. alb 

270 0.11% - - - - 9.5% 95% 

S. cer, 
S. pom 

420 0.033
% 

0.37% 0.67% - - 9.2% - 

D. mel, 
C. ele 

600 - - - - - - 13% 

H. sap, 
D. mel 

800 0.033
% 

0.088% 1.04% 1.36% 0.32% - - 

H. sap, 
C. ele 

800 0.043
% 

0.088% 0.42% 1.36% 0.33% - - 

S. cer, 
D. mel 

1500 - - - - - - 6.5% 

S. cer, 
H. sap 

1500 0.056
% 

0.17% 0.6% 1.26% - 3.3% - 

 

Table 2.4: Percentage of rewired edges of eukaryotic biological networks  
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 TF 

regulator
y (T) 

Kinase 
phosphor
ylation 
(K) 

Metabolic 
enzyme (E) 

Genetic 
interaction 
(G) 

miRNA 
regulatory 
(M) 

Protein 
interaction 
(I) 

Metabolic 
pathway 
(P) 

T        
K T > K: 1/1       
E - K > E: 1/1      
G - K > G: 2/2 E > G: 3/3     
M - - E > M: 3/3 G > M: 2/2    
I - K > I: 2/2 E > I: 3/3 G > I: 4/4 M > I: 2/2   
P T > P: 4/4 K > P: 3/3 E > P: 5/5 G > I: 4/4 M > P: 4/4 I > P: 4/4  
 
Table 2.5: Consistency of species comparison cases of network rewiring 
The percentages of network rewiring calculated in Table 2.4 are compared for the extent of 
rewiring and summarized. ‘>’ denotes the argument of greater rewiring extent of the column type 
of biological network over the row type. Network types are abbreviated using capital letters in 
rows. Only the lower triangle of this symmetric table is filled. The ratio denotes the number of 
cases supporting the argument out of the total number cases compared. All arguments are 
supported with full consistency of species pair comparisons. 

2.2.4  Application of rewiring rate measurement to commonplace networks 

The formalism of network rewiring was also applicable to non-biological networks to get 

some intuition for fast or slow rewiring processes (see Table 2.6). Three different representative 

commonplace networks with very different divergences were constructed, including 

co-authorship networks, family trees and Linux kernel design networks (see Figure 2.5). The 

three types of non-biological networks showed differential rewiring rates in the order of 

magnitudes (see Table 2.6). Consistent with our intuition, for example, family trees have less 

rewiring than co-authorship networks. Contrary to popular opinion of frequent computer software 

updates, Linux kernel design network in fact evolves approximately one order of magnitude  
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Figure 2.5: Visualization of types of social networks.  
(A) A typical family tree in 1983 (red edges) and in 2009 (blue edges), with unchanged nodes 
aligned. (B) Dr. Steitz Lab co-authorship network in 2006 (red edges) and in 2009 (blue edges). 
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 Years of Change Rewiring Rate (per edge per year) 
Linux Kernel Design Network 2 1.7E-4 
Family Tree 26 9.5E-4 
Lab Co-authorship Network 3 2.9E-1 
 
Table 2.6: Rewiring rates of selected commonplace network 
Rewiring rates are calculated using the same method as for biological networks (see Materials 
and Methods). Notice that rewiring rate for social networks is measured in per year unit, as 
compared to per Mys unit in biological networks. 

 

slower than a typical family tree (more family samples needed for statistically significant 

arguments). It is clear that rewiring rate could help us understand the nature of edge relationship 

in networks, thus can be used for direct comparisons among all kinds of biological and social 

networks.  

2.2.5  Network rewiring and gene content turnover 

Rewiring of biological networks consist of two sources: edge change between conserved 

nodes, and edge change from node gain and loss. We observed that a large fraction and in many 

cases the majority of network rewiring is attributed to the gain and loss of nodes (see Table 2.7). 

In fact, gene content turnover of two species contributes to the gain and loss of nodes in networks. 

Some studies have suggested differential gene content turnover of gene families, such as 

transcription factors and metabolic enzymes, in completely sequenced genomes [69-71]. 

Therefore, it is important to assess the impact of gene family evolution on the extent of their 

respective network rewiring.  
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Network 

Type 

Species Pair 

(reference, 

compared) 

Dive

rge

nce 

(My

s) 

Share

d 

edges 

Edge 

chang

e from 

Edge 

Gain 

Edge 

chang

e from 

Edge 

Loss 

Edge 

change 

from 

Node 

Gain 

Edge 

change 

from 

Node 

Loss 

Total 

possible 

edges 

Percentage 

of rewiring 

by gene 

content 

turnover 

Total 

Rate 

Edge 

Gain 

Rate 

Edge 

Loss 

Rate 

Nod

e 

Gai

n 

Rat

e 

Node 

Loss 

Rate 

Com

mon 

Node

s 

Gain 

Node

s 

Loss 

Nodes 

TF D. melanogaster, 

S. cerevisiae 

150

0 

3 80 80 12733 76543 1368376 0.06535923 4.36E-

05 

2.64

E-05 

2.64E

-05 

1.24

E-05 

7.47E

-05 

1011 3508 10867 

TF D. melanogaster, 

C. elegans 

600 0 0 0 33752 76626 857710 0.1286892 2.14E-

04 

0 0 3.27

E-04 

1.86E

-04 

1833 6014 10045 

TF S. cerevisiae, C. 

albicans 

270 54 NA NA 677 193 924 NA 3.50E-

03 

NA NA 3.40

E-03 

2.90E

-03 

55 193 677 

TF S. cerevisiae, K. 

lactis 

150 95 NA NA 519 152 766 NA 5.80E-

03 

NA NA 5.60

E-03 

4.10E

-03 

96 152 519 

TF S. cerevisiae, S. 

bayanus 

20 288 26 53 60 306 986 0.82247191 2.30E-

02 

3.10

E-03 

6.30E

-03 

2.80

E-02 

3.30E

-02 

213 53 229 

TF S. cerevisiae, S. 

mikatae 

10 328 29 41 70 278 972 0.83253589 4.30E-

02 

6.00

E-03 

8.50E

-03 

7.60

E-02 

7.00E

-02 

242 46 200 

PPI S. cerevisiae, H. 

sapiens 

150

0 

448 4189 554 48668 29693 48819933 0.94292693 1.10E-

06 

6.90

E-06 

9.80E

-07 

2.40

E-06 

5.70E

-07 

915 4407 7460 

PPI H. sapiens, C. 

elegans 

800 45 289 408 4250 30242 38870600 0.98019267 1.10E-

06 

2.20

E-06 

3.10E

-06 

1.40

E-06 

1.10E

-06 

583 2233 7792 

PPI H. sapiens, D. 

melanogaster 

800 113 1044 1778 21451 28804 58913366 0.94683196 1.10E-

06 

1.40

E-06 

2.30E

-06 

1.10

E-06 

1.10E

-06 

1405 5641 6970 

PPI S. cerevisiae, S. 

pombe 

420 1093 654 4403 552 48405 14596540 0.90637612 8.80E-

06 

5.80

E-06 

3.90E

-05 

8.50

E-06 

8.10E

-06 

734 186 4640 
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Genetic S. cerevisiae, H. 

sapiens 

150

0 

0 2 1 57851 280 9666463 0.9999484 4.00E-

06 

5.80

E-06 

2.90E

-06 

4.00

E-06 

4.50E

-06 

21 4366 267 

Genetic H. sapiens, C. 

elegans 

800 0 1 0 2104 281 570486 0.99958089 5.20E-

06 

3.50

E-05 

0 5.00

E-06 

8.40E

-06 

8 1020 280 

Genetic H. sapiens, D. 

melanogaster 

800 0 18 6 5206 275 520765 0.99564033 1.30E-

05 

4.00

E-05 

1.30E

-05 

1.40

E-05 

8.40E

-06 

33 946 255 

Genetic S. cerevisiae, S. 

pombe 

420 1261 5925 10191 3287 46441 10007207 0.75523966 1.60E-

05 

3.80

E-05 

6.60E

-05 

3.30

E-05 

1.20E

-05 

858 242 3563 

Phosphor

ylation 

H. sapiens, S. 

cerevisiae 

150

0 

0 87 114 3981 27806 933247 0.99371639 2.20E-

05 

2.10

E-05 

2.70E

-05 

2.40

E-05 

2.30E

-05 

123 1244 2413 

Phosphor

ylation 

S. cerevisiae, S. 

pombe 

420 226 299 277 1817 3053 58391 0.8942343 2.20E-

04 

1.30

E-04 

1.20E

-04 

2.30

E-04 

2.10E

-04 

154 325 551 

Phosphor

ylation 

S. cerevisiae, C. 

albicans 

270 385 474 383 4260 2788 84823 0.8915876 3.50E-

04 

2.20

E-04 

1.80E

-04 

3.50

E-04 

3.20E

-04 

192 737 513 

miRNA H. sapiens, C. 

elegans 

800 3 2 0 122 5679 1785268 0.99965535 4.10E-

06 

8.90

E-05 

0 3.30

E-05 

4.00E

-06 

11 133 4199 

miRNA H. sapiens, D. 

melanogaster 

800 20 9 1 99 5661 1784155 0.9982669 4.00E-

06 

2.80

E-05 

3.10E

-06 

3.50

E-05 

4.00E

-06 

43 104 4167 

miRNA H. sapiens, D. 

rerio 

450 300 198 168 914 5214 1875715 0.94364028 7.70E-

06 

1.10

E-05 

9.70E

-06 

2.10

E-05 

6.70E

-06 

468 742 3742 

miRNA H. sapiens, M. 

musculus 

75 2138 410 477 3178 3067 2850669 0.87563096 3.30E-

05 

7.80

E-06 

9.10E

-06 

4.00

E-05 

3.80E

-05 

1987 2275 2214 

miRNA C. elegans, C. 

briggsae 

30 12 1 0 44 115 6212 0.99375 8.60E-

04 

1.20

E-04 

0 9.40

E-04 

8.80E

-04 

35 51 109 

Metabolic 

Pathway 

H. sapiens, S. 

cerevisiae 

150

0 

1099 64 158 208 652 1940402 0.7948244 3.70E-

07 

7.10

E-08 

1.70E

-07 

5.60

E-07 

4.00E

-07 

778 145 524 

Metabolic H. sapiens, C. 800 1191 13 192 47 520 1783038 0.73445596 5.40E- 2.00 2.90E 6.60 7.40E 905 48 397 
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Pathway elegans 07 E-08 -07 E-07 -07 

Metabolic 

Pathway 

H. sapiens, D. 

melanogaster 

800 1400 43 160 102 340 1922026 0.68527132 4.20E-

07 

5.20

E-08 

2.00E

-07 

5.60

E-07 

6.40E

-07 

1013 107 289 

Metabolic 

Pathway 

S. cerevisiae, S. 

pombe 

420 1133 19 87 78 154 1031728 0.68639053 7.80E-

07 

7.50

E-08 

3.50E

-07 

1.00

E-06 

1.50E

-06 

775 109 148 

Metabolic 

Pathway 

S. cerevisiae, C. 

albicans 

270 463 18 179 19 743 869746 0.79457769 4.10E-

06 

3.20

E-07 

3.20E

-06 

3.80

E-06 

4.30E

-06 

459 20 464 

Metabolic 

Pathway 

S. cerevisiae, D. 

hansenii 

270 1196 19 80 196 97 1323634 0.74744898 1.10E-

06 

9.80

E-08 

4.10E

-07 

1.50

E-06 

2.70E

-06 

847 244 78 

Metabolic 

Pathway 

S. cerevisiae, K. 

lactis 

150 1146 7 100 102 128 1097612 0.68249258 2.10E-

06 

6.90

E-08 

9.80E

-07 

2.80

E-06 

5.00E

-06 

825 138 98 

Metabolic 

Pathway 

S. cerevisiae, C. 

glabrata 

80 1204 10 36 56 133 955560 0.80425532 3.10E-

06 

1.80

E-07 

6.60E

-07 

6.70

E-06 

9.90E

-06 

827 61 96 

Metabolic 

Pathway 

H. sapiens, M. 

musculus 

75 1831 11 24 17 45 1744282 0.63917526 7.40E-

07 

9.40

E-08 

2.00E

-07 

4.50

E-06 

4.50E

-06 

1250 20 52 

Metabolic 

Pathway 

D. melanogaster, 

D. pseudoobscura 

50 1199 24 109 42 238 1336356 0.6779661 6.20E-

06 

5.40

E-07 

2.40E

-06 

1.00

E-05 

1.30E

-05 

945 43 175 

Metabolic 

Pathway 

C. elegans, C. 

briggsae 

30 1196 73 25 190 31 1282064 0.69278997 8.30E-

06 

2.80

E-06 

9.70E

-07 

1.70

E-05 

2.10E

-05 

927 184 26 

Metabolic 

Pathway 

H. sapiens, M. 

mulatta 

25 1706 12 90 10 106 1728384 0.53211009 5.00E-

06 

3.20

E-07 

2.40E

-06 

1.20

E-05 

2.20E

-05 

1225 14 77 

Metabolic 

Pathway 

S. cerevisiae, S. 

bayanus 

20 1299 23 40 48 32 963026 0.55944056 7.40E-

06 

1.40

E-06 

2.50E

-06 

2.10

E-05 

4.60E

-05 

904 60 19 

Metabolic 

Pathway 

S. cerevisiae, S. 

mikatae 

10 1303 16 36 61 32 994114 0.64137931 1.50E-

05 

2.00

E-06 

4.40E

-06 

4.30

E-05 

9.20E

-05 

904 76 19 

Metabolic 

Pathway 

S. cerevisiae, S. 

paradoxus 

10 1305 6 32 39 34 947466 0.65765766 1.20E-

05 

7.40

E-07 

3.90E

-06 

4.00

E-05 

8.90E

-05 

902 52 21 
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Metabolic 

Enzyme 

H. sapiens, S. 

cerevisiae 

150

0 

503 54 52 5301 15147 1634182 0.99484285 8.40E-

06 

1.10

E-06 

1.10E

-06 

9.10

E-06 

8.30E

-06 

182 467 935 

Metabolic 

Enzyme 

H. sapiens, C. 

elegans 

800 506 44 12 4431 15185 1490166 0.99715331 1.70E-

05 

1.70

E-06 

4.80E

-07 

2.30

E-05 

1.60E

-05 

178 347 939 

Metabolic 

Enzyme 

H. sapiens, D. 

melanogaster 

800 586 132 38 21080 15064 2644584 0.99531861 1.70E-

05 

3.30

E-06 

9.40E

-07 

1.90

E-05 

1.60E

-05 

225 979 892 

Metabolic 

Enzyme 

H. sapiens, M. 

musculus 

75 2699 116 104 11863 12744 2146602 0.99113868 1.50E-

04 

6.10

E-06 

5.40E

-06 

1.80

E-04 

1.80E

-04 

505 570 612 

Metabolic 

Enzyme 

H. sapiens, M. 

mulatta 

25 1263 16 0 6947 14368 1762542 0.99924992 4.80E-

04 

4.80

E-06 

0 5.40

E-04 

5.20E

-04 

365 441 752 

Linux V4, V15 2 yrs 11072 877 3189 11981 2696 55228321 0.78306568 1.70E-

04 

2.50

E-05 

9.00E

-05 

1.90

E-04 

2.20E

-04 

8498 5585 1334 

Linux V4, V27 4.5 

yrs 

7111 1156 4213 25451 5633 10776233

6 

0.85271445 7.50E-

05 

2.00

E-05 

7.20E

-05 

6.70

E-05 

1.10E

-04 

7286 12506 2546 

Family 1983, 2009 26 

yrs 

19 0 1 25 19 1821 0.97777778 9.50E-

04 

0 2.20E

-04 

8.30

E-04 

1.50E

-03 

19 33 18 

Co-author

ship 

2006, 2009 3 yrs 8 0 1 38 38 445 0.98701299 5.80E-

02 

0 1.60E

-02 

5.00

E-02 

7.50E

-02 

7 17 13 

 
Table 2.7: Detailed rewiring rates for networks and species pairs 
Detailed information of rewiring rate results for all networks and species-pairs studied. Numbers of common nodes, gain nodes and loss nodes 
are provided. Four types of rewired edges (gain edge between common nodes, loss edge between common nodes, gain edge involving gain/loss 
nodes, loss edge involving gain/loss nodes) are also distinguished for separate rewiring rates. Note for biological networks, rewiring rates are 
measured by per edge per Mys, while for commonplace networks by per edge per year.  
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 H. sapiens – 

M. musculus 
C. elegans – 
C. briggsae 

S. cerevisiae 
– K. lactis 

Non-conserved 
genes 

99 165 19 

Total genes 1063 504 235 

Transcription 
factor 
activity 

Content turnover 9% 33% 8% 
Non-conserved 
genes 

39 100 7 

Total genes 767 460 250 
Kinase activity 

Content turnover 5% 22% 3% 
Non-conserved 
genes 

129 200 68 

Total genes 2015 1072 1172 
Metabolic 
process 

Content turnover 6% 19% 6% 
 
Table 2.8: Gene content turnover of 3 GO categories 
Genes in H. sapiens, C. elegans and S. cerevisiae from 3 GO categories are identified from 
annotations. In the counter species (M. musculus, C. briggsae and K. lactis) their orthologous 
counterparties are mapped. Gene content turnover for the species pair is measured as the number 
of non-conserved genes over the total number of genes in the GO category. 

 

In order to examine whether the turnover of a specific set of genes, such as kinases and TFs, 

have impact on their corresponding network rewiring, we examined the gene content turnover of 

3 GO categories using 3 species pairs (see Table 2.8). The 3 GO categories (transcription factor 

activity, kinase activity, and metabolic process) are selected to be compared with TF-target 

regulatory network, kinase-substrate phosphorylation network, and metabolic enzyme network, 

respectively. For the 3 categories of proteins, we did not observe a clear pattern in which some 

categories had faster turnover than others. This suggests that differences in network rewiring 

across networks may not come from the gene content turnover of corresponding GO category 

proteins. The rewiring of networks should mostly reflect the characteristic of biological 
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relationships rather than specific GO category molecules themselves.  

2.2.6  Biological networks evolve in rates comparable to protein sequences 

Cellular molecules, as nodes in biological networks, are under differentiated selection 

pressure, and therefore evolve at different rates. Genomic analyses from model organisms have 

shown the spectrum of sequence conservation among types of genomic annotations, in which 

protein coding exon sequences are the most conserved, intron sequences are the least conserved, 

and regulatory cis/trans elements are somewhere in between [72]. Proteins as the products of 

DNA coding sequences are generally thought to be under great constraint. Another special 

product from DNA sequences is ribosomal RNA, which is considered the most conserved locus in 

the genome [73].  

We asked whether the edge rewiring rates in biological networks were in the range of node 

changes. Since there is no analogous concept of “total possible edges between nodes” in sequence 

comparisons, a naïve sequence/network identity-based method was used to measure the 

percentage change between two sequences/networks for consistency. Here, only edge changes in 

networks are counted to compare with nucleotide change in sequences. Sequence identity is 

calculated as the percentage of the number of unchanged nucleotides or amino acids in global 

alignment per length of the alignment. Similarly, network identity is calculated as the percentage 

of the number of unchanged edges out of total number of edges in two networks. Then, the rate 

can be calculated as (1- percentage identity)/(divergence time) for both sequence and network. 
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This equates one edge change with one nucleotide or amino acid change. We realized this might 

not be the best, but a default to start with.  

Using this definition, we observed that biological networks evolve in a range comparable to 

that of protein sequences in both species cases (see Figure 2.6). Transcription factor-target 

regulatory networks, the fastest rewiring biological networks, were comparable to the top 0.1% 

and 4% of the fastest evolving protein sequences in Homo sapiens and Sacchromyces cerevisiae, 

respectively. The slowest rewiring metabolic pathway network was comparable to the bottom 

23% and 36% of the slowest evolving protein sequences. The density distribution of protein 

coding DNA sequence rates had a similar peak position but a smaller standard deviation than 

protein sequence rates, because an amino acid change does not necessarily result from changes of 

all its three codon positions. Therefore the evolutionary rate distinction between protein coding 

sequences and biological networks became more significant: with 0.5% and 4% of sequences 

slower than metabolic pathway networks in human and yeast, respectively, and 0% and 4% of 

sequences faster than transcription factor-target regulatory networks. The 18S rRNA sequences 

evolved slower than all biological networks analyzed here: approximately 60% rate of the slowest 

rewiring metabolic pathway network in human and 1% of the rate in yeast.  

2.2.7  Permanent protein interactions rewire slower than transient interactions 

Since rewiring rates are capable of distinguishing different network types, we attempted to 

use rewiring rates to study different subtypes of edges within protein interaction networks.  
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Figure 2.6: Network rewiring rates is comparable to molecular sequence change.  
(A) Network rewiring evolution is compared to molecular sequence evolution using H. sapiens 
and M. musculus data, and (B) using S. cerevisiae and S. mikatae data. Two density distributions 
of identity-based evolutionary rate are shown as for protein sequences (black line) and protein 
coding DNA sequences (purple line). 18S rRNA rate (orange arrow), transcription factor 
regulatory network rate (red arrow) and metabolic pathway network rate (blue arrow) are also 
shown for relative positions to sequence rate distributions. 
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Edge Type Human 

Permanent 
Human 
Transient 

Yeast Permanent Yeast 
Transient 

Conserved 8 8 38 66 
Non-Conserved 1088 2874 318 1106 
Total 1096 2882 356 1172 

 
Table 2.9: Permanent protein interactions rewires slower than transient interactions 
We distinguish permanent and transient edges for protein physical interactions. Fisher’s Exact 
Test is performed to test conservation difference between permanent and transient edges, with 
P-value=0.05 for human and P-value=0.002 for yeast. Human network edges are compared to D. 
melanogaster for conservation, and yeast S. cerevisiae network is compared to S. pombe. 

 

Relating protein 3-D structures to protein interaction networks helped us to distinguish 

simultaneously possible (permanent) interactions from mutually exclusive (transient) interactions 

[35]. The difference between the two types of interactions is whether an interaction between two 

proteins has competition from a third potential interacting protein for the same interacting site. It 

has long been hypothesized that protein pairs of permanent interactions tend to co-evolve during 

evolution [74]. The co-evolutionary effect could help to maintain the stability of permanent 

interactions.  

Structural interaction networks (SINs) for both human and yeast were constructed using 

updated and coherent datasets. Permanent and transient interactions were identified through 

interacting site regions in proteins and number of interacting partners for each site. Conservation 

of permanent and transient interactions was measured by their presence in another reference 

species network (see Table 2.9). Significant conservation distinction was observed for permanent 

and transient interactions in both yeast (p-value=0.001) and human networks (p-value=0.05) 
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using Fisher’s Exact Test. Stronger conservation of permanent protein interactions indicated that 

the interacting sites within two proteins were more constrained to maintain the interaction via 

co-evolution of interacting sites.  

2.2.8  Paralogs rewire at a close pace in protein interaction networks 

The results above showed that the rewiring rate of network edges reflects the biological 

nature of edge types. It is also plausible that proteins with different characteristics might have 

different rewiring rates than their network partners. Here, we used protein interaction networks to 

investigate how protein paralogs behave during evolution in terms of changing their interacting 

partners. We collected all paralog pairs present in human and yeast interaction networks and 

calculated the rewiring rate difference between each pair. The distribution of the rate difference 

was then compared with a background distribution calculated for all protein pairs in the networks 

(see Figure 2.7).  

In both human and yeast networks, the paralog pairs had rate difference distribution shifted to 

zero compared to background (Wilcoxon test p-value < e-15 in yeast, p-value = 0.004 in human). 

The result suggested that paralog pairs tend to have a smaller rewiring rate difference, 

demonstrating a closer evolutionary rate of network change. In fact, as paralogs emerge from the 

event of gene duplication in ancestral species, they share sequence similarities [75]. Here, we 

showed that paralogs also shared network similarities as the network rewiring rates of paralogs 

were similar. After the gene duplication events which lead to their formation in ancestral species,  
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Figure 2.7: Rewiring rate difference of paralog pairs in protein interaction networks.  
(A) Boxplot of rewiring rate difference in yeast and (B) human protein interaction networks 
between paralog pairs (blue) and between all node pairs as background (pink). Paralog pairs tend 
to have smaller rewiring rate difference than expected. 
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paralogs are likely to have similar constraint on sequences and network partners due to their 

shorter evolutionary history than random protein pairs. 

2.3  Discussion 

King and Wilson proposed [76] and Bourman et al. [38] then demonstrated that fast changing 

regulatory relationships in transcription factor-target networks could account for the species 

differences, which could hardly be explained by the highly conserved protein and DNA coding 

sequences. Following that study, small- and large-scale evidence has been presented to support the 

view that after the divergence of two species, fast change in regulatory relationships may have a 

critical role in speciation [39, 41]. As we have shown above, transcription factor-target regulatory 

networks and kinase-substrate phosphorylation networks are two major types of regulatory networks 

that have the fastest evolutionary changing rates among networks and protein sequences, confirming 

the importance of regulation in species evolution. 

2.3.1  Collaborative networks and regulatory networks 

Biological networks are characterized by their functional relationships: protein binding, 

expression regulation, phosphorylation, etc. We introduce another way to categorize biological 

networks into collaborative and regulatory networks by the reversibility of edges to help 

understand rewiring rate distinction among network types. Collaborative networks are the 

biological networks with reversible edges—either the edges are undirected or directed but 
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reversible. By reversibility we mean that a reversed edge is biologically possible between a pair 

of nodes. Regulatory networks have irreversible edges: a reversed edge may not be biologically 

possible. By this definition, transcription factor-target regulatory networks, miRNA-target 

regulatory networks, and kinase-substrate phosphorylation networks fall into the regulatory 

network group; and protein interaction networks, genetic interaction networks, and metabolic 

networks fall into the collaborative network group.  

Our network rewiring analysis shows that in general, regulatory networks tend to rewire faster 

than collaborative networks (see Table 2.3). Two of the regulatory networks, transcription 

factor-target regulatory networks and kinase-substrate phosphorylation networks, are the fastest 

rewiring biological networks in this study. Transcriptional regulation of gene expression by 

transcription factors is carried out by transcription factor binding to the transcription start site 

commonly upstream of a gene. Recognition of a binding site is often specific to a sequence 

pattern buried in the site [77]. Post-translational modification of protein substrate by kinases also 

involves recognition of sequence patterns in substrate’s phosphorylation site [78]. Sequence 

pattern matching as a major factor in establishing regulatory relationships could be an important 

reason of fast rewiring. A single nucleotide/amino acid change in the target’s binding-recognition 

sites, could lead to a “digital” recognition site change. Besides, a number of studies have showed 

that both transposable element insertion and genomic rearrangement led to considerable indel 

changes at transcription factor binding sites [79-84]. The digital and indel changes in 

binding-recognition sites greatly contribute to the large turnover of transcription factor-target 

regulatory network.  
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  Collaborative networks show slower rewiring rates than regulatory networks. Contrary to 

“digital” or “indel” changes in regulatory networks, changes tend to be “structurally continuous” 

in collaborative networks. Here, we generally refer to the globular interactions which are the 

majority in physical interaction networks. On the other hand, the general collaborative physical 

interaction network in this study still includes interactions mediated by kinases and domains such 

as SH3 which are in fact regulatory relationships. In fact, protein functions gradually change as 

sequence changes, and most proteins do not change their functions radically with their sequences 

conserved. As a natural implication of the sequence-function paradigm, it is not surprising that 

collaborative protein networks rewire as protein sequences evolve. In this study we include two 

representations of metabolic networks. Metabolic enzyme networks are constructed using 

enzymes as nodes and edges connect two nodes if the product of one serves as the substrate of the 

other. The rewiring rates of metabolic enzyme networks are similar to other collaborative 

networks (see Table 2.4). On the other hand, metabolic pathway networks that are constructed 

using chemical compounds as nodes and reactions as edges rewire the slowest. For example, the 

biosynthesis metabolic pathway of acetyl-CoA from pyruvate is identical in human and yeast, but 

the corresponding metabolic enzyme network rewires (see Figure 2.8). In fact, metabolic 

reactions process chemical compounds into energy and nutrition, and are mostly essential for 

living. Our results suggest that the essentiality is partly reflected in the slower rewiring rate of 

metabolic pathway networks than that of other types of biological networks and protein 

sequences. Based on these results, we think that enzymes for reactions are less constrained to 

change while the underlying reactions remain highly conserved.  
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Figure 2.8: Example rewiring of metabolic pathway network and metabolic enzyme network.  
(A) The biosynthesis pathway of acetyl-CoA from pyruvate showing metabolites (circles) and 
reactions (arrows). The pathway is identical in human and yeast. (B) The corresponding 
metabolic enzyme networks in yeast and human showing enzymes (rectangles) and 
product-substrate relationships (arrows). Each enzyme corresponds to a reaction in (A). Purple 
rectangles represent orthologous enzymes from two species, while green rectangles represent 
non-orthologous enzymes. The dashed circle shows one yeast enzyme coded by YER178W 
catalyzes two consecutive reactions, but different enzymes catalyze each reaction in human. 
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2.3.2  Network rewiring as an important aspect of cellular system evolution 

We now know that there are two layers of cellular evolution, individual molecules and 

organizations of molecules. Therefore, it is our ultimate goal to understand how individual 

molecule changes affect cells and their organization and collaboration.  

Some factors may also influence and shape the landscape of biological networks (see Figure 

2.9). It has been shown that external environment can influence the conservation of regulatory 

relationship and network motifs in prokaryotic transcription factor-target networks [85, 86]. 

Relationships tend to be conserved in organisms living in similar environmental niches, despite 

large evolutionary distance. Whole-genome duplication events rapidly reorganized transcription 

regulatory networks through the survived duplicates and their functional divergence afterwards 

[87-91]. And the regulatory networks, in a feedback way, could affect the survival of duplicated 

genes [92].  

This study attempts to systematically investigate the evolutionary rate of all known types of 

biological networks in terms of rewiring. According to our results, it is possible that small 

changes of molecular sequences lead to large network re-organizations and this augmentation 

effect makes small molecular changes more detectable by natural selection. This is especially true 

for regulatory networks with the greatest augmentation effects caused by minor changes of 

regulators. If the above assumptions are true, network rewiring should be an essential tool to 

understand the differences between closely related species such as human and chimpanzee, 

because their molecular sequences are nearly identical. More importantly, intra-species network  
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Figure 2.9: Factors shaping network rewiring. 

 

rewiring variations will help at an individual level beyond SNPs and structural variations. 

2.3.3  Future directions of network rewiring analysis 

In the future, we foresee additional calculations and analyses that could be performed when 

accurate and more complete network data becomes available for more species. Analogous to 

sequence analysis, we can build species trees comparing biological networks and infer branch 

lengths using rewiring rates. From this study, we know that types of biological networks and 

molecular sequences evolve at different rates, but it is still unclear whether network rewiring 

“speeds up” in some species and “slows down” in others. We can use benchmark rates and 

develop comparative ratios to measure this. This is actually quite similar to using dN/dS ratio 
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(non-synonymous changes versus synonymous changes) to measure selection pressure on coding 

sequences. Building the tree is important to understanding biological system evolution compared 

to traditional molecular evolution.  

Network hubs and bottlenecks are of general interest in biological research due to their 

topological importance. Both hub and bottleneck proteins in human and yeast protein interaction 

networks tend to rewire their edges faster than non-hub non-bottleneck proteins (see Figure 2.10). 

One reason for this is that hubs with large degrees tend to have more rewired edges, and therefore 

faster rewiring rates. Further detailed analysis is needed to understand the rewiring rates of 

bottleneck proteins.  

It is also interesting to look for rewiring “hotspots” and “coldspots” within biological 

networks. Subnetworks and motifs that are enriched in fast or slow rewiring edges may have 

biological function implications. Immune response, transport and localization associated genes in 

human protein interaction networks have been found to change interacting partners relatively 

quickly [61]. The analysis could also be applied to other types of biological networks.  

Further network rewiring analysis will possibly investigate factors affecting network rewiring 

(see Figure 2.9). These efforts will greatly increase our understanding of cellular system evolution, 

intra-species variation, and speciation.  
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Figure 2.10: Rewiring rate of hubs and bottlenecks in protein interaction networks.  
Rewiring rates are calculated for all proteins in (A) human and (B) yeast protein interaction 
networks. Hubs are defined as top 20% proteins ranked by their degree, and bottlenecks as top 
20% ranked by betweenness. Proteins are grouped into 4 categories: Bottleneck hubs (BH), 
Non-bottleneck hubs (NB-H), Non-hub bottlenecks (NH-B) and Non-hub non-bottlenecks 
(NH-NB). Either hubs or bottlenecks are found to have faster rewiring rates than NH-NBs 
(Wilcoxon p-val<e-15). 
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2.4  Methods 

2.4.1  Datasets of networks, sequences and homologs 

For different types of biological networks, we gathered data from multiple sources. Binary 

protein physical interaction networks and genetic interaction networks were extracted from 

BioGRID database v2.0.55 (http://thebiogrid.org/) for 5 species: H. sapiens, C. elegans, D. 

melanogaster, S. pombe and S. cerevisiae [93]. Metabolic pathway networks of compound 

reactions were obtained from KEGG database (http://www.genome.jp/kegg/) for 16 species: H. 

sapiens, M. mulatta, M. musculus, C. elegans, C. briggsae, D. melanogaster, D. pseudoobscura, S. 

pombe, D. hansenii, C. albicans, K. lactis, C. glabrata, S. bayanus, S. mikatae, S. paradoxus and 

S. cerevisiae [94]. Metabolic enzyme networks were constructed from the pathway networks for 7 

species: H. sapiens, M. mulatta, M. musculus, C. elegans, D. melanogaster, D. hansenii, and S. 

cerevisiae, by establishing directed edges from upstream reaction enzymes to downstream 

reaction enzymes. miRNA-target regulatory networks were constructed from miRBase 

(http://www.mirbase.org/) predictions with edges pointing from miRNAs to target genes in 5 

species: H. sapiens, M. musculus, D. rerio, C. elegans and D. melanogaster [95]. Transcription 

factor-target regulatory networks were extracted from various sources: S. cerevisiae, C. elegans 

and D. melanogaster networks from large-scale ChIP-Chip and ChIP-Seq experiments [21, 22, 

40], C. albicans, K. lactis, S. bayanus, S. mikatae networks from recent small-scale experiments 

[38, 39]. Kinase-substrate phosphorylation network for S. cerevisiae was obtained from 
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large-scale protein chip experiments [26]. Phosphorylation networks of yeast species S. cerevisiae, 

C. albicans and S. pombe were constructed in two steps. We first obtained phosphorylation sites 

identified by MassSpec [41], and also obtained kinase binding specificity data from kinase 

binding specificity experiments [96]; then used MOTIPS analysis pipeline to identify responsible 

kinases for each phosphorylation site by matching position weight matrices (PWMs) [97]. 

Structural Interaction Networks (SINs) for H. sapiens and S. cerevisiae were constructed in a 

similar way as the first version of yeast SIN [35], using protein domain interaction data from 

iPfam database Release 20.0 (http://ipfam.sanger.ac.uk/) [98].  

For social co-authorship network, we parsed the co-author lists of 2009 Nobel Prize Winner 

Thomas A. Steitz’s 2009 and 2006 publications from PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/), and constructed co-authorship networks for Dr. Steitz. 

For social family tree network, we obtained data from a typical family with its trees in 1983 and 

2009 (see Figure 2.5). Edges in family trees stand for either marriage or child/parent relationship. 

Linux kernel design networks are obtained for 3 versions, v2.6.4, v2.6.15 and v2.6.27. From 

v2.6.4 to v2.6.15 and from v2.6.15 to v2.6.24, the time separations are around 2 years and 2.5 

years, respectively [99]. One edge in Linux kernel design networks represents one function 

calling or using another function.  

Protein sequences and protein coding DNA sequences for H. sapiens, M. musculus and S. 

cerevisiae were downloaded from BioMart database (http://www.biomart.org/) [100], and from 

SGD (http://www.yeastgenome.org/) for S. mikatae. 18S ribosome RNA sequences for all 4 

species were extracted from Entrez database (http://www.ncbi.nlm.nih.gov/Entrez/) [101]. 
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Orthologous sequences in H. sapiens-M. musculus and S. cerevisiae-S. mikatae pairs were then 

aligned using MUSCLE software v4.0 (http://www.drive5.com/muscle/) [102] for calculations of 

sequence identity.  

Sequence orthology for non-fungi species pairs used in this study was downloaded from 

InParanoid database v7.0 (http://inparanoid.sbc.su.se/cgi-bin/index.cgi) [103]. Orthology for 

fungi species pairs was obtained from Fungal Orthogroups Repository v1.1 

(http://www.broadinstitute.org/regev/orthogroups/) [104]. Paralog pairs in H. sapiens and S. 

cerevisiae were extracted from HomoloGene database Release 64 

(http://www.ncbi.nlm.nih.gov/homologene) [101]. 

2.4.2  Calculating network rewiring rates 

We used a consistent method to calculate rewiring rates comparing two networks for all 

network types. First, orthology relationships between nodes from the same network type in two 

species were established. Second, three sets of nodes were distinguished. Common Node (CN) set 

includes nodes having orthologous counterparts present in both networks. Loss Node (LN) set 

includes nodes present in the reference network but absent of orthologous counterparts in the 

compared network. And Gain Node (GN) set includes nodes present in the compared network but 

not having orthologous counterparts present in the reference network. Third, we counted the total 

number of rewired edges (R) between two networks. Rewired edges between two networks were 

defined as the union of edges between pairs of CNs that only present in one network and all edges 



 49 

involving LNs and GNs. Fourth, we counted the total number of possible edges (C) in the two 

networks. This was basically the number of non-redundant edges if two networks are both fully 

connected. Finally, the following equation was used to calculate the rewiring rate for a pair of 

networks: 

divergence TimeC
R  rate Rewiring


  

The time divergence is either estimated evolutionary divergence time (in Mys) between two 

species in biological networks or passed period of time (in years, and then coerced to Mys) in 

commonplace networks (see Table 2.1). Thus, the rewiring rate was measured as the number of 

rewired edges per edge per Mys. It can be interpreted as the averaged fraction of rewired edges 

among all possible edges in a period of one million years.  

However, total number of possible edges was calculated differently among network types. 

Calculation for collaborative networks, including social networks, is simpler because their edges 

are reversible (see Figure 2.2):  

       LNsGNsCNs
2

1LNsLNs1GNsGNs1CNsCNsCnetwork  veCollaborti 


  

Note that here we did not allow self interactions and only allowed one edge between two nodes. 

For metabolic networks that allow two reciprocal edges between two nodes (for directional 

reactions), we just multiplied the above calculated result by 2. For regulatory networks involving 

irreversible edges, we further separated nodes into regulators (Regs) and targets (Tars) and only 

allowed edges from Regs to Tars, but not from Tars back to Regs. In addition, regulators in 

transcription factor-target regulatory network and kinase-substrate phosphorylation network could 
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themselves be targets of other regulators, but not in miRNA-target regulatory network. 

Considering all these factors (see Figure 2.2),  

     

   LNs RegGNs RegCNsTar LNsTar GNsTar CNs Reg                                      
LNsTar LNs RegGNsTar GNs RegCNsTar CNs Reg                                      

2
1-LNs RegLNs Reg1-GNs RegGNs Reg1-CNs RegCNs Reg  Cnetwork  Kinaseor  TF









and 

   LNs RegGNs RegCNsTar LNsTar GNsTar CNs Reg                                   
LNsTar LNs RegGNsTar GNs RegCNsTar CNs Reg  Cnetwork microRNA 




 

2.4.3  Calculating evolutionary rates in network and sequence comparisons 

The rewiring rate calculation described above was not directly comparable to sequence 

evolution rate calculation, as there is no equivalent to the ‘total number of possible edges’ as in 

networks. Therefore, we used identity-based evolutionary rate measures instead to compare 

networks and sequences as:  

%100
alignment sequence oflength  Total

alignment in the positions acid /aminonucleotide unchanged ofNumber (%)identity  Sequence   

%100
networks in two edges ofnumber  Total

networksboth in present  nodes sorthologoubetween  edgescommon  ofNumber (%)identity Network 

The evolutionary rate calculated based on identity was:  

divergence Time
)Identity(%-1ratery evolutiona basedIdentity   

2.4.4  Calculating rewiring rate difference for paralog pairs in protein interaction 

networks 

Rewiring rates for all individual nodes were calculated for H. sapiens and S. cerevisiae 
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protein interaction networks by comparing them to D. melanogaster and S. pombe networks, 

respectively. Number of rewired edges for each node was counted as the number of gained or lost 

edges involving this node. This number was then divided by network size and by divergence time 

to get rewiring rate for a node. Network size is difference for CNs, GNs and LNs. For CNs, 

network size is the sum of the number of CNs, GNs and LNs from the two networks; for GNs, 

network size is the sum of CNs and GNs; and for LNs, network size is the sum of CNs and LNs. 

Rewiring rate difference was then calculated for all node pairs including all paralog pairs. 
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Chapter 3 
 

Computational simulation of network 
rewiring 
 

3.1  Introduction 

Current biological networks built from large-scale experimental data are generally thought to 

have some extent of false positive and false negative interactions. False positive interactions stem 

from non-perfect-specificity experiments, and false negative interactions result from 

non-perfect-sensitivity experiments. For example, protein interaction networks from Y2H method 

have been suggested by many computational studies to have higher number of false-positives 

than literature-curated or mass spectrometry data sets [105, 106]. ChIP based methods for TF 

regulatory networks are also susceptible from false interactions due to incompetence of 

target-calling methods that process binding peak data.  

Researchers have tried to build higher quality biological networks based on large-scale data 
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sets by using small-scale data sets as gold-standard positives [107]. However, there are two major 

problems of filtering high-quality interactions for all biological networks in all species. First, 

many biological networks lack experimental or computational methods to define gold-standard 

interactions. Current TF regulatory networks are defined as the TF-target interactions based on 

ChIP experiments. And there is no another gold-standard way to verify the “real” targets of a TF. 

Second, gold-standard positives are not always available for all species. The quality of large-scale 

experiments is usually assessed by small-scale gold-standard data sets in limited number of model 

organisms. Thus it is difficult to construct high-quality networks based on large-scale data sets in 

all species.  

To complement the evolutionary rewiring rate analysis of biological networks presented in 

chapter 2, network quality issue has to be addressed that how our calculation is affected by the 

imperfectness of data sets. Interactions could be randomly removed from the current data sets as 

if they were false positives, and random interactions could be added to the data sets as if they 

were false negatives.  

Besides coping with the data quality issue, simulated network rewiring also helps to model 

the evolutionary rewiring process. By rewiring the “ancestral” network, derived “current” 

networks could be obtained with certain rewiring steps. This is exactly an analogy of ancestral 

species and present species with certain time divergence. We can therefore simulate the 

evolutionary network rewiring and analyze the potential mechanisms underlying.  

Since almost all biological networks are scale-free, we would like to maintain the scale-free 

characteristic of networks when rewired. Preferential attachment has been proposed in modeling 
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the growth of social and computer networks [108]. It is a growing process such that the 

probability of gaining a new interaction is proportional to the number of interactions one already 

has. Preferential attachment will generate power law degree distributions and scale-free networks.  

Sensitivity analysis is often used to assess the relative importance of parameters to the output 

of models. There are two major types of sensitivity analysis: local and global analysis [109]. 

Local sensitivity analysis studies the behavior of the system response locally around a chosen 

point for static systems with small perturbations. Global sensitivity analysis determines all of the 

system's critical points, such as bifurcations, turning points, response maxima, minima, and/or 

saddle points, in the combined space formed by the parameters and output variables.  

Many sensitivity analysis methods are proposed in the scientific and engineering research 

fields. Statistical methods explore the parameter space by random sampling, and are especially 

suited for cases with large parameter space [110].  

3.2  Results 

3.2.1  Assessing network data quality to rewiring rates 

Unlike sequence data that one is essentially sure of every base, network data either generated 

from experiments or computational predictions are currently subject to high number of false 

positives and false negatives. Because many distinct experimental approaches are used to 

generate network data, different biological networks may have varied systematic bias during their 

construction. It is inevitable that our results presented in chapter 2 might be subject to change 
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when new network data become available.  

For each type of biological networks, we used consistent data source and method to build 

networks for species, which ensures the uniform definition of edges and facilitates comparison 

between species.  

Instead of trying to build high quality networks for all biological networks in multiple species, 

which is difficult due to lack of gold-standard positives and negatives, we applied a general 

method to assess the influence of false positives and negatives to rewiring rate calculation for all 

biological networks. Beltrao et al. have used a sampling-based sensitivity analysis to assess the 

robustness of rewiring rate relative to the amount of protein interaction data used [62]. Here, we 

applied a similar method to six representative types of biological networks used in this study. The 

effects of false negatives and false positives are simulated by random sampling. That is, we 

randomly add and remove a fraction of edges of the two compared real networks, forming 

simulated “corrected” networks, and then calculate rewiring rates. A series of disruption fractions 

of random edges are used to simulate false positive and negative rates from low to high (see 

Figure 3.1).  

Rewiring rates of most of the biological networks are robust to network size change and 

disruption, especially when the disruption fraction is lower than 50%. However, the rates of 

metabolic pathway networks have shown clear deviations at large disruption levels. The observed 

one order of magnitude difference between metabolic pathway networks and protein interaction 

networks (10-5 for protein interaction network, 10-6 for metabolic pathway) disappears at 

approximately 70% disruption level. We conclude from these results that the network rewiring  
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Figure 3.1: Sensitivity analysis of false positive and false negative rates to rewiring rate.  
We sampled biological networks in order to test the false positive and false negative rates to 
rewiring rate calculation. Six biological networks are included here: protein interaction network, 
genetic interaction network, miRNA-target regulatory network, kinase-substrate phosphorylation 
network, metabolic pathway network (S. cerevisiae compared to S. pombe) and transcription 
factor target regulatory network (S. cerevisiae compared to S. bayanus). For each type of network, 
we randomly delete and add edges from the original network as a simulation of false positives 
and false negatives, with each a series of percentage disruptions. For transcription factor target 
regulatory network, we also tested rewiring rate sensitivity to network size by using a larger 
original network for S. cerevisiae. 
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rate is only slightly affected by network size, and is especially robust at sampling levels above 

50%. The results of this study should still hold when new network data arrives.  

We also investigated the potential size effect of fungi TF-target regulatory networks used in 

our study. These networks were constructed using binding sites from ChIP-chip experiments of 

one or two TFs, which results in relatively small networks. Besides the simulated disruption 

described previously on these small networks, edges were added to the S. cerevisiae network 

from another ChIP-chip study between the existence nodes to generate a larger network [111]. 

The same disruption analysis was performed on the larger network. Rewiring rates calculated 

from the larger network decreased about half order of magnitude than from the original small 

network (see Figure 3.1). This is largely due to the increase of total possible edge changes in our 

calculation. As a result, the current subnetwork of TF-target regulatory network might lead to a 

bias of faster rewiring rate.  

A comprehensive simulation analysis was further performed to assess the effects of both 

network size and network quality. Two simulated scale-free networks were constructed with some 

common edges, and sub-samples of both networks were taken for comparison. Random rewiring 

of both sub-network were performed to mimic false positives and negatives. Percentage of edge 

change (R/C) was calculated for each sub-sampling fraction. As the size of the compared 

sub-networks decreases, percentage of rewiring increases (see Table 3.1). The upward bias of 

percentage of rewiring is approximately one order of magnitude corresponding to 1% 

sub-sampling fraction. Because the fungi TF regulatory network used in this study is 

approximately 20-100 times smaller than the complete networks estimated by the number of  
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Sub-samplin
g fraction 

Rewiring 
percentage 

Rewired 
edges 

Shared 
edges 

Total 
possible 
edge 
changes 

Shared 
nodes 

Unique 
node in 
network 
A 

Unique 
node in 
network 
B 

100% 4.3e-4±7e-
6 

11660±13
0 

6054±15
6 

2.7e7±3e
5 

6867±2
4 

505±52 1±0 

95% 4.5e-4±6e-
6 

11690±11
7 

5576±14
6 

2.6e7±3e
5 

6494±3
8 

594±66 101±7 

90% 4.8e-4±5e-
6 

11596±13
4 

5129±11
2 

2.4e7±2e
5 

6126±2
3 

651±39 190±15 

70% 5.8e-4±7e-
6 

10911±13
6 

3377±35 1.9e7±9e
4 

4898±3
4 

742±20 566±21 

50% 6.2e-4±7e-
6 

9577±130 1875±62 1.6e7±7e
4 

3855±2
5 

1013±2
2 

864±15 

30% 6.8e-4±6e-
6 

7187±64 767±19 1.0e7±9e
4 

2589±2
4 

1227±2
7 

1017±1
0 

10% 9.4e-4±1e-
5 

3136±48 95±5 3.3e6±3e
4 

1030±1
5 

1008±1
8 

857±16 

5% 1.3e-3±2e-
5 

1801±14 29±2 1.4e6±3e
4 

545±16 756±27 642±11 

3% 1.7e-3±4e-
5 

1167±29 12±2 6.7e5±3e
4 

306±15 580±27 497±14 

1% 3.9e-3±8e-
5 

431±21 2±0.5 1.1e5±7e
3 

75±4 290±14 236±11 

For each sub-sampling fraction, we performed 10 simulations and calculated 95% confidence 
intervals for resulting numbers.  
 
Table 3.1: Simulation of network size, false positives, and false negatives to rewiring rate 
Based on two simulated scale-free networks, sub-networks are sampled to mimic the fact that 
data of many biological networks used in this study are not complete, such as the fungi TF 
regulatory networks. Extra random rewiring by adding and removing edges and nodes is 
performed to mimic the false positives and negatives in the current network data. Percentage of 
network rewiring is then calculated to assess the effects of those perturbations. 

 

edges and the number of TFs [111]. We thus estimated that the true rate of fungi TF regulatory 

network could be half to one order of magnitude slower than we calculated. Considering the 

above estimation of network size effect on rewiring measurement, fungi TF regulatory network 
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should still rewire faster than or in a similar pace as kinase phosphorylation network, and much 

faster than other types of biological networks (see Table 2.3).  

miRNA regulatory networks were constructed using a consistent miRNA target prediction 

method [95]. In the current stage of miRNA research, most miRNAs are found or predicted using 

sequence conservation, and regulatory relationship is predicted mainly by searching for 

complementary sequence in 3’ UTRs [43-45]. Therefore, the turnover of miRNAs is small with 

lack of species-specific miRNAs and their corresponding targets. For example, a total of 459 

conserved miRNAs are present in the networks comparing human and mouse. However, only 18 

and 9 miRNAs are human-specific and mouse-specific, respectively. The mere gene content 

turnover of only 6% for miRNAs is much less than 67% and 74% for TFs and kinases (see Table 

2.8). This ascertainment bias could result in under-estimation of rewiring rates.  

To estimate the effect of novel miRNAs to our rewiring measurements, we randomly added a 

series numbers of hypothetical novel miRNAs to actual human and mouse miRNA regulatory 

networks. The targets of those hypothetical miRNAs are also randomly selected with degree 

distribution maintained. Rewiring rates calculated from these simulations showed that 

discovering potential species-specific miRNAs could result in an increase of rewiring rate (see 

Table 3.2). With the advance of miRNA research from novel miRNA discovery to better target 

prediction methods, it is possible that the current rewiring rates of miRNA regulatory networks 

will be adjusted higher.  
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miRs 
added 

Rewiring 
rate 

Rewired edges Shared 
edges 

Total 
possible 
edge 
changes 

Shared 
miRs 

Unique 
miRs in 
network 
A 

Unique 
miRs in 
network 
B 

0 3.3e-5 7132 2138 2.9e6 459 18 9 
50 6.9e-5±1e-5 16800±3174 2138 3.2e6 459 68 59 
100 1.7e-4±2e-5 44640±6281 2138 3.6e6 459 118 109 
200 3.1e-4±4e-5 102110±12889 2138 4.4e6 459 218 209 
400 4.9e-4±6e-5 215559±25995 2138 5.9e6 459 418 409 
600 7.2e-4±7e-5 396853±38672 2138 7.4e6 459 618 609 
800 9.7e-4±8e-5 647465±50143 2138 8.9e6 459 818 809 
For each number of added miRNAs, we performed 10 simulations by assigning different targets 
to the added miRs, and calculated 95% confidence intervals for resulting numbers.  
 
Table 3.2: Simulation analysis of the effect of novel miRNAs to miRNA regulatory network 
Based on current miRNA regulatory networks for human and mouse, simulated novel miRNAs 
are added to both networks with their target randomly sampled, while maintaining the power-law 
distribution of target number distribution. Statistics are calculated comparing the simulated 
networks. 

 

3.2.2  Simulation of network rewiring model 

In section 2.2.2, we observed linear relationship between rewiring rate or nucleotide 

substitution rate and divergence time on Log-Log scale. Here, we used simulated networks to 

determine whether the observed relationship is specific to real biological networks. A 

simulation-based network rewiring model was built based on four parameters, corresponding to 

node changes, edge changes, and preferential attachment to rewiring networks while maintaining 

scale-free topology. As a simulation of evolutionary divergence, two branches of networks were 

compared after the same number of rewiring steps and rewiring rates calculated, as the red 
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double-ended arrows shown in Figure 3.2. The rewiring rate calculated from the simulation model 

also shows a negative linear relationship in Log-Log plot with number of rewiring steps (see 

Figure 3.3). This is consistent with the results from real biological networks and molecular 

sequence models, indicating a universal saturation effect of biological system evolution.  

We also investigated whether the rewiring rates calculated from comparing two offspring 

networks, or comparing ancestral and offspring networks are different with a factor of two. As the 

green double-ended arrows shown in Figure 3.2, rewiring rates could also be calculated 

comparing the ancestral network with its offspring networks. The divergence in two methods is 

the same as the number of steps from the ancestral network. Because the distance between two 

offspring networks is two times the distance between the ancestral network and one of its 

offspring network, we suspect that the rewiring rates calculated from two comparisons may also 

reflect the factor of two. However, our calculation shows that the rewiring rates calculated from 

the two methods are largely the same, without a factor of two (see Figure 3.4). This suggests that 

our rewiring rate measure inherently deals with the issue that renders consistent results comparing 

networks with the same extent of divergence.  

3.2.3  Sensitivity analysis of network rewiring model 

For all types of biological networks and simulated networks we observe a negative linear 

relationship between rewiring rate and divergence time (see Figure 2.3 and 3.3). Generally 

speaking, the average rewiring rate calculated comparing distant species networks tends to be  
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Figure 3.2: Simulation of network rewiring and rewiring rate calculation. 
Simulation of network rewiring started from a seed network, and had two independent branches 
of simulation. Networks are schematically shown in blue circles. Each branch had 1000 rewiring 
steps, and snapshots of rewired networks were taken every 50 steps. For each rewiring step, the 
starting network was rewired to generate the next network according to the same parameter set. 
Rewiring rate was calculated comparing two independently rewired networks from two branches 
with the same number of steps, e.g. 50, 100, 150, 200 and all the way to 1000, showing in red 
double-ended arrows. The other way of calculating rewiring rate after certain number of rewired 
steps is comparing the resulting network with the original seed network, showing in green 
double-ended arrows.  



 63 

 
 
 
 
 
 
 
 

 
 
Figure 3.3: Linear relationship between rewiring rate and rewired steps on Log-Log scale.  
Rewiring rate is calculated comparing two independently generated offspring networks based on 
the same ancestral network, as the red double-ended arrows in Figure 3.2.  
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Figure 3.4: Consistent rewiring rates from two different comparisons.  
Branch 1 and 2 are the results from comparing ancestral network and offspring networks from the 
upper and lower branches, respectively, as the green double-ended arrows shown in Figure 3.2. 
Species pairwise results are calculated from comparing two offspring networks with the same 
number of rewired steps from the ancestral network, as the red double-ended arrows shown in 
Figure 3.2. The consistency between the two methods is observed from simulated results. 
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smaller than the instantaneous rate comparing close species networks. For networks from two 

distant species, overlap of their nodes becomes smaller due to loss of conservation. As a result, 

the total number of possible edges C increases and rewiring rate decreases correspondingly. In 

conclusion, a larger difference between node sets of two distant species networks might be the 

main reason for this bias.  

The major effect of node gain and loss on rewiring rate was further confirmed by a sensitivity 

analysis based on network rewiring simulation model. Global sensitivity analysis is applied to 

explore the entire parameter space. Simple uniform random sampling is used without 

stratification. Each of four independent parameters in our model was tested for its relative 

importance to model output—rewiring rate. We do not observe critical turning points in the 

parameter space (see Figure 3.5).  

Not surprisingly, we found that some parameters are more significant to the model than others. 

Removal of node has the strongest effect (negative linear) on rewiring rate, because rewired edges 

associated with a node are removed along with the node, which decreases the total number of 

rewired edges. Adding node also has some effect (positive linear) on rewiring rate, because of the 

increased number of total rewired edges associated with the node. Nevertheless, removing and 

adding edges have only small effects on rewiring rate (see Figure 3.5). It is reasonable that 

removing and adding nodes has a major influence on rewiring rate as it affects all edges 

associated with nodes rather than individual edges.  

It is also possible that there are “cores” for each type of networks that slow down the rewiring 

process when it approaches the cores. The cores are partial networks that are the most constrained  
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Figure 3.5: Sensitivity analysis of four network rewiring parameters to rewiring rate. 
Four parameters in our rewiring simulation model - probabilities of adding a node, removing a 
node, adding an edge and removing an edge, are analyzed for their importance to calculated 
network rewiring rate. Removing node probability has the greatest negative effect on rewiring 
rate calculation. 
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and conserved during evolution, possibly reflecting their functional importance. Therefore, 

network types with a smaller ratio of rewiring rate changes and divergence time (flat lines) might 

have larger cores, because of greater resistance to rewire the cores; while network types with a 

larger ratio (steep lines) might have smaller cores (see Figure 2.3).  

3.3  Discussion 

Many different mathematical and statistical models are developed to describe the growth 

principles of scale-free networks, such as the Exponential Random Graph Model (ERGM) [112]. 

However, our work is not intended to develop a new model or to improve existing models. Rather, 

it is a simple complementary study to our rewiring analysis of biological networks.  

The disruption analysis by random simulation of network edges confirms the stability of 

network rewiring measure to certain levels of data noise. It seems surprising that for some 

networks, rewiring rate measure is only marginally changed under extremely large disruptions 

levels (see Figure 3.1). The underlying mechanism of the stability of rewiring rate measure is not 

clear. More detailed and well designed analyses are needed in the future to address this issue. It is 

possible that the stability is originated from the general backbone structure of scale-free networks. 

The topological characteristic of biological networks may largely stay unchanged even under 

extreme disruptions.  

Our model of network rewiring is rather simple compared to other existing network growth 

models. However, the major contribution of this study is its application to biological networks, 
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which considers all four sources of edge rewiring. Previous studies have focused on the 

expansion of social networks, or the fitness of models to real networks. Our study tries to model 

the dynamic rewiring process and reveals the relative importance of rewiring sources in the model. 

Further improvement of our model may include the incorporation of more complex models and 

relating the model with network rewiring measure formulism.  

3.4  Methods 

3.4.1  Simulation of network size, false positive and false negative rates 

Two simulated scale-free networks were built with some common edges for comparison. To 

simulate the size effect of rewiring rate calculation, the pair of networks was sub-sampled of their 

edges to a series of fractions, from 95% to 1%. To assess the amount of false positives and false 

negatives in network data to rewiring rate calculation, we further perturbed the compared network 

pair (either real biological networks or simulated networks) by randomly adding and removing 

edges on both networks. Edges were added using preferential attachment, since probability of 

having false negative edges is proportional to the degree of the node. Edges were deleted 

randomly from existing edges. Nodes were added to the network, and only one edge was added to 

it. Nodes were removed from the network randomly, with all its edges removed with it. A series 

of perturbation percentages were used to simulate levels of false positive and negative rates.  
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3.4.2  Simulation model of network rewiring 

The model had four parameters: probabilities of adding a node (adding one edge with that 

node using preferentially attachment), removing a node (randomly for all existing nodes and all 

edges with that node), adding an edge (using preferentially attachment) and removing an edge 

(randomly for all existing edges). Preferential attachment mechanism maintains the scale-free 

topology of networks. To begin with, a small scale-free network was used as a seed to the model. 

For each rewiring step, nodes and edges were added and removed according to the probability 

parameters, and the resulting network was recorded for the next step.  

For the relationship analysis of rewiring rate and rewiring steps, two independent rewiring 

branches were simulated with each 1000 steps (see Figure 3.2). The networks from the two 

branches were compared after every 50 steps and rewiring rate was calculated.  

For parameter sensitivity analysis, 200 parameter-set samples were generated, with the four 

probability parameters randomly generated from a uniform distribution on the interval [0,1]. The 

same seed network was used for all 200 simulations using the 200 random parameter-sets. All 

simulations were stopped after 100 steps and rewiring rate was calculated corresponding to each 

of the 200 parameter-sets.  

 



 70 

 

 

 

Chapter 4 
 

Genome-wide analysis of histone 
modification profiles and TF target gene 
prediction in yeast 
 

4.1  Introduction 

Transcription factors (TFs) regulate target gene expression through binding to specific 

genomic regions. In Saccharomyces cerevisiae, transcription factor binding sites (TFBSs) are 

often adjacent to and upstream of target loci due to the compact nature of the yeast genome [113, 

114]. Upon binding, TFs interact with RNA polymerase II to activate or repress transcription. TFs 

also recruit chromatin modification enzymes to induce chromatin structure changes, which in turn 

affect the accessibility of factors to genomic DNA regions [115, 116]. The target genes of a TF 

change according to developmental, physiological and extra-cellular environmental conditions 

[111]. In addition, TFs interact with each other through combinatorial binding [117]. Uncovering 
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TF target genes and inter-relationships between TFs for all different conditions is thus important 

for understanding gene expression regulation, but it is also a difficult task due to the scale of the 

problem.  

Several different experimental methods have been developed to identify TFBSs. Chromatin 

immuno-precipitation followed by tiling array (ChIP-chip) has been widely used to identify 

TFBSs in the genomic scale [118-120]. More recently, high-throughput sequencing after 

chromatin immuno-precipitation (ChIP-Seq) has been shown promising in getting higher 

resolution of the TFBSs [121, 122]. With these methods, an increasing amount of TFBS data have 

been accumulated for different TFs in different species, cell types, conditions, and so on, which 

have started to unravel the global picture of gene expression regulation. In yeast, the TFBSs and 

target genes for an almost complete set of TFs have been mapped in common YPD medium using 

ChIP-chip [111]. However, resources are still too limited to support a complete exploration of TF 

binding for all the combinations of cell types and conditions.  

Many computational methods have also been proposed to predict TFBSs [123-129]. These 

methods are mostly based on the idea that the binding of a TF is mediated by the recognition of 

its binding motif represented as a position specific scoring matrix (PSSM). PSSMs are usually 

discovered as those enriched motifs from TFBSs in ChIP-chip or ChIP-seq experiments, or de 

novo from non-coding genomic sequences [111, 130]. Scanning and matching PSSMs in the 

genome constitute the core of these methods, which are then improved by incorporating 

information of motif conservation and TFBSs co-localization. Nevertheless, these methods often 

lead to considerably high rate of false positives. Furthermore, most of these methods are not 
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condition specific and thus could not reflect the dynamic nature of TF binding under different 

conditions.  

Chromatin modifications could modulate the accessibility of DNA regions and affect the 

recruitment of TFs [115, 116, 131]. Both functions directly relate to transcription regulation by 

TFs. Genomic mapping of chromatin modifications in yeast using ChIP-chip has provided the 

opportunity to investigate their underlying relationships with TFBSs [132, 133]. Many chromatin 

modifications have been shown to be associated with transcription activation and repression [115, 

116]. Recent studies have shown that incorporating histone modification data improves prediction 

of TFBS in mouse and human [134, 135]. In these models, chromatin modifications generally 

provide non-TF-specific chromatin accessibility, while PSSMs determine TF-specific bindings.  

Here we propose a new method that integrates PSSMs and chromatin modifications to 

improve TF target gene predictions in yeast. Specifically, we trained individual support vector 

machine (SVM) models [136] for 203 yeast TFs using 2 types of features: the existence of PSSM 

upstream of genes and chromatin modifications adjacent to the ATG start codons. The models 

were trained and tested using TF target genes from ChIP-chip experiments. Furthermore, we used 

the model to investigate condition specificity and TF-specificity of chromatin modifications as 

well as TF-TF co-operation. Our analysis helps understand the mechanism of gene expression 

regulation by TFs and chromatin modifications.  
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4.2  Results 

4.2.1  Differential histone modifications between functional and non-functional 

TFBSs 

In order to examine whether chromatin modifications are predictive features for functional TF 

binding sites, we first investigated chromatin modification signals at functional and 

non-functional TFBSs defined as follows. Based on previous TFBS prediction models, we 

denoted the TFBSs of a factor as the local genomic sequences that match its PSSM. We then used 

ChIP-chip experimental data to distinguish functional and non-functional TFBSs based on the 

existence of actual binding peak signals. Although both functional and non-functional TFBSs 

contain TF binding PSSMs, they were found to have differential chromatin modification signals. 

Here, we use the factor Swi4, a component of the SBF complex regulating cell cycle gene 

expressions, as an example (see Figure 4.1). We observed that individual histone modifications 

varied significantly between functional and non-functional TFBSs. Among the 14 different 

histone modifications under 2 conditions (YPD and H2O2), 11 were significantly different 

(p-value<0.01) in their signals between the functional and non-functional TFBSs of SWI4 (see 

Figure 4.1). Among them, H3 and H4 signatures were particularly strong features for 

distinguishing between the two types of TFBSs, as they showed significantly lower signal in 

functional TFBSs than in non-functional TFBSs (p-value<10-20). Consistent with previous studies, 

this indicates that functional binding sites of factors in regulatory regions are typically depleted of  
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Figure 4.1: Differential histone occupation and modifications between functional TFBSs and 
non-functional motif matching sites.  
Showing SWI4 as an example, most histone modifications (in different colors) are significantly 
different between functional TFBSs (left boxes), which have binding motifs and are bound by 
TFs in ChIP-chip experiments, and non-functional motif matching sites (right boxes), which have 
matching motifs but are not bound by TFs. 
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nucleosomes [137-140]. Encouraged by the observed differential histone modifications between 

functional and non-functional TFBSs, we then constructed a model that combines histone features 

with binding motif information for target gene prediction in yeast. 

4.2.2  Improving target gene prediction by combining histone modifications and 

PSSMs 

Since the S. cerevisiae genome is quite compact with respect to other higher eukaryotic 

species, it is reasonable to define the target genes of a TF as those with one or more upstream 

TFBSs. We combined chromatin modification and PSSM data and used them as input features to 

a SVM learning model for predicting TF target genes. The prediction accuracy of the model was 

tested using a gold standard dataset from ChIP-chip experiments, which provided target genes of 

203 yeast TFs [111]. Specifically, we choose 0.01 as the P-value cutoff for target gene calling 

from ChIP-chip, which provides us with enough number of high confidence positive target genes 

for model training (see Figure 4.3). The data set was separated into training and testing data, and 

the performance of the model was assessed by cross-validation.  

For chromatin modifications, we used 11 histone modifications that covered most yeast ORF 

regions from ChIP-chip experiments [133]. Since TFs bind to the upstream sequence of ORFs, we 

focused on histone modification signals 1kb flanking translation start sites (ATGs), because 

TFBSs were enriched in these regions. For TF PSSMs, 2 independent sets were obtained from 

previous studies. One set of PSSMs were discovered using sequence analysis based method,  
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Figure 4.2: Chromatin modifications substantially improve TF target gene predictions.  
(A) ROC curves show improved TF target gene predictions using histone modifications. (B) 
Performance of prediction models for individual TFs, with PSSMs from Beer et al and (C) from 
Harbison et al. TFs are sorted by prediction performance using histone modifications and PSSMs 
(red bars).  
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Figure 4.3: Model parameters 
(A) Stricter thresholds of target gene call result in better predictions. (B) Combine independent 
histone modification datasets can improve target predictions. Predictions for 203 TFs are 
evaluated by AUC. (C) Using histone modifications within 500bp and (D) 1000bp window 
upstream and downstream of ATG sites of target genes achieve similar performance to using only 
upstream signals, and better performance to using only downstream signals. No significant 
performance difference between using 500bp and 1000bp window sizes. (E) Using histone 
modifications in intergenic regions has better predictive power than that in ORF coding regions. 
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basically looking for enriched motifs in the DNA regions upstream of all yeast ORFs [130]. From 

~5,600 upstream sequences a total of 666 motifs have been discovered, among which 48 could be 

associated with known transcription factors according to literature. The other set of PSSMs were 

based on ChIP-chip data [111]. For each TF a target gene set was determined and then the binding 

motif for these TF was identified from the DNA region upstream of these genes. 

Our results indicate that for almost all TFs a combination of histone modification and PSSM 

data had better performance (measured in AUC, area under the receiver operator characteristic 

curve) than using histone modification data or PSSM data alone (see Figure 4.2). For example, 

we obtained an AUC of 0.89 for predicting target genes of the factor SUM1 when both the 

histone modification and PSSM information were used. However, if only PSSM information was 

used, the model resulted in a much lower AUC (0.77) (see Figure 4.2). The improved 

performance of the combined model was observed for both of the TF PSSM sets (see Figure 4.2), 

indicating that the improvement does not rely on particular source or quality of PSSMs. 

Interestingly, for some TFs, histone-only model performed better than PSSM-only model; while 

for some other TFs, the opposite was observed (see Figure 4.2).  

In order to examine whether we could achieve better TF target prediction when we have more 

chromatin modification data, we used histone modification datasets from two independent 

experiments, performed by Pokholok et al [133] and Kurdistani et al, respectively [132]. We 

found that we achieved higher prediction accuracy by using dataset from Pokholok et al than 

from Kurdistani et al. This is probably due to the fact that the latter contains only histone 

acetylation data, while the former contains both histone methylation and acetylation data, which  
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TF AUC (Pokholok et al) AUC (Pokholok et al & Kurdistani et al) 

CST6 0.70 0.80 

IFH1 0.53 0.64 

KSS1 0.53 0.65 

RDS1 0.50 0.67 

SFP1 0.59 0.74 

SWI5 0.62 0.74 

TYE7 0.53 0.64 

YKL222C 0.57 0.69 

YKR064W 0.49 0.59 

 
Table 4.1: TFs with improved prediction by including multiple histone modification datasets. 

 

might provide complementary information for regulating chromatin structure and recruiting TF 

binding. We then combined the two datasets for predicting TF target genes, and found that for 

most TFs the performance was only slightly better than using the Pokholok dataset alone (see 

Figure 4.3). Nevertheless, for some TFs we observed substantial improvement by including the 

Kurdistani dataset (see Table 4.1). It is thus promising that we could improve our chromatin 

model performance by incorporating more histone modification data in the future.  

We have also investigated the positional effect of histone modification signals for target gene 

prediction. First, we observed that signals of different types of histone modifications showed 

different patterns at DNA regions around the ATG, suggesting that they might affect TF binding in 

different manners. Second, histone modification signals from the upstream of ATG are generally 

more predictive than those from the downstream, as we have observed for both 500bp and 

1000bp flanking region sizes (see Figure 4.3). This is somewhat expected, because TF binding 
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sites are more enriched in the upstream regions of ORFs for transcriptional regulation. It is also 

interesting to see that ATG flanking regions of 500bp and 1000bp result in almost the same 

performance (see Figure 4.3). Given the compact nature of the yeast genome, transcription start 

sites for most ORFs are located within 1000bp region upstream of ATG [8]. The comparable 

performance by using 500bp flanking ATG region indicates that most discriminative histone 

modification signals for TF binding were embedded in this region. 

4.2.3  Condition specificity of the chromatin model 

TFs bind to and regulate target gene expression in a complex and dynamic manner to 

coordinate biological processes [111, 141]. Chromatin modifications also change rapidly in 

response to stimulus from extra-cellular environment [115]. Therefore, chromatin modifications 

in one condition should match TF target binding in that condition but not other conditions.  

We investigated condition specificity of our chromatin model in two conditions, YPD and 

H2O2. We tested a total of 12 TFs, for which we had the PSSM, histone modification and TF 

target binding data under both YPD and H2O2 conditions. For each of the TFs, we constructed two 

separate chromatin models: one model (Model A) used PSSM and histone modifications under 

YPD condition as features, while the other (Model B) used PSSM from YPD condition but 

histone modifications under H2O2 condition. The two models were then used to predict TF target 

binding under H2O2 conditions. It is generally believed that TFs keep their binding specificity 

PSSMs in different conditions and even over large evolutionary distances. Therefore, we use 
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PSSMs from YPD condition as a close approximation in Model B, where no PSSM information is 

available under H2O2 condition.  

For TFs that are known to be functional under H2O2 condition, Model B achieved better 

performance than Model A. For example, HSF1, a heat shock TF that activates genes in response 

to stresses, is more active under H2O2 condition with 326 target genes, than in YPD medium with 

only 123 target genes. Using condition-matched histone modification data (Model B), our 

chromatin model achieved an AUC of 0.77. In contrast, using non-condition-matched data 

(Model A), the chromatin model only achieved 0.56 AUC (see Figure 4.4). Similar results were 

observed for another TF, MSN2, which is activated along with MSN4 to regulate stress response 

genes. MSN2 is more active under H2O2 condition, and our chromatin model performed better 

with condition-matched data (see Figure 4.4). These results indicate that histone modifications are 

actually dynamic and function in a condition specific manner. Thus, target genes of TFs under a 

certain condition can be best predicted by using histone modification data from the same 

condition. In practice, this enables us to predict conditional specific target genes of TFs, which 

cannot be achieved by using PSSM based method. 

4.2.4  Relative importance of different histone modifications for target prediction 

TFs bind to the upstream of target genes through recognizing their specific binding motif 

PSSMs. We then asked an analogous question: Do TFs have specific histone modification profiles 

at binding sites of their targets? To address this question, we calculated a histone modification  
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Figure 4.4: Conditional specificity of chromatin model for TF target prediction 
(A) ROC curves showing performance of two chromatin models to predict target genes of HSF1 
and (B) MSN2/4 complex. The model (Model B) using histone modifications in H2O2 condition 
performs better to predict target genes also in H2O2 condition (blue curve) than to predict target 
genes in YPD medium (Model A) (red curve), which indicates conditional specificity of 
chromatin modifications and TF target genes. 
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profile for each TF by averaging upstream-ATG histone modification signals over all its target 

genes. In our analysis, we included 25 different histone modifications from the two studies 

mentioned above [132, 133].  

We found that different TFs have distinct target histone modification profiles. A histone 

modification high in one TF’s profile could be low in another TF’s profile (see Figure 4.5). We 

performed unsupervised clustering analysis for the histone modification profiles of all TFs, and 

detected two TF clusters (see Figure 4.5). One of the two clusters showed generally larger 

variations (more high and low signals) among histone modifications in the upstream of their 

target genes, while the signals in the other cluster are more often around the mean,(P<10-16, t-test). 

We thus refer the 68 TFs in the former cluster as “histone sensitive” TFs, and the 135 TFs in the 

latter cluster as “histone insensitive” TFs. 

The correlations between pairs of histone modifications are shown in Figure 4.5C, based on 

their signals in histone modification profile over all TFs. Only pairs with strong correlation (r 

>0.5 or <-0.5) were connected in the form of correlation network. The dense connectivity in this 

network reveals strong pairwise redundancy of histone modification signals, which is also 

indicative of redundancy for predicting target genes. 

We next examined the relative importance of each histone modification for predicting target 

genes of all TFs. Given a histone modification, we compared its signal difference between target 

and non-target genes of a TF. The signal difference was represented as the t-statistics (see 

“Method” section for detail), which indicated the relative importance of that histone modification 

for predicting target genes of a TF. A larger absolute value of t-statistic indicated more  
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Figure 4.5: Target histone modification profiles and target-nontarget differential modification 
profiles of TFs 
(A) Target histone modification profiles comprising different normalized histone modification 
signals (columns) of TFs (rows). Target histone modification profile is the averaged histone 
modification signals of the TF’s targets. TFs are clustered into histone sensitive (blue bar) and 
insensitive TFs (orange bar) using their target histone modification profiles. Histone sensitive TFs 
have stronger histone modification signals. (B) Target-nontarget differential modification profiles 
of TFs showing discriminating power (t-statistic) of histone modifications to TF targets and 
non-targets. TFs are ordered the same as (A). Histone sensitive and insensitive TFs have distinct 
differential modification profiles, indicating preferential histone modifications of TFs targets. (C) 
Correlation network of histone modifications in terms of TF differential modification profile. 
Histone modification pairs with correlation coefficient larger than 0.5 (red edges) or smaller than 
-0.5 (green edges) are connected. The network shows high level of redundancy of histone 
modifications in differential modification profiles. 
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importance. The t-statistics for all histone modifications forms a TF specific profile, denoted as 

differential modification profiles of the TF. Interestingly, histone sensitive TFs and histone 

insensitive TFs defined based on target histone modification profiles were also distinct in their 

differential modification profiles (see Figure 4.5). This suggests that histone sensitive and 

insensitive TFs are actually robust clusters with different patterns of histone modifications in their 

target genes.  

4.2.5  Chromatin sensitivity of transcription factors 

To understand the biological nature of the histone sensitive and insensitive TFs, we explored 

the feature differences of these two TF classes under different biological “context”. First, we 

observed different predictive power of histone modifications for target gene prediction between 

the two TF classes. As shown in Figure 4.6A, histone modifications are generally more predictive 

of the target genes for histone sensitive TFs than for histone insensitive TFs. This is due to the 

fact that target genes of histone sensitive TFs have stronger histone modification signals, which 

substantially improve the performance of our chromatin model.  

Histone sensitive and insensitive TFs also show distinct topological characteristics in 

biological networks. In general, histone sensitive TFs have less target genes than histone 

insensitive TFs (see Figure 4.6). Yu et al has constructed a hierarchical network in yeast based on 

the TF-TF regulation relationships identified by the ChIP-chip [33]. We mapped the histone 

sensitive and insensitive TFs onto the hierarchical network, and found that histone sensitive TFs  
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Figure 4.6: Distinctions between histone sensitive and insensitive TFs 
(A) Target genes of histone sensitive TFs are better predicted using intergenic or upstream histone 
modifications than histone insensitive TFs. (B) Histone sensitive TFs show smaller number of 
target genes in regulatory network than histone insensitive TFs. (C) Histone sensitive TFs have 
larger number of interacting partners in protein interaction network. (D) Higher mRNA 
expression levels of histone sensitive TFs. 
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Hierarchical levels in 
regulatory network 

Number of histone sensitive 
TFs 

Number of histone 
insensitive TFs 

1 Bottom level 15 15 52 52 
2 43 36 
3 6 8 
4 

Upper levels 
2 

51 
4 

48 

Fisher exact test p-value = 0.0007 for separate levels, p-value = 0.0002 for combined upper 
levels.  
 
Table 4.2: TF histone sensitivity relates to hierarchical level in regulatory network 

 

were enriched in the upper layers. This suggests that histone sensitive TFs are more likely to act 

as “managers” that regulate other TFs, while histone insensitive TFs tend to be “workers” at 

bottom layer in the hierarchy (see Table 4.2). We have also examined the “degrees” of these TFs 

in the protein-protein interaction networks [93]. Our results indicate that histone sensitive TFs 

tend to have more physical interacting partners than those histone insensitive TFs (see Figure 4.6). 

The high connectivity of histone sensitive TFs further implies their functional importance.  

Interestingly, histone sensitivity of TFs also indicates distinct co-regulation relationships. 

Two TFs are said to co-regulate if their sets of targets significantly overlap. Among the ~14,000 

possible TF pairs, we found 1,440 significant co-regulatory relationships (P<0.05, Fisher’s exact 

test). Among the TFs involved in co-regulatory relationships, 64 are histone sensitive and 95 are 

histone insensitive. In the 1,440 significant co-regulation pairs, 447 are between two histone 

sensitive TFs, 437 between two histone insensitive TFs, and 556 between one histone sensitive 

TF and one histone insensitive TF. Fisher’s Exact test showed that histone sensitive TFs are more  
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Cellular functions Histone sensitive TFs Histone insensitive TFs 

Cell cycle 
ACE2, ASH1, CIN5, FKH1, FKH2, 

MBP1, MCM1, NDD1, RLM1, STB1, 
STE12, STP1, SWI4, SWI5, SWI6, TEC1 

CST6 

Heat shock or 
stress conditions 

GAT1, MSN4, SKN7, YAP1 
GLN3, HAL9, HMS2, 
HSF1, MGA1, MSN2, 

WAR1, USV1 
 
Table 4.3: TF histone sensitivity relates to cellular functions 

 

likely to be involved in a co-regulatory relationship than histone insensitive TFs (P<10-16). In 

summary, the histone sensitive TFs reside mostly in the upper layers of the regulatory network, 

tend to work and communicate with other TFs during transcriptional regulations. 

Furthermore, we found that the expression levels of histone sensitive TFs were higher than 

those of the histone insensitive TFs (see Figure 4.6). It seems that histone sensitivity of TFs was 

also related to their biological functions. For example, TFs involved in cell cycle regulation 

predominantly belong to histone sensitive class (see Table 4.3). Out of 17 cell cycle TFs reported 

in a previously study [142], only CST6 was classified to be histone insensitive. We also examined 

TFs that were specific to certain conditions, e.g. heat shock or oxidative stress. Conditional 

specific TFs were classified into both histone sensitive and insensitive classes, thus it was not 

obvious whether the histone sensitivity and condition specificity of TFs are related.  

4.2.6  PSSM predictability and cooperativity of transcription factors 

TFs exhibit different PSSM predictability in that the targets of some TFs are well predicted  



 89 

 
PSSM sensitive TFs AUC 

REB1 0.87 
ABF1 0.86 
CBF1 0.84 
FHL1 0.83 
RAP1 0.79 
TYE7 0.77 
SUM1 0.76 
UME6 0.76 
MBP1 0.72 
GCN4 0.71 

 
Table 4.4: Top 10 PSSM well-predictable TFs 

 

using its PSSM alone but others are not. PSSM predictability reflects the extent to which TFs 

recognize its binding site through motif matching. Since the PSSMs are available for only 50 TFs, 

accounting for about a quarter of 203 TFs with histone modification profiles, it is difficult to 

perform systematic identification and classification to categorize them into PSSM 

well-predictable and weakly-predictable. However, we have identified 10 TFs with target 

prediction AUC>0.7 using their PSSMs alone, providing a confident subset of PSSM 

well-predictable TFs (see Table 4.4). To check whether the high predictability is attributed to 

PSSM specificity, we calculated the information content of these PSSMs. We found that the 

information content of the 10 well-predictable TFs’ PSSMs is not different from other TFs (P=0.4, 

Wilcoxon test). We investigated the expression level, number of target genes, hierarchy in 

regulatory network of these 10 TFs, and found no significant difference from the other TFs. We 

will be able to make more confident conclusions when more PSSMs for TFs become available in 

the future. 



 90 

 
Histone sensitive TFs Histone insensitive TFs 

ABF1, ACE2, ARG80, ARG81, 
ASH1, AZF1, CAD1, CBF1, 
CIN5, CRZ1, CUP9, ECM22, 
FHL1, FKH1, FKH2, GAT1, 
GAT3, GCN4, GCR1, GCR2, 
GTS1, HAP1, HAP2, HAP4, 
HIR1, HIR2, HIR3, HMS1, 
INO2, INO4, LEU3, MAC1, 
MBP1, MCM1, MET31, MET4, 
MSN1, MSN4, NDD1, OPI1, 
PDR1, PHO2, PUT3, RAP1, 
REB1, RGM1, RLM1, RME1, 
ROX1, RPH1, SFP1, SKN7, 
SMP1, SPT2, STB1, STE12, 
STP1, SWI4, SWI5, SWI6, 
TBS1, TEC1, TYE7, YAP1, 
YAP5, YAP6, YML081W, ZAP1 

A1, ABT1, ACA1, ADR1, AFT2, ARO80, ARR1, ASK10, 
BAS1, BYE1, CHA4, CST6, DAL80, DAL81, DAL82, 
DAT1, DIG1, DOT6, EDS1, FAP7, FZF1, GAL3, GAL4, 
GAL80, GLN3, GZF3, HAA1, HAC1, HAL9, HAP3, 
HAP5, HMS2, HOG1, HSF1, IFH1, IME1, IME4, IXR1, 
KRE33, KSS1, MAL13, MAL33, MBF1, MDS3, MET18, 
MET28, MET32, MGA1, MIG1, MIG2, MIG3, MOT3, 
MSN2, MSS11, MTH1, NDT80, NNF2, NRG1, OAF1, 
PDC2, PDR3, PHD1, PHO4, PIP2, PPR1, RCO1, RCS1, 
RDR1, RDS1, RFX1, RGT1, RIM101, RLR1, RPI1, 
RPN4, RTG1, RTG3, RTS2, SFL1, SIG1, SIP3, SIP4, 
SKO1, SMK1, SNF1, SNT2, SOK2, SPT10, SPT23, 
SRD1, STB2, STB4, STB5, STB6, STP2, STP4, SUM1, 
SUT1, SUT2, THI2, TOS8, UGA3, UME6, UPC2, USV1, 
WAR1, WTM1, WTM2, XBP1, YAP3, YAP7, YBL054W, 
YBR239C, YBR267W, YDR026C, YDR049W, 
YDR266C, YDR520C, YER051W, YER130C, YER184C, 
YFL044C, YFL052W, YGR067C, YHP1, YJL206C, 
YKL222C, YLR278C, YNR063W, YOX1, YPR022C, 
YPR196W, YRR1, ZMS1 

 
Table 4.5: Histone sensitive and insensitive TFs  

 

For the TFs that are weakly-predictable using PSSM information, we hypothesized that these 

TFs may bind to their targets indirectly by cooperating with other TFs. If the hypothesis is true, 

we would expect to predict its target genes accurately by using the PSSM of its cooperative TF. 

We tested this by using each PSSM to predict targets of all TFs (see Table 4.5). The targets of 

most TFs were best predicted by their own PSSMs, but some TFs have their targets better 
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predicted using other TFs’ PSSMs. For example, YAP1’s target genes were better predicted using 

CAD1’s PSSM, with AUC increased from 0.71 to 0.75. Similarly, using INO2’s PSSM, INO4 

was better predicted of its target genes with AUC increased from 0.78 to 0.81. In fact, YAP1 and 

CAD1 work together in stress induced transcriptional responses, and INO2 and INO4 form 

heteromeric complexes involved in phospholipids biosynthesis [143, 144]. We also found that the 

PSSMs of the cooperative TFs are actually quite similar, measured by a similarity score range 

from 0 to 1. The PSSMs of CAD1 and YAP1 render a similarity score of 0.72 (top 1% among all 

pairs), and those of INO2 and INO4 render 0.55 (top 5%). This further indicates the cooperation 

between the two TF pairs through indirect binding. Therefore, TF target gene prediction using 

cross PSSMs could help identify cooperations between TFs. On the other hand, this suggests that 

using TF’s own PSSM may not always be the best for predicting its target genes, when there is 

evidence of TF cooperations. 

4.2.7  Comparison with previous methods 

We compared our SVM based method with several previous published approaches including 

Cluster-Buster [124], MCAST [145], EEL [146], Stubb [127]. We calculated the prediction 

accuracy of each method by applying it to 10 TFs with more than 200 target genes under YPD 

condition. As shown in Table 4.6, our method that integrates histone modification and PSSM data 

sets achieves the best prediction for most factors. For those histone-senstive TFs such as Swi4 

and Swi6, including histone modification data can improve target prediction accuracy  
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  ROC AUC  

  

Number 
of 

Target 
genes HIS+PSSM 

HIS 
alone 

PSSM 
alone 

(FIMO) 
Cluster
-Buster MCAST EEL Stubb 

ABF1 549 0.830 0.736 0.781 0.776 0.676 0.807 0.893 
FHL1 207 0.957 0.963 0.827 0.855 0.874 0.852 0.887 
FKH1 284 0.656 0.625 0.606 0.680 0.546 0.661 0.725 
FKH2 216 0.723 0.694 0.664 0.698 0.566 0.688 0.735 
HAP1 215 0.738 0.711 0.635 0.675 0.624 0.676 0.663 
RAP1 408 0.865 0.818 0.805 0.752 0.774 0.802 0.811 
REB1 278 0.773 0.623 0.774 0.727 0.818 0.765 0.758 
SWI4 252 0.831 0.790 0.634 0.680 0.626 0.664 0.651 
SWI6 230 0.809 0.768 0.719 0.720 0.629 0.742 0.665 
UME6 298 0.854 0.767 0.831 0.774 0.783 0.814 0.815 

 
Table 4.6: Comparison of several computational methods for target gene prediction 

 

substantially, and PSSM alone gives relatively poor predictions no matter what algorithms are 

used to search for TF binding sites.  

Among those previous published methods, EEL and Stubb take advantage of conservation of 

TF binding motifs between related species, and as shown they achieve relatively more accurate 

prediction results than FIMO, Cluster-Buster and MCAST. We also tried the “Chromia” method 

proposed by Won et al [134]. Similar to our method, Chromia integrates histone modification and 

PSSM data sets but using a hidden Markov model. The method has shown impressive 

performance when applied to genome-wide ChIP-seq data in mouse for predicting TF binding 

sites. However, when applied to the yeast data in our case, it does not result in good prediction 

due to the low coverage of the histone modification and TF binding data sets [111, 133]. For 

example, the arrays used for Pokholok ChIP-chip data contains ~42,000 probes (60-mers), 
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representing only about 20% of the yeast genome [133]. The arrays used for identifying yeast TF 

binding sites are essentially promoter arrays, covering only DNA regions around the translation 

start site of yeast ORFs [111]. In practice, our method only requires data for interested regions, 

e.g. promoter regions, and thereby is more flexible and can be applied to a wide range of data 

sets.  

4.3  Discussion 

4.3.1  Condition specific gene regulation: contribution from chromatin 

modifications 

It is widely known that transcriptional regulation is condition specific in that TFs change their 

binding sites under different conditions. We showed here that histone modification data is most 

predictive of TF target binding under the same condition. This is true especially for those TFs that 

are mostly active in specific stress conditions.  

Because of limited resources, it is impossible to perform exhaustive experiments for every 

TFs, cell types, species and all possible conditions. As an alternative method, we proposed the 

feasibility to predict target genes of a TF under an interested condition by combining histone 

modification data under that condition with its PSSM. In this way, we can achieve much higher 

results than using PSSM alone, and more importantly the predictions are also condition specific. 

On the other hand, PSSMs, the TF binding recognition motifs, are generally thought to be 

non-condition-specific which do not change under different conditions [115]. Similarly, it will 
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also be interesting to investigate condition specificity of the relative importance profiles of that 

histone modification of TF target binding (see Figure 4.5). However, with histone modification 

data mostly for YPD medium, we are currently unable to test this hypothesis. If this were in fact 

true, it would be sufficient to predict TF targets by matching PSSMs and relative importance 

histone modification profiles, both TF-specific and condition-non-specific, to DNA sequences 

and chromatin modifications under certain conditions, respectively. This can be very useful in not 

only understanding of transcription regulation of chromatin modifications, but also getting a 

broader picture of TF targets turnover under different conditions.  

4.3.2  Histone-sensitive and insensitive TFs 

For the 203 yeast TFs used in our study, we classified them into 68 histone-sensitive and 135 

histone-insensitive TFs based on the upstream histone modification signals of their target genes. 

The two classes have generally opposite characteristics in histone modification signals, 

expression levels, topology in regulatory networks and other biological features. 

Hitone sensitive TFs might target highly regulated genes. It is known that gene expression is 

regulated by specific TFs and their orchestrating chromatin modification enzymes. Thus, stronger 

histone modification signals upstream of the target genes of the histone sensitive TFs are 

indicative of more intensive transcriptional regulation. Our results showed that cell cycle TFs 

were mostly histone-sensitive TFs, consistent with the previous knowledge that cell cycle is 

highly-regulated to achieve cyclical expression of genes. 
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The majority of histone modification data used in this study is based on YPD medium. We 

found that histone sensitive TFs tend to be active under YPD medium, as indicated by larger 

number of target genes and higher expression levels with respect to those insensitive TFs. It is 

possible that histones upstream of the target genes of the histone sensitive TFs have more chance 

to be modified by histone modification enzymes, because they are recruited by these more active 

TFs. 

We found that histone sensitive TFs were enriched in higher layers of the hierarchical 

regulatory network. This suggests that histone sensitive TFs tend to be “managers” that regulate 

other TFs and for such a reason their binding to target genes is highly regulated through histone 

modifications. In consistent with this hypothesis, we have observed stronger histone modification 

signals in the upstream regions of their target genes. 

The two classes of TFs were also different in their histone modification profiles. Some 

histone modifications show opposite signal patterns between histone sensitive and insensitive TFs. 

For example, H3K9ac and H3K14ac modifications show higher signals in target than non-targe 

genes for histone sensitive TFs, while the opposite is observed for histone insensitive TFs. This 

might be relevant to the TF behavior as a transcription activator or repressor, since histone 

acetylations are generally known to be an active mark during transcription regulation [115].  

Here, we have attempted to provide some biological intuition on the difference between 

histone sensitive and insensitive TFs. Detailed analysis is required to further understand the 

biology behind the classification of TFs. 
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4.3.3  Combinatorial interaction of TFs: direct and indirect binding 

When a TF binds directly to the promoter regions of its target genes, the enriched motifs 

identified from its binding sites can be regarded as its own PSSM. However, TFs do not always 

act individually; sometimes they cooperate with (physically bind to) each other to form regulatory 

functional units, such as yeast cell cycle complexes SBF (SWI4-SWI6) and MBF (MBP1-SWI6) 

[30]. In these indirect binding cases, it is important to distinguish the TFs that are 

motif-recognizing and the ones that are not. 

By examining the PSSM sensitivity of TFs, we were able to infer some possible 

combinatorial interactions between TFs. If TF A’s targets are better predicted by using another TF 

B’s PSSM instead of its own PSSM, then this is an indication of potential cooperation of the two 

TFs. In particular, TF B directly binds to promoter regions through its PSSM, and TF A indirectly 

binds to promoter regions through physical binding to TF B [147]. This is also referred to as 

indirect piggy-back binding [117].  

PSSM sensitivity under indirect TF binding is important for our target gene prediction model. 

Instead of using a TF’s own PSSM, PSSM of another TF through which the TF binds should be 

used for more accurate predictions. Therefore, identifying those cases before using our model will 

be necessary to achieve better results. 

4.3.4  Implications on gene expression regulation 

In this study, we showed that incorporating chromatin modification information could 
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substantially improve the prediction of TF target genes. In fact, chromatin modifications relate to 

gene expression regulation in two layers [115]. First, chromatin is modified to form structure as 

euchromatin, within which genes could be turned on and off, or heterochromatin, within which 

genes are silenced. Second, euchromatin is further modified by enzymes recruited by specific TFs 

to mark the “on and off” status of transcription. We examined the target vs. non-target differential 

histone modification profiles for each individual TFs, and observed TF specific chromatin 

modifications marked in the target genes. Therefore, we suggest that chromatin modifications 

might function as both non-specific euchromatin marks and TF specific regulatory marks. And 

our model takes advantage of the chromatin information from both of the two layers.  

However, it is still not quite clear the sequential order in terms of time and causality of 

chromatin modification and TF binding. It is possible that one of them happens first which then 

drives the occurrence of the other. The other possibility is that the two events might be interactive 

in a feedback manner to regulate gene expression. More fine-tuned experiments in the future 

would be helpful for unraveling the time-dependent interaction between chromatin modification 

and TF binding. 

4.4  Methods 

4.4.1  Chromatin modification data 

The yeast histone modification data sets used in this study are basically from two sources. 

The first data set is available from Pokholok et al [133] at 
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http://web.wi.mit.edu/young/nucleosome/, which contains the profiles of 14 chromatin features 

under YPD or H2O2 condition. These chromatin features include histone H3 and H4 occupation, 

H3K9ac, H3K14ac, H4K5ac8ac12ac16ac, H3K4me1, H3K4me2, H3K4me3, H3K36me3, and 

H3K79me3. The profiles of these features are measured by ChIP-chip experiments using over 

40,000 probes, which cover 85% of the yeast genome. We calculated the signal of each chromatin 

feature in the 1kb upstream region of each open reading frame (ORF) by averaging signals of all 

the probes within this region. Similarly, for each ORF the average signal of each feature in the 

1kb region downstream of the start codon was also calculated.  We named them as the upstream 

chromatin signal and downstream chromatin signal for ORFs, respectively.  

The second data set is available from Kurdistani et al [132]. The data contains levels of 

acetylation of 11 lysines in intergenic regions (IR) as well as ORF regions. These profiles were 

also measured by using ChIP-chip experiments. These 11 histone acetylations are H2AK7ac, 

H2BK11ac, H2bK16ac, H3K9ac, H3K14ac, H3K18ac, H3K23ac, H3K27ac, H4K8ac, H4K12ac 

and H4K16ac. We named the signal in IR and ORF as the IR chromatin signal and coding region 

(CR) chromatin signal for ORFs, respectively. 

4.4.2  Target genes of yeast transcription factors 

Target genes for 203 yeast transcription factors under various conditions (including YPD and 

H2O2) have been identified using the ChIP-chip experiment by Harbison et al [111]. For each 

binding interaction, a probability score (P-value) was calculated, measuring the binding potential 
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of a TF with the promoter region of a gene.  

When TF target genes are determined according to ChIP-chip data, one needs to set a cutoff 

for P-values, which indicates the confidence of regulation of genes by TFs. A small (strict) 

P-value cutoff would result in fewer but more confident target genes, while a large (loose) 

P-value cutoff would do the opposite. For instance, there are 159 target genes for RAP1 using a 

cutoff value of 0.001, while the target gene number increases to 581 when the cutoff value 0.05 is 

used. We therefore tested the influence of P-value cutoff on our model performance. As shown in 

Figure 4.3, our results indicate that a more stringent P-value cut-off, i.e. smaller target gene set, 

improves the prediction accuracy of our model. Moreover, at all cutoff values the models 

combining histone modification and PSSM data outperform the models using either of them alone. 

On the other hand, a more stringent cutoff results in less target genes. To ensure enough positive 

target genes for model training, we decided to use 0.01 as the P-value cutoff in our analysis. 

4.4.3  Position-specific scoring matrices of transcription factors 

Two sets of position-specific scoring matrices (PSSMs) for yeast transcription factors have 

been identified previously using different strategies [10,18]. The first set was downloaded from 

http://genomics.princeton.edu/tavazoie/Gene%20Expression.htm, which was based on de novo 

motif finding in all yeast promoter sequences [130]. The promoter DNA sequences (from start 

codon of a ORF to 800bp upstream) of all yeast ORFs were analyzed to identify enriched motifs 

by using the AlignACE program [148]. A total of 666 motifs have been found, among which 51 
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can be associated with known yeast transcription factors. The occurrences and matching scores of 

these motifs in the promoter regions of all yeast genes were also provided by Beer et al [130].  

The second set of PSSMs was available from http://fraenkel.mit.edu/Harbison/, which is 

based on motif analysis of target promoters identified by the ChIP-chip experiment [111]. The 

detail about motif discovery procedure can be found in [111]. In brief, for a transcription factor 

the motifs were discovered by applying a suite of motif discovery programs to the intergenic 

sequences identified by the binding data for this factor. The resulting motifs were subsequently 

clustered, filtered and selected to give rise to a single PSSM that can best represent the motif of a 

factor. For some factors the above procedure failed to identify their motifs and in such cases 

motifs were derived from literature or databases.  

The information content (IC) of a PSSM is calculated as   
ji bjiji pppIC

, ,, log , 

where i and j represent positions in PSSMs and four nucleotides, respectively. pi,j is then the 

weight at each PSSM position of each nucleotide, and pb is the background nucleotide frequency 

of S. cerevisiae genome. Specifically, we use 37% as the GC content to calculate pb for each 

nucleotide.  

The similarity between two PSSMs is calculated as the averaged dot product at each PSSM 

positions,  
ji jiji pp

n
Similarity

, ,,2,,1
1

, where n is the length of PSSM. If two PSSMs are 

of different lengths, we compare each possible alignment of the two PSSMs with no gap, and 

keep the maximum similarity from each alignment. The similarity score has the range from 0 to 1. 
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4.4.4  Searching promoters for known motifs 

Given the list of PSSMs for transcription factors, we searched the promoters of all yeast 

genes for the occurrences of these motifs using FIMO of the MEME suite [148] available at 

http://meme.nbcr.net/meme4_3_0/downloads.html. The promoter region was defined the DNA 

region from the start codon to 800bp upstream of an ORF. The cumulative matching score (CMS) 

of the occurrences of a motif in the promoter region of a gene was calculated, which was 

subsequently used as features for predicting TF target genes.  

4.4.5  Comparison of chromatin modifications between functional TFBSs and 

non-functional motif matching sites 

We performed comparative analysis of chromatin modification differences between 

functional TFBSs and non-functional motif matching sites for TFs with available PSSMs. SWI4 

was shown here as an example. A list of binding sites (TFBS) of the factor SWI4 was downloaded 

from the Saccharomyces Genome Database (SGD) [149] at http://www.yeastgenome.org/. This 

list contains 99 binding sites that were targeted by the SWI4 under YPD medium according to the 

ChIP-chip data. We also collected a list of non-TFBSs by selecting DNA regions that was 

consistent with the SWI4 motif but not targeted by SWI4 under YPD medium as indicated by the 

ChIP-chip results (P>0.4). These non-TFBSs were further filtered to ensure that there is no SWI4 

TFBSs within the nearby 2kb region, which ultimately resulted in 485 non-TFBSs for SWI4. All 

of the TFBSs and non-TFBSs are less than 20bp in size. The levels of the chromatin features on 
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these TFBSs and non-TFBSs were calculated based on the intensities of probes covering them. 

Finally, the signal of the 14 chromatin features was compared between the TFBS and non-TFBS 

groups using the t-test. 

4.4.6  Support vector machine model for transcription factor target prediction 

For a transcription factor in each gene we have obtained the following features: cumulative 

matching score from motif searching, the upstream and downstream signal of 14 histone or 

histone modification profiles, the IR and CR signal of 11 histone acetylation profiles. All or 

subsets of these features were integrated using a support vector machine (SVM) model [136] for 

predicting target genes of a TF.  

As a supervise machine learning model, the class of gene must be know to train the SVM 

model. We split the data into two sets, a training set and a testing set. The model was then trained 

using the training set and applied to the testing set to predict target genes. The prediction power 

of the model was estimated based on the testing set. In general, the SVM model outputs a 

probability indicating how likely a gene is the target of a TF. By setting different cut-off values, 

we can balance the sensitivity (true positive rate) and specificity (true negative rate) of 

predictions of the model. The plot of the sensitivity versus 1-specificity is called receiver 

operating characteristic (ROC), which can be used to show the classification accuracy of the 

SVM model. AUC, the area under the ROC curve can be used to summarize the prediction power 

of the model.  
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4.4.7  Clustering of TFs using target chromatin modification profile 

For each TF, target histone modification profile was calculated by averaging histone 

modification signals among all its targets. 1kb upstream chromatin modifications from Pokholok 

et al [20] and intergenic chromatin modifications from Kurdistani et al [132][19] were used. 

Unsupervised k-means clustering algorithm was performed to generate two TF clusters, histone 

sensitive and insensitive TFs, by their target histone modification profiles.  

To understand the relative importance of each chromatin modification to target prediction, 

target-nontarget differential histone modification profiles for TFs were calculated based on 

t-statistic. For each chromatin modification in differential modification profile for a TF, 

modification signals for target genes and non-target genes were collected and t-statistic calculated. 

The t-statistics in differential modification profiles indicated the directional significance of 

chromatin modifications to distinguish target genes. 

4.4.8  Inferring interactions between transcription factors 

The target genes identified by ChIP-chip experiment could be wither direct or indirect targets 

of a TF. For example if two transcription factors A and B that are interacted with each other, the 

ChIP-chip for A can potentially identify target genes of B as well. Conversely, the existence of 

B’s motif would be informative for predicting target genes of factor A. We used the TF target 

prediction model with chromatin modifications and the TF’ own PSSM, and then compared the 

model’s AUC performance to the models with chromatin modifications and other TFs’ PSSMs. 
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Models with improved AUC performances suggest better predictive power of other PSSMs than 

the TF’s own. These cases might indicate interactions between the TFs.  

4.4.9  Application of previously reported methods 

We run all methods with their default parameter settings. Internal thresholding is turned off in 

all cases to report a full list of predictions with scores. PSSMs of 10 TFs and upstream 1kb DNA 

sequences for all annotated yeast S. cerevisiae ORFs are used as inputs to MCAST [132] and 

Cluster-Buster [132]. Pairwise pre-aligned upstream 1kb DNA sequences of all annotated S. 

cerevisiae and S. paradoxus orthologous ORFs are used instead for running EEL [132] and Stubb 

[132]. Predicted binding targets with respective scoring systems from the programs are collected 

for all 10 TFs. ROC curves and AUCs are calculated based on the same thresholding scheme for 

all methods.  
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Chapter 5 
 

Conclusion 
 

In this thesis, we first present a formulism of measuring evolutionary rewiring of biological 

networks. Network rewiring rate is measured as percentage edge change per Mys, which is a 

normalized metric by the size of the comparing networks. The metric shows Log-Log linear 

relationship with divergence time, indicating saturation effect of evolutionary changes also found 

in sequences. We found that different types of biological networks rewire at different rates during 

evolution. TF regulatory network and kinase substrate phosphorylation network are in the fast 

rewiring group, and metabolic pathway network is the slowest. The rewiring ordering of 

biological networks is consistent in all species comparisons. The formulism of measuring 

rewiring rate is directly applicable to other types of networks, commonly observed in our real 

lives. The differences in rewiring rates do not come directly from gene content turnover of 

specific GO categories of genes. Most biological networks evolve in similar rates as protein and 

coding DNA sequences. We argue that regulatory networks rewire faster than collaborative 

networks. And understanding of quickly evolving regulatory networks could potentially help us 



 106 

unravel the differences of close species, such as human and chimpanzee.  

To investigate the robustness of the measure of rewiring rate in comparing different biological 

networks, we then develop a computational simulation method. By randomly adding edges and 

nodes to and removing those from biological networks, we simulated the effect of potential false 

positives and negatives in measuring rewiring rates. Our simulation results show that the rewiring 

rate measure is robust even the data sets have large percentage errors. The simulation of network 

rewiring process identifies node removal parameter being the most influential to rewiring rate 

measure in our model.  

Although it is time for evolutionary analysis of biological networks, there are still not enough 

high quality network data sets available today. We used a machine learning method to predict TF 

target genes in yeast, which contributes to future high quality data sets. Histone modification 

profiles have been found different in TF binding sites and non-binding sites. This information is 

used as features in SVM model, along with TF binding motifs. Our model shows significantly 

better prediction power than previously reported methods. Different in their histone modification 

profiles, 203 yeast TFs could be clustered into histone sensitive and insensitive ones. For histone 

sensitive TFs, incorporating histone modification signals could significantly improve the 

prediction their target genes, and they are enriched of cell cycle regulated TFs and hub TFs in 

higher hierarchies in networks.  

Future research topics following this thesis would possibly include more detailed analysis of 

network rewiring rate, relating network rewiring model to experimental results, and application of 

TF target prediction methods to more conditions, cell lines, and species. It will be interesting to 
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analyze the rewiring hotspots and coldspots of networks, and to construct species trees based on 

their networks, which could be compared with molecular trees. More theoretical studies are 

needed to understand the topological mechanism of rewiring rate differences. A more complex 

network rewiring model bringing in previously reported network growth models may be helpful. 

Application of the TF target prediction model to more conditions in yeast, or more cell lines in 

other organisms may generate predictions when experimental data are not readily available. What 

is more, further analysis of histone sensitive and insensitive TFs in yeast may uncover interesting 

biological implications in their regulatory roles. And it is also important to check this clustering in 

other model organisms, such as fly, worm, and human, when more ChIP data sets become 

available.  
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Chapter 6 
 

Appendix: Co-expression network of 
non-coding RNAs in C. elegans 
 

6.1  Introduction 

The massive amounts of data from tiling arrays and high-throughput sequencing have driven 

the discovery of novel transcripts [150-152]. Unlike the main transcription products mRNAs 

which are then translated into proteins, many transcripts are not, and hence are called non-coding 

RNAs (ncRNAs). ncRNAs include many well-known RNA types such as rRNA, tRNA and 

snoRNA, as well as small RNAs such as miRNA, siRNA, and piRNA. Some of ncRNAs, 

including miRNAs and siRNAs, carry expression regulatory functions in eukaryotes that 

increasingly proved to be important in cellular regulatory systems.  

With the advent of high-throughput sequencing technologies, it is now possible to 

experimentally survey novel transcriptomes to find ncRNAs [153]. Lu et al. develop a 
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comprehensive model, incRNA (integrated ncRNA finder), which integrates sequence, structure, 

and expression data [154]. The large-scale expression data sets are gathered from the 

modENCODE consortium, which includes tiling array and deep sequencing data from different 

tissues and developmental stages of C. elegans [21, 155]. 7,237 novel ncRNA candidates (merged 

from 10,994 high-confidence ncRNA bins) are predicted using incRNA and the expression of a 

random sample has been experimentally validated.  

Understanding the expression profiles of these novel ncRNA candidates is important for their 

characterization. We here present a co-expression network approach to identify distinct 

expression patterns of novel ncRNA candidates, in combination with other known ncRNAs and 

coding RNA transcripts.  

6.2  Results 

6.2.1  Novel ncRNA candidates and known ncRNAs 

The 10,994 novel ncRNA candidate bins from our prediction were pooled with our sample 

set of 476 known ncRNAs, a total of 11,473 ncRNA bins, to study their expression profiles. We 

collected ncRNA expression level data from 11 small RNAseq experiments conducted in different 

developmental stages. Compared to RNAseq and tiling array experiments in measuring transcript 

expression levels, small RNAseq is more sensitive and accurate for short-length ncRNAs. We 

found that known ncRNAs generally have higher expression levels than novel ncRNA bins 

(Wilcoxon test pval<e-10) and smaller expression level variance (Wilcoxon test pval<e-10).  
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11,473 ncRNA candidate bins were then further clustered into three groups reflecting their 

expression patterns, 348 universal expression, 6925 differential expression, and 4200 

undetectable expression ncRNA candidate bins. Among universal expression ncRNAs, 202 (58%) 

were known ncRNAs; however, only 167 (2%) were known ncRNAs among differential 

expression ncRNAs (see Figure 6.1). It indicated that known ncRNAs are enriched in universal 

expression cluster, while novel ncRNAs are enriched in differential expression cluster (Fisher’s 

Exact Test pval<e-15), which contains only 2% of the known ncRNAs. Since the majority known 

ncRNAs are miRNAs, universal expression across developmental stages might be a reason why 

miRNAs are the best characterized ncRNAs. However, our predicted novel ncRNAs are largely 

differentially expressed in developmental stages indicating their difficulty of experimental 

discovery. The rest predicted novel ncRNAs bins have no detectable expression in all stages 

experimented. The finding that most differentially expressed ncRNAs come from the novel 

candidates in intriguing, suggesting their specialized roles in specific stages.  

6.2.2  Novel ncRNA candidates and coding transcripts 

In order to examine the differential expression of ncRNAs and coding transcripts, 

co-expression network of above mentioned 476 known ncRNAs, 10,994 novel ncRNAs and also 

27,322 coding transcripts was constructed by calculating the Euclidean distance of pair wise 

expression vectors. 11 small RNAseq experiments, 6 poly-A RNAseq experiments, 29 total RNA 

tiling array experiments, and 12 poly-A RNA tiling array experiments are used for expression  
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Figure 6.1: Expression profile of novel ncRNA candidate bins.  
The expression of novel ncRNA bins is compared to known ncRNAs among 11 developmental 
stages in C. elegans. Novel ncRNA bins are labeled as green bars on the top row, and known 
ncRNAs in purple. ncRNAs are ordered according to 3 major expression profile clusters, shown 
on the bottom row. 
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levels of transcripts. Topological Overlap Matrix (TOM) distance is then calculated to measure 

the pair wise topological distance in the co-expression network using the WGCNA package [156]. 

TOM distance is defined with the following formula:   ijji

ij
u

ujiu

ij akk

aaa
distTOM







1,min

1 , 

where aij denotes the expression vectors Euclidean distance of transcript i and j, and ki denotes 

co-expression network degree of transcript i. This distance measure is better than Euclidean 

distance because it considers not only Euclidean distance between two objects, but also the 

overlap of their network neighbors. Therefore, using TOM distance in co-expression network is 

more capable to find co-expression clusters and modules. We observed three co-expression 

clusters in the network: two of them (Cluster A and Cluster B) have distinct expression patterns 

with small topological distances among their member transcripts, and Cluster C is generally an 

out-group in the network (see Figure 6.2). In fact, the largest cluster (Cluster A with 19655 

transcripts) is enriched of coding transcripts (93%), while the second cluster (Cluster B with 

13902 transcripts) is enriched of novel ncRNAs (70%, Fisher’s Exact Test pval<e-15) (see Table 

6.1). The result shows that our predicted novel ncRNAs have very different expression patterns to 

coding transcripts, too.  

It is currently difficult to infer possible biological functions of each predicted novel ncRNA 

with experimental evidence. However, novel ncRNA candidates may share functional similarities 

with those coding transcripts that have close expression profiles. We performed Gene Ontology 

(GO) analysis on coding transcripts that are clustered together with novel ncRNA candidates (see 

Table 6.2). Five clusters, cluster 0, 1, 6, 9, and 11, are enriched of novel ncRNA candidates with a  
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Figure 6.2: Co-expression network of novel ncRNA bins, known ncRNAs, and coding transcripts.  
The top row denotes the labels of transcripts. Three main co-expression clusters are found using 
unsupervised learning method, shown on the bottom row.  
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Cluster Subcluster Novel ncRNA bins Coding transcripts Known ncRNAs 

1 133 12287 68 
2 814 792 235 
3 36 2842 3 
4 31 1318 0 
5 20 1073 3 

1 

Subtotal 1034 18312 309 
1 6823 711 137 
2 1441 867 10 
3 189 873 4 
4 254 492 2 
5 345 289 3 
6 279 265 2 
7 156 312 6 
8 132 143 0 
9 101 29 1 

10 31 5 0 

2 

Subtotal 9751 3986 165 
3 Subtotal 209 5024 5 

 
Table 6.1: Main and sub clusters of C. elegans transcripts co-expression network.  
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Cluster Coding Non-coding Total nc % Coding transcripts GO enrichment Coding transcripts GO depletion 

0 1199 1193 2392 49.87% 
Transmembrane proteins, Receptors, Signal 
transducer activity 

Protein binding, Development, Growth 
regulation 

1 2727 4003 6730 59.48% 
Chromatin assembly, DNA binding, Organelle 
organization 

Protein binding 

2 4210 604 4814 12.55% 
Ion channel, Receptor, Membrane, Signal 
transducer actitivity, Transcription 

Protein binding, Laval development, Growth 
regulation, Organelle, Cell cycle 

3 4377 424 4801 8.83% Development, Growth regulation, Reproduction Receptor, Signal transducer activity 

4 4274 356 4630 7.69% 
Development, Cell cycle, Growth regulation, 
Reproduction 

Receptor, Membrane, Signal transducer 
activity, Transcription factor activity 

5 2931 362 3293 10.99% Lipid metabolism, Sugar binding, Anion transport 
Development, Receptor, Signal transducer 
activity, Growth regulation 

6 577 1805 2382 75.78% No significant enrichment No significant depletion 
7 2185 115 2300 5.00% Membrane, Signal transducer activity, Receptor Development, Growth regulation, Organelle 

8 1548 149 1697 8.78% Metabolism, Kinase 
Development, Signal transducer activity, 
Receptor, Expression regulation 

9 276 1276 1552 82.22% No significant enrichment No significant depletion 

10 1182 75 1257 5.97% 
Receptor, Membrane, Signal transducer activity, 
Ion channel 

Development, Growth regulation, 
Reproduction 

11 677 527 1204 43.77% Transcription factor activity, Ion binding No significant depletion 

12 660 42 702 5.98% 
Chromatin assembly, DNA binding, Organelle 
organization 

Membrane 

13 499 63 562 11.21% Organelle No significant depletion 
Total 27322 10994 38316    

 
Table 6.2: GO analysis of coding transcripts in clusters with non-coding RNA candidates. 
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fraction >40%. Coding transcripts in cluster 0, 1, and 11 are enriched of expression regulatory 

genes, such as TFs and chromatin binding proteins. More interestingly, in cluster 6 and 9, which 

mainly contain novel ncRNA candidates (>75%), no GO term enrichment is found for coding 

transcripts in each cluster. This also indicates that many novel ncRNA candidates may have 

distinct functions that are not previously known.  

6.3  Methods 

To examine the expression pattern of known and novel ncRNAs, expression data from 11 

small RNAseq experiments of known and novel ncRNAs were log-transformed. ncRNAs with all 

zero expression levels across 11 experiments were first identified and clustered as Cluster 3. 

Unsupervised clustering method (kmeans function in R) is then used to further split the remaining 

ncRNAs into two groups. The group with universal high expression levels across 11 experiments 

is labeled as Cluster 1, and the group with differential expression levels is labeled as Cluster 2. 

All 479 known ncRNAs are kept while 1,000 novel ncRNAs are randomly sampled from a total 

10,994 novel ncRNAs for heatmap visualization.  

Transcript co-expression network modules is detected using the WGCNA package in R. 

Known ncRNAs, novel ncRNAs and coding transcripts are combined with their expression levels 

measured in small RNAseq, poly-A RNAseq and tiling array experiments. Small RNAseq and 

poly-A RNAseq data is log-transformed, and expression distributions for all experiments are 

shifted to have the same median while maintaining their distribution shape. Adjacency matrix of 



 117 

Euclidean distances was calculated for all pairs of expression profiles, and then the Topological 

Overlap Matrix (TOM) distances were calculated based on the adjacency matrix to reflect 

topological distances between transcript pairs in the co-expression network. Transcripts were first 

clustered using unsupervised method and then hierarchically clustered. Three network modules 

representing closely connected transcripts were detected and grouped using WGCNA package. 

300, 300 and 100 transcripts from Cluster A, B and C are randomly sampled for heatmap 

visualization.  
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