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Evolution of Element Annotation, 
from Calling ChIP Peaks 
to Determining Genome Folding
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Harnessing	AI	to	Make	
Sense	of	Large,	
Complex	Datasets	&	
Re-Invigorate	R&D	
Innovation:	
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High Level Ideas on the 
Evolution of Machine Learning in Genome Analysis

• Provides an illustration of how machine learning functions 
to make sense of large, complex datasets 

• The problem of annotating active & repressed regions in 
the genome
-Original formulation in terms of “peak calling” on the 

linear genome
-Revision of the original work, now at multi-scale
-Recent radical change: now thinking of the genome as 

a 3D folded molecule
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The Rise of the Personal Genome
to ‘10

Adapted	from	Nature 2010
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Where	is	Waldo?
(Finding	the	key	mutations	in	~3M	Germline	variants	&	

~5K	Somatic	Variants	in	a	Tumor	Sample)
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What is Annotation? (For Written Texts?)
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Non-coding Annotations: Overview

Features are often present on multiple ”scale” (eg elements and connected networks)

Sequence features, incl. Conservation Functional Genomics
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription
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Evolution of Element Annotation, 
from Calling ChIP Peaks to Determining Genome Folding

• Characterizing 
Regulatory Sites on the 
Linear Genome
- Original peak calling approach 

(with PeakSeq)
- New Multi-scale "site" calling 

(with Music)

• Characterizing TADs 
from 3D Genome Folding
- Using modularity for 

identification, at multiple scales
(with MrTADFinder)

- Developing an appropriate 
null expectation

• Features of 
Multi-resolution TADs
- Specific TFs & HMs associated 

with TAD boundaries 
at different scales

- Assoc. strong enough to build a 
predictor

- HOT regions at boundaries
- Relation to somatic mutations

• Technical Analysis 
of TADs
- Spectral analysis quantifying 

reproducibility of Hi-C data sets
(with HiC-Spector)
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ChIP-seq vs ChIP-chip: Much cleaner 
signal from sequencing than arrays
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[Rozowsky et al. Nat. Biotech ('09)]



Summarizing	the	Signal:	
"Traditional"	ChipSeq	Peak	Calling

Threshold

Generate	&	threshold the	
signal	profile	to	identify	
candidate	target	regions

– Simulation	(PeakSeq)
– Local	window	based	Poisson	(MACS)
– Fold	change	statistics	(SPP)

Score	against	the	control

Potential	Targets

Significantly	Enriched	targets

Normalized	Control

ChIP

[Rozowsky	et	al.	('09)	Nat	Biotech]



Multi-track	analysis:	Segmentation

[Encode	Consortium	(’12),	Nature;	Ernst	&	Kellis,	Hoffman	&	Noble]



Summarizing	the	Signal:	
"Traditional"	ChipSeq	Peak	Calling

Threshold

• Generate	&	threshold	the	signal	
profile	to	identify	candidate	
target	regions

– Simulation	(PeakSeq),	
– Local	window	based	Poisson	(MACS),	
– Fold	change	statistics	(SPP)

• Score	against	the	control

Potential	Targets

Significantly	Enriched	targets

Normalized	Control

ChIP

Now	an	update:	"PeakSeq	2"	=>	MUSIC
[Rozowsky et	al.	('09)	Nat	Biotech]



Multiscale	Analysis,	Minima/Maxima	based	
Coarse	Segmentation

• Multiscale	analysis	is	a	natural	way	to	analyze	
the	ChIP-Seq	data
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[Harmanci et	al,	Genome	Biol.	('14)]
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Evolution of Element Annotation, 
from Calling ChIP Peaks to Determining Genome Folding

• Characterizing 
Regulatory Sites on the 
Linear Genome
- Original peak calling approach 

(with PeakSeq)
- New Multi-scale "site" calling 

(with Music)

• Characterizing TADs 
from 3D Genome Folding
- Using modularity for 

identification, at multiple scales
(with MrTADFinder)

- Developing an appropriate 
null expectation

• Features of 
Multi-resolution TADs
- Specific TFs & HMs associated 

with TAD boundaries 
at different scales

- Assoc. strong enough to build a 
predictor

- HOT regions at boundaries
- Relation to somatic mutations

• Technical Analysis 
of TADs
- Spectral analysis quantifying 

reproducibility of Hi-C data sets
(with HiC-Spector)
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3D organization of genome

image	credit:	Iyer	et	al.	BMC	Biophysics	2011,	
cartoonist	John	Chase

image	credit:	Iyer	et	al.	BMC	Biophysics	2011



2
2

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Chromosome conformation capture (3C) and Hi-C
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Data:
Rao	et	al.	Aiden,	
Cell	2014
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Topologically associating domains (TADs)

TADs	have	apparent	
hierarchical	organization



Local TAD boundary disruption 
activates oncogene

Valton	and	Dekker	Curr.	Opin.	Genetics	and	Development	2016

Example:	T-ALL
Hnisz	et	al.	Young	Nature	2016

Example:	IDH	mutant	gliomas
Flavahan	et	al.	Bernstein	Nature	2016
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Network modularity

number	of	edges

degree	of	i

expected	number	of	
edges	between	i	and	j

whether	or	not
i,	j	are	in	the	
same	module

adjacency	matrix
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Network modularity

Optimization	problem

number	of	edges

degree	of	i

expected	number	of	
edges	between	i	and	j

whether	or	not
i,	j	are	in	the	
same	module

adjacency	matrix
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Identifying TADs in multiple resolutions

[Yan	et	al.,	PLOS	Comp.	Bio.	(in	revision,	‘17);	bioRxiv 097345]
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Identifying TADs in multiple resolutions

[Yan	et	al.,	PLOS	Comp.	Bio.	(in	revision,	‘17);	bioRxiv	097345]
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Identifying TADs in multiple resolutions

Numerically	solve	for		 in	equations	

[Yan	et	al.,	PLOS	Comp.	Bio.	(in	revision,	‘17);	bioRxiv	097345]



3
1

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Identifying TADs in multiple resolutions

[Yan	et	al.,	PLOS	Comp.	Bio.	(in	revision,	‘17);	bioRxiv	097345]
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Identifying TADs in multiple resolutions
a	modified	Louvain	algorithm

[Yan	et	al.,	PLOS	Comp.	Bio.	(in	revision,	‘17);	bioRxiv	097345]



Identifying TADs in multiple 
resolutions

33

[Yan	et	al.,	PLOS	Comp.	
Bio.	(in	revision,	‘17);	
bioRxiv	097345]



Evolution of Element Annotation, 
from Calling ChIP Peaks to Determining Genome Folding

• Characterizing 
Regulatory Sites on the 
Linear Genome
- Original peak calling approach 

(with PeakSeq)
- New Multi-scale "site" calling 

(with Music)

• Characterizing TADs 
from 3D Genome Folding
- Using modularity for 
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(with MrTADFinder)

- Developing an appropriate 
null expectation

• Features of 
Multi-resolution TADs
- Specific TFs & HMs associated 

with TAD boundaries 
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- HOT regions at boundaries
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of TADs
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Enrichment of histone features at 
different resolution

35
[Yan	et	al.,	PLOS	Comp.	Bio.	(in	
revision,	‘17);	bioRxiv	097345]



Enrichment of histone features at 
different resolution
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House-keeping vs tissue-specific 
genes
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Enrichment of TF binding sites 
near boundaries
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Question:	Causes	or	Consequences?
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Predicting TAD boundaries using 
TFs binding pattern

39

Classification	problem:

model	performance

[Yan	et	al.,	PLOS	Comp.	Bio.	(in	
revision,	‘17);	bioRxiv	097345]



Predicting TAD boundaries using 
chromatin features

40contribution	of	individual	factors

Which	transcription	factors	play	a	role	in	border	
formation? [Yan	et	al.,	PLOS	Comp.	Bio.	(in	

revision,	‘17);	bioRxiv	097345]
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Domain	organization	shapes	
mutational	landscape



Cluster	1

Cluster	2

TADs	identified	in	MCF7

mutations	called	from	breast	cancer	
samples	(~700	donors)

Domain	organization	shapes	
mutational	landscape

[Yan	et	al.,	PLOS	Comp.	Bio.	(‘17)]



Cluster	1

Cluster	2

TADs	identified	in	MCF7

mutations	called	from	breast	cancer	
samples

early

early late

late

Domain	organization	shapes	
mutational	landscape

[Yan	et	al.,	PLOS	Comp.	Bio.	(‘17)]
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Quantifying reproducibility 
of Hi-C data

45

ENCODE Hi-C data

[Yan	et	al.,	Bioinformatics	(‘17)]
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Quantifying reproducibility 
of Hi-C data

Is there a better way to decompose the contact map W (matrix)?

• Spectral clustering commonly used in 
image processing

• Transform W into the Laplacian 
matrix

• Decomposed into eigenvectors, and 
consider only the leading ones  
(dimension reduction)

• Distance between the corresponding 
vectors

Yan KK et al. Bioinformatics 2017
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Quantifying reproducibility 
of Hi-C data

How many eigenvectors should be used? 

Yan KK et al. Bioinformatics 2017
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Quantifying reproducibility 
of Hi-C data

Yan KK et al. Bioinformatics 2017



A distance measure between two 
contact maps

49
[Yan	et	al.,	Bioinformatics	(‘17)]
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MUSIC.gersteinlab.org - A Harmanci, J Rozowsky

Hiring Postdocs. See Jobs.gersteinlab.org Acknowledgments

github.com/gersteinlab/MrTADfinder - K Yan, S Lou 

github.com/gersteinlab/HiC-spector
K	Yan, G Gurkan Yardimci, C Yan, WS Noble
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Extra
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright 

Mark Gerstein, Yale University, 2016. 
-Please read statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). Paper references in 
the talk are mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see streams.gerstein.info . 


