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High Level Ideas on the
Evolution of Machine Learning in Genome Analysis

* Provides an illustration of how machine learning functions
to make sense of large, complex datasets

* The problem of annotating active & repressed regions in
the genome
- Original formulation in terms of “peak calling” on the
linear genome
- Revision of the original work, now at multi-scale
- Recent radical change: now thinking of the genome as
a 3D folded molecule



r
N
o
o
|

Billions of base pai

A glioma cell line'7, Inuk's,
IGubi and Archbishop

The Rise of the Personal Genome oo
to ‘10

Two Korean males including
Seong-lin Kim*!%, Stephen

00
BOBIE R=e - e o PP VI PP PPERPRE PR . P P PP PP DRSPS PP AP PPPPPP R ennes Quake? Fanother eancer - - - - MI'I‘” . !
] | ‘ . . ‘ ‘ genome'?, George Church, a h [}
Yoruban female, another 00
male', and four others'+-16 ’l"l'” |Il
: N : : JamesWalsor:wS,awomanwilh o0
; i g 5 ' ' h acute myeloid leukemid,
o 6 I g o . g g a Yoruba male from Nigeria’ ww
GOy W s s ; . and the first Asian genome® .
| LG A z 5 z ’i"i' E
* B / ) J.Craig Venter i
I3 o ! diploid genome*. @ .
: : : : ‘ ; : 1 : g
0 A B O B P A BIR =N e T o L ! ....................................... ioan
i ‘
. z
1 :
1
' ' ' 0 . . . 4
U AT g R AR e R RO L R B AT T PP 1RSI AL A e ARy SN T e NIRRT ) s 1 ..............
g q " / i - o
: : ‘ ‘ : i
h & b { , Human Genome Project;
Two compOSIte h Human. . completed®
human haploid - Genome Project —@ lll
genome drafts ] completed :
L1 I PR PP EPPPRPEESS BRPT PP PP ................... ...............................
First drafts of two composite
Ii"i'l haploid human genomes2

0 . . v :
2000 2001 2002 42003 2004 2005 2006 2007 2008 2009 2010

Adapted from Nature 2010

3 - Lectures.GersteinLab.org



Where is Waldo?
(Finding the key mutations in “3M Germline variants &

~5K Somatic Variants in a Tumor Sample)
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What is Annotation? (For Written Texts?)

NATURE
[ .

Initial sequencing and analysis of the

No. 4356 Apl‘i] 25, 1953

MOLECULAR STRUCTURE OF
NUCLEIC ACIDS

AiStructure ifor Deoxyribose Nucleic Acid
E wish to suggest a !structure!for the salt
of deoxyribose nucleic acid (D.N.A.). This

structure has novel features which are of considerable
})i(.lﬂglg;_l_l__ill_l_(;[‘tEF[ .

A istructure} for nucleic acid has already been
proposed by Pauling and Corey'. They kindly made
their manuscript available to us in advance of
publication. Their model consists of three inter-
twined chains, with the phosphates near the fibre
axis, and_the hases on the outside. In our opinion,
this istructure | is unsatisfactory for two reasons :
(1) We believe that the material which gives the
X-ray diagrams is the salt, not the free acid. Without
the acidic hydrogen_atoms it is not clear what forces

would hold the istructure {together, especially as the
negatively charged phosphates near the axis will
repel each other. (2) Some of the van der Waals
distances appear to be_too_small.

Another three-chain|structurei has also been sug-

In his model the
phosphates are on the outside and the bases on the
ingide, linked together by hydrogen bonds. This
structure jas described is rather ill-defined, and for
"""""" this reason we shall not comment
on it.

We wish to put_ forward a
radically different {structure] for
deoxyiibo i
acid. This !structure
helical chains each coiled roun

X1 L B
have made the usual chemical
assumptions, namely, that each
chain consists of phosphate di-
ester groups joining B-p-deoxy-
ribofuranose residues with 3’,5’
linkages. The two chains (but

not their bases) are related by a
£

Aerad woanmandiassion +£4 +iha

Intemational Human Genome Sequencing Consortium*

| NATURE|IVOL 409 | 15 FEBRUARY 2001 |

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution.
Here we report the results of an intemational collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

The rediscovery of Mendel’s laws of heredity in the opening weeks of
the 20th century'™ sparked a scientific quest to understand the
nature and content of genetic information that has propelled
biology for the last hundred years. The scientific progress made
falls naturally into four main phases, corresponding roughly to the
four quarters of the century. The first established the cellular basis of
heredity: the chromosomes. The second defined the molecular basis
of here he third unlocked the informa-
tional basis of heredity, with the discovery of the biological mechan-
ism by which cells read the information contained in genes and with
the invention of the recombinant DNA technologies of cloning and
sequencing by which scientists can do the same.

The last quarter of a century has been marked by a relentless drive
to decipher first genes and then entire genomes, spawning the field
of genomics. The fruits of this work already include the genome
sequences of 599 viruses and viroids, 205 naturally occurring
plasmids, 185 organelles, 31 eubacteria, seven archaea, one
fungus, two animals and one plant.

Here we report the results of a collaboration involving 20 groups
from the United States, the United Kingdom, Japan, France,
Germany and China to produce a draft sequence of the human
genome. The draft genome sequence was generated from a physical
map covering more than 96% of the euchromatic part of the human
genome and, together with additional sequence in public databases,
it covers about 94% of the human genome. The sequence was
produced over a relatively short period, with coverage rising from
about 10% to more than 90% over roughly fifteen months. The
sequence data have been made available without restriction and
updated daily throughout the project. The task ahead is to produce a
finished sequence, by closing all gaps and resolving all ambiguities.
Already about one billion bases are in final form and the task of
bringing the vast majority of the sequence to this standard is now
straightforward and should proceed rapidly.

coordinate regulation of the genes in the clusters.

® There appear to be about 30,000-40,000 protein-coding genes in
the human genome—only about twice as many as in worm or fly.
However, the genes are more complex, with more alternative
splicing generating a larger number of protein products.

® The full set of proteins (the ‘proteome’) encoded by the human
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have arranged pre-existing components into a
richer collection of domain architectures.

@ Hundreds of human genes appear likely to have resulted from
horizontal transfer from bacteria at some point in the vertebrate
lineage. Dozens of genes appear to have been derived from trans-
posable elements.

@ Although about half of the human genome derives from trans-
posable elements, there has been a marked decline in the overall
activity of such elements in the hominid lineage. DNA transposons
appear to have become completely inactive and long-terminal
repeat (LTR) retroposons may also have done so.

@ The pericentromeric and subtelomeric regions of chromosomes
are filled with large recent segmental duplications of sequence from
elsewhere in the genome. Segmental duplication is much more
frequent in humans than in yeast, fly or worm.

® Analysis of the organization of Alu elements explains the long-
standing mystery of their surprising genomic distribution, and
suggests that there may be strong selection in favour of preferential
retention of Alu elements in GC-rich regions and that these ‘selfish’
elements may benefit their human hosts.

©® The mutation rate is about twice as high in male as in female
meiosis, showing that most mutation occurs in males.

® Cytogenetic analysis of the sequenced clones confirms sugges-
tions that large GC-poor regions are strongly correlated with ‘dark

7o)



Non-coding Annotations: Overview

Features are often present on multiple "scale” (eg elements and connected networks)

Sequence features, incl. Conservation

) }

Large-scale sequence
similarity comparison

Functional Genomics

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

v

Identify large blocks of
repeated and deleted

| sequence:

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing

» Within the human
reference genome

!

« Within the human
population

+ Between closely related
mammalian genomes

Segmentation of processed
data into active regions:

* Binding sites

» Transcriptionally active

v

regions
Y

dentify smaller-scale
repeated blocks using
statistical models

Group active regions into
larger annotation blocks
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The Human
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The Human ENCODE ENCODE Comparative
Genome PrOJect Pilot Production ENCODE

HEAD TO TAIL

Worm modENCODE 1000 G_enomes 1000 Gengmes
Genome Pilot Production



The Human ENCODE ENCODE Comparative Epigenome
Genome PrOJect Pilot Production ENCODE Roadmap
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Evolution of Element Annotation,
from Calling ChIP Peaks to Determining Genome Folding

« Characterizing
Regulatory Sites on the

Linear Genome

- Original peak calling approach
(with PeakSeq)

- New Multi-scale "site" calling
(with Music)

« Characterizing TADs

from 3D Genome Folding

- Using modularity for
identification, at multiple scales
(with MrTADFinder)

- Developing an appropriate
null expectation

* Features of

Multi-resolution TADs

- Specific TFs & HMs associated
with TAD boundaries
at different scales

- Assoc. strong enough to build a
predictor

- HOT regions at boundaries
- Relation to somatic mutations

* Technical Analysis
of TADs

- Spectral analysis quantifying
reproducibility of Hi-C data sets
(with HiC-Spector)
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ChiP-seq vs ChIP-chip: Much cleaner
sighal from sequencing than arrays
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

Generate & threshold the ChiP

signal profile to identify
candidate target regions
— Simulation (PeakSeq) !
— Local window based Poisson (MACS) Threshold
— Fold change statistics (SPP) |

Potential Targets (LI ETEN LI N | T e I

Normalized Control

Score against the control

Significantly Enriched targets | 1Nl L1



Multi-track analysis: Segmentation
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

ChiP
Generate & threshold the signal

profile to identify candidate
target regions

—  Simulation (PeakSeq),

—  Local window based Poisson (MACS), Threshold
—  Fold change statistics (SPP) -

Potential Targets LE Lm0 T | T e .

Normalized Control

Score against the control

Significantly Enriched targets | 1Nl L1

Now an update: "PeakSeq 2" => MUSIC



Multiscale Analysis, Minima/Maxima based
Coarse Segmentation

p36.31 p36.13 p35.3
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p34.2 p323 p31.3 p31l.1 p223 p21.3 pl133 pl2 ql1 ql2 q21.1 q22 q24.1 q25.2 q31.1 q32.1 q323 q42.11 q42.3 q44

204 kb 1

27,140 kb 27,160 kb 27,180 kb 27,200 kb 27,220 kb 27,240 kb 27,260 kb 27,280 kb 27,300 kb 27,320 kb

Harmanci et al, Genome Biology 2014, MUSIC.gersteinlab.org
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Multiscale Decomposition

Increasing Scale
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Multiscale Decomposition
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Evolution of Element Annotation,
from Calling ChIP Peaks to Determining Genome Folding

» Characterizing
Regulatory Sites on the

Linear Genome

- Original peak calling approach
(with PeakSeq)

- New Multi-scale "site" calling
(with Music)

» Characterizing TADs

from 3D Genome Folding

- Using modularity for
identification, at multiple scales
(with MrTADFinder)

- Developing an appropriate
null expectation

 Features of

Multi-resolution TADs

- Specific TFs & HMs associated
with TAD boundaries
at different scales

- Assoc. strong enough to build a
predictor

- HOT regions at boundaries
- Relation to somatic mutations

* Technical Analysis
of TADs

- Spectral analysis quantifying
reproducibility of Hi-C data sets
(with HiC-Spector)



3D organization of genome

Tertiary
structure

30nm chromatin
Secondary structure

Nucleus with
distinct territories

"We finished the genome map, now
we can't figure out how to fold it."

image credit: lyer et al. BMC Biophysics 2011,

cartoonist John Chase 10nm chromatin

Primary Structure

image credit: lyer et al. BMC Biophysics 2011
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Chromosome conformation capture (3C) and Hi-C

Comprehensive Mapping of Long-Range
Interactions Reveals Folding Principles
of the Human Genome

Erez Lieberman-Aiden,?3* Nynke L. van Berkum,** Louise Williams,* Maxim Imakaev,?
Tobias Ragoczy,"7 Agnes Telling,‘s'7 Ido Amit,* Bryan R. Lajoie,® Peter . Sabo,®

Michael 0. Dorschner,a Richard Sandstrom,8 Bradley Bernstein,"9 M. A. Bender,lo

Mark Groudine,®’ Andreas Gnirke,* John Stamatoyannopoulos,® Leonid A. Mimy,>**

Eric S. Lander,"***%f Job Dekker’t SCIENCE VOL 326 9 OCTOBER 2009

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using

restriction and mark pull down biotin paired-ends

enzyme with biotin
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Topologically associating domains (TADs)

TADs have apparent
hierarchical organization

24 - Lectures.GersteinLab.org



Local TAD boundary disruption
activates oncogene

O Enhancer
:-— Promoter and gene
. e Example: IDH mutant gliomas
CTCF binding site  £xample: T-ALL Flavahan et al. Bernstein Nature 20[L6
® Chromatin loop Hnisz et al. Young Nature 2016

TAD boundary disruption
Deletion of CTCF sites
Methylation of CTCF site

Activation of oncogene
Current Opinion in Genetics & Development

Valton and Dekker Curr. Opin. Genetics and Development 2016



Network modularity

degree of i
adjacency matrix 1

N\
1 ik;
Q _— Z Wz k kJ 50,7: whether or not

2m 2m T3 i, jare in the
1,7 ‘ same module
number of edges expected number of

edges between iand j
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Network modularity

@Q — Qma:c

Optimization problem

degree of i
adjacency matrix 1

N\
1 ik
Q — Z Wz k kj 50,7: whether or not

— 0' .
2, 2m J i, jarein the
1,7 ‘ same module
number of edges expected number of

edges between iand j
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Identifying TADs in multiple resolutions

network contact map i = b

chromosome R
node ) :
bin

edge Hi-C contact '

# of coverage '

connections g )

Modularity maximization . -

module domain

1 kik;
= — Wij — —2 ) do.0.
“ QmZ( 2m) 7

2,

schematic adapted from ref. [2]
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Identifying TADs in multiple resolutions

10*

103_

Modularity m
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genomic distance d (bp)

[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

10°

: adapted from ref. [2]
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

Identifying TADs in multiple resolutions

input: contact map W null model E * % ) )
Eij = r;k;f(li —7j])

\ * Numerically solve for K’z’ in equations
1 E Eij =2Wij, for 1 = 1,2,..N
Z ,

® )

N
Choose a particular resolution y

\thimize Q over all possible partitioy

Q= % E(W” - ')’Eij)éaia,- y: resolution parameter

©j

J

Multiple runs to define boundary scores
for all pairs of adjacient bins

consensus boundaries based on
the boundary scores

consensus TADs output
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

Identifying TADs in multiple resolutions

input: contact map W

Optimize Q over all possible partitions

Multiple runs to define boundary scores
for all pairs of adjacient bins

consensus boundaries

output

consensus TADs

null model E

adjacient chromosomal bins

. every bin has its own domain id
"
3

a random bin is selected, update

. : is based on the neighbors’id
B, " domain id is updated, another
. bin is selected

\ choose y: resolution parameter
Q=

Lm i — VEii )80,

No more update; iteration stops
a modified
Louvain algorithm

bins are renormalzed to form
super-bins; prévious steps are
repeated

No more update;
No more renormalization
two TADs are obtained

—O0—"0—0—0—0—0— 000

increase Q7

- OO0 @& e @ e O O @

increase Q7

00— 00— 090 0 00—

00— —0—0—90 000 00—

increase Q?

N
(e—o—ojfo—o(e—o—ejfo—of

}.
)

——0 90— 00

|
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

Identifying TADs in multiple resolutions

e . . a continuous segment of chromosomal bins
a modified Louvain algorithm 9

every bin has its own moduleid  —@ O O O O O O O O o—

increase Q?

arandom bin is selected, update _. O @ O ') O O O O O—

Is based on the neighbors’module )
increase Q?

medule id is updated, another _. @ @ @ @ o r O O Q—

ncde is selected

No more update; iteration stops —’ O © . O . ’ ’ . ._

increase Q?

bins are rencrmalized to form \ [ \
super-bins; previous steps are E. 0, .J @ q \. > ‘J @ .)—
repeataed

No mere update; A A

Nec moere renormalization

two TADs are obtained —. ' ‘ . . . ‘ . ’ .—
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Identifying TADs in multiple
reSOI Uti O ns [Yan et al., PLOS Comp.

Bio. (in revision, ‘17);

hESC: chr 10

bioRxiv 097345]
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Evolution of Element Annotation,
from Calling ChIP Peaks to Determining Genome Folding

» Characterizing
Regulatory Sites on the

Linear Genome

- Original peak calling approach
(with PeakSeq)

- New Multi-scale "site" calling
(with Music)

» Characterizing TADs

from 3D Genome Folding

- Using modularity for
identification, at multiple scales
(with MrTADFinder)

- Developing an appropriate
null expectation

 Features of

Multi-resolution TADs

- Specific TFs & HMs associated
with TAD boundaries
at different scales

- Assoc. strong enough to build a
predictor

- HOT regions at boundaries
- Relation to somatic mutations

* Technical Analysis
of TADs

- Spectral analysis quantifying
reproducibility of Hi-C data sets
(with HiC-Spector)
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Enrichment of histone features at
different resolution
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‘17); bioRxiv 097345]

[Yan et al., PLOS Comp. Bio. (in revision,

Enrichment of histone features at

enrichment of peak density at boundary

different resolution
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]

House-keeping vs tissue-specific
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[Yan et al., PLOS Comp. Bio. (in revision,

Enrichment of TF binding sites
near boundaries
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Predicting TAD boundaries using
TFs binding pattern

Classification problem:

positive set negative set [Yan et al., PLOS Comp. Bio. (in
boundaries called by MITADFinder random boundaries by reshuffiing revision, ‘17); bioRxiv 097345]
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Predicting TAD boundaries using
chromatin features

Which transcription factors play a role in border

formation?
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Domain organization shapes
mutational landscape

LETTER

OPEN

doi:10.1038/nature14221

Cell-of-origin chromatin organization shapes the
mutational landscape of cancer

Paz Polak"?*, Rosa Karli¢**, Amnon Koren**, Robert Thurman®, Richard Sandstrom®, Michael S. Lawrence?, Alex Reynolds®,
Eric Rynes®, Kristian Vlahovi¢ek™®, John A. Stamatoyannopoulos®’ & Shamil R. Sunyaev'+*

Cancer is a disease potentiated by mutationsin somatic cells. Cancer
mutations are not distributed uniformly along the human genome.
Instead, different human genomic regions vary by up to fivefold in
the local density of cancer somatic mutations', posinga fundamental
problem for statistical methods used in cancer genomics. Epigeno-
mic organization has been proposed as a major determinant of the
cancer mutational landscape'~. However, both somatic mutagenesis
and epigenomic features are highly cell-type-specific®’. We investi-
gated the distribution of mutations in multiple independent samples
of diverse cancer types and compared them to cell-type-specific epi-
genomic features. Here we show that chromatin accessibility and modi-
fication, together with replication timing, explain up to 86% of the
variance in mutation rates along cancer genomes. The best predic-
tors of local somatic mutation density are epigenomic features derived
from the most likely cell type of origin of the corresponding malig-
nancy. Moreover, we find that cell-of-origin chromatin features are

cell types from 45 differ-

EPIGENOME ROADMAP ent tissue types, encom-

@ A Nature special issue passing the established

) 5| Nature.com/epigenomeroadmap or likely cell types of ori-
' gin of most of the cancer

types that we investigated (Methods and Extended Data Fig. 2). Notably,
these data derive from primary human cells and tissues rather than malig-
nant cell lines. These epigenetic features comprised eight different types
of variables, including DNase I hypersensitivity (a global measure of
chromatin accessibility)” and various histone modifications. An example
of the variation in mutation density along chromosomesat a1 Mb scale
together with the density of DNase I hypersensitive sites (DHSs) is shown
inFig. 1. In this case, as in most other cases (see later), epigenomics fea-
tures indicative of active chromatin and transcription were associated
with low mutation density, whereas repressive chromatin features were
associated with regions of high mutation density. Notably, these stat-
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Domain organization shapes
mutational landscape

TADs identified in MCF7
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Domain organization shapes
mutational landscape

TADs identified in MCF7
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Evolution of Element Annotation,
from Calling ChIP Peaks to Determining Genome Folding

» Characterizing
Regulatory Sites on the

Linear Genome

- Original peak calling approach
(with PeakSeq)

- New Multi-scale "site" calling
(with Music)

» Characterizing TADs

from 3D Genome Folding

- Using modularity for
identification, at multiple scales
(with MrTADFinder)

- Developing an appropriate
null expectation

 Features of

Multi-resolution TADs

- Specific TFs & HMs associated
with TAD boundaries
at different scales

- Assoc. strong enough to build a
predictor

- HOT regions at boundaries
- Relation to somatic mutations

* Technical Analysis
of TADs

- Spectral analysis quantifying
reproducibility of Hi-C data sets
(with HiC-Spector)



Quantifying reproducibility
of Hi-C data
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Quantifying reproducibility
of Hi-C data

Is there a better way to decompose the contact map W (matrix)?
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Spectral clustering commonly used in
image processing
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Quantifying reproducibility
of Hi-C data

How many eigenvectors should be used?
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Quantifying reproducibility
of Hi-C data
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A distance measure between two
contact maps
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Evolution of Element Annotation,
from Calling ChIP Peaks to Determining Genome Folding

» Characterizing
Regulatory Sites on the

Linear Genome

- Original peak calling approach
(with PeakSeq)

- New Multi-scale "site" calling
(with Music)

» Characterizing TADs

from 3D Genome Folding

- Using modularity for
identification, at multiple scales
(with MrTADFinder)

- Developing an appropriate
null expectation

 Features of

Multi-resolution TADs

- Specific TFs & HMs associated
with TAD boundaries
at different scales

- Assoc. strong enough to build a
predictor

- HOT regions at boundaries
- Relation to somatic mutations

* Technical Analysis
of TADs

- Spectral analysis quantifying
reproducibility of Hi-C data sets
(with HiC-Spector)
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright
Mark Gerstein, Yale University, 2016.

- Please read statement at

www.gersteinlab.org/misc/permissions.htmi .
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