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Large-scale Transcriptome Mining: 

Clustering, 
Dynamic Modelling & 
Logic-gate Analysis 
while Protecting 
Individual Privacy

Mark Gerstein, Yale

Slides freely downloadable from 
Lectures.GersteinLab.org

& “tweetable” (via @markgerstein) 
See last slide for more info.
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RNA-seq

[PLOS CB 4:e1000158; PNAS 4:107: 5254 ; IJC 123:569 ]

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
ATTCTGACTGGTGTCATGCTGATGTACTTAAA

Reads (fasta)
－ Quality scores (fastq)
－ Mapping (BAM)
－ Contain variant information in transcribed regions

Quantitative information from RNA-seq signal: average 
signals at exon level (RPKMs)

Reads => Signal

RNA-seq uses next-generation sequencing technologies to reveal RNA presence 
and quantity within a biological sample.
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ChIP-seq: 
Creating an Explicit Regulatory Network

Gene regulatory networkNext generation sequencing 
techniques (e.g., ChIP-seq, 
CLIP-seq) predict gene 
regulatory factors (RFs) 
and their target genes
• transcription factors 

(TFs)
• micro-RNAs

• Less data than RNA-seq
but provides explicit 
notion of regulation

…

Peak  calling 
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Activity Patterns

• RNA Seq. gives rise 
to activity patterns 
of genes & regions in 
the genome

• Across
- time (development 

& disease),
-different tissues &
- individuals in a 

population
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Modeling for RNA-
seq & Chip-seq data 

across many 
samples & 

individuals… • Clusters
• Logical model

• Continuous model

• Probabilistic model

• Gene 
Regulatory 
Mechanisms

Fig. S9. Operational logic rules for Boolean computation model.

Peter et al. www.pnas.org/cgi/content/short/1207852109 10 of 10

Istrail & Davidson, PNAS, ‘04 Nicolas Le Novère, Nature Reviews Genetics, ‘15

G
en

e

Population

Over expressed

Under expressed

The Cancer Genome Atlas Network Nature 487, 
330-337 (2012) doi:10.1038/nature11252
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2-sided nature of functional 
genomics data: Analysis can be 

very General/Public
or Individual/Private

• General quantifications related to overall aspects of a 
condition & are not tied to an individual’s genotype - ie
what genes go up in cancer
-However, data is derived from an individual & tagged 

with an individual’s genotype
• Other calculations aim to use genotype & specific 

aspects of the quantification to derive general relations 
related to sequence variation & gene expression

• Some calculations and data derive finding very specific to 
the variants in a particular individual 
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Comparative	
ENCODE	Functional	
Genomics	Resource

(EncodeProject.org/comparative)

• Broad sampling of conditions across 
transcriptomes & regulomes for 
human, worm & fly

– embryo & ES cells
– developmental time course (worm-fly)

• In total: ~3000 datasets (~130B reads)

7
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Time-course gene expression data of 
worm & fly development

Organism Major developmental stages

worm 
(C. elegans)

33 stages: 0, 0.5, 1, …, 12 hours, L1, L2, L3, 
L4, …, Young Adults, Adults

fly
(D. mel.)

30 stages: 0, 2, 4, 6, 8,…, 20, 22 hours, L1-
L4, Pupaes, Adults[N

at
ur
e
51

2:
44

5	
('1

4)
;		
do

i:	
10

.1
03

8/
na
tu
re
13

42
4]



Acute	Myeloid	Leukemia	(AML)

Target	gene 1824 ENCODE	Data (K562,	ChIP-seq)

TF 70

Regulatory	
triplet

50,865 TCGA	Data (AML,	level	3,	RNA-seq)
https://tcga-
data.nci.nih.gov/tcga/tcgaDownload.jsp

Patient
sample

197

Wang, et al., PLoS Computational Biology, 2015
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Representative Expression, Genotype, eQTL
Datasets

• Genotypes are available from the 1000 Genomes 
Project

• mRNA sequencing for 462 individuals
-Publicly available quantification for protein coding 

genes
• Approximately 3,000 cis-eQTL (FDR<0.05)



Large-scale Transcriptome Mining: 
Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

• Much RNA-seq (+TF ChIP) Data 
- Comparative ENCODE – Lots of Matched 

Data 
- TCGA
- Geuvadis w/ 1000G genotypes

• Expression Clustering, Cross-
species 
- Optimization gives 16 conserved co-

expression modules

• State Space Models 
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers
- Decoupling expression changes into those 

from conserved vs species-specific genes
- Also, conserved genes have similar 

canonical patterns (iPDPs) in contrast to 
species specific ones (Ex of ribosomal v 
signaling genes)

• Using Logic Gates to Model of 
Transcriptome Activity
- Preponderance of OR gates in cancer v. 

cell-cycle (esp. for MYC) 

• The General 
Dilemma of Genomic Privacy
- Fundamental, inherited info that’s very private v need 

for large-scale mining for med. research
- Issues w/ current social & tech approaches: 

inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it
- Presents a tricky privacy issue since much of the 

sequencing is for general, non-individual specific 
results yet it’s tagged with individual information

- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression 

levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme 

expression levels
- Quantifying accuracy of prediction, via gap between 

best & 2nd best match

• Value of publication patterns generated by 
the data producing consortia
- Co-authorship network statistics relate to publication 

rollouts & show gradual adoption by a diverse 
community

- Key role of brokers in data dissemination
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Expression clustering: 
revisiting an ancient problem
Species A

two independent sets 
of modules

co-expressed genes 
responsible for the same 
function in a species

Clustering 
algorithm

Clustering 
algorithm

Species B

Eisen MB et al. PNAS 1998
Langfelder P et al. BMC Bioinfo. 2008
Tamayo P et al. PNAS 1999
Kluger Y et al. Genome Res. 2003



1
4

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

Expression clustering: 
revisiting an ancient problem
Species A Species BOrthologous pairs 

between species

cross species modules

OrthoClust

A novel unified framework to integrate co-
expression data across species

Yan et al. Genome Biol. 2014
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Network modularity

Newman Phy. Rev. E 2013

number of edges

degree of node i

expected number of 
edges between i and j

whether or not
i, j are in the 
same module

adjacency matrix
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Network modularity

number of edges expected number of 
edges between i and j

whether or not
i, j are in the 
same module

adjacency matrix
degree of node i
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Network modularity

number of edges expected number of 
edges between i and j

whether or not
i, j are in the 
same module

adjacency matrix

Optimization 
problem
for sim. 
annealing degree of node i
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A toy example [orthoclust]

Every	node	i is	assigned	with	a	label	σi (labels	of	modules:	1,2,…q).	

1

2

3
2

4
1

1

3
2

4

4

1

2

4
1

3

4

Species	A

Species	B

co-expressed

orthologs

reward	an	
orthologous	
pair	
with	the	
same	value

H = −Wij
(A) + pij

(A)( )δσ iσ j
i, j
∑ + −W

i' j '
(B) + p

i' j '
(B)( )δσ

i'
σ
j'

i' , j '
∑ −κ δσ iσ j'

(i, j ')∈Ortho
∑

[Y
an

 e
t a

l. 
G

en
om

eB
io

l1
5:

R
10

0 
('1

4)
] 

Favorableness =   "Modularity" in species A    +       "Modularity" in species B            + consistency betw. A & B

Q(for all σi in	A)     +    Q(for all σi in	B) +
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A toy example [orthoclust]

2

2

2
2

2
4

1

4
4

4

4

4

4

4
1

1

1

Species	A

Species	B

co-expressed

orthologs

species	A	specific conserved	modules species	B	specific

Use	Potts	model	(generalized	Ising model)	to	simultaneously	cluster	co-expressed	
genes	within	an	organism	as	well	as	orthologs shared	between	organisms.	Here,	the	
ground	state	configuration	correspond	to	three	modules:	1,	2,	4.

[Y
an

 e
t a

l. 
G

en
om

eB
io

l1
5:

R
10

0 
('1

4)
] 
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W
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 g

en
es

 (2
03

77
)

Fl
y 

ge
ne

s 
(1

36
23

)

Cross-species clusters for 
worm and fly

co-association
frequency 

GO terms of conserved modules

GO terms of  specific modules

worm specific dauer entry

fly specific chitin activities

Yan KK et al. Genome Biology. 2014
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Are gene regulations among orthologs conserved 
across species?

Species	A

Species	B

orthologs co-expressed

Are gene regulatory 
networks among 
orthologs conserved 
across species?

Regulation among orthologs (internal)
Regulation from species-specific factors (external)

Orthologous genes (orthologs)
Species-specific transcription factors

To what degree can’t ortholog expression levels 
be predicted due to species-specific regulation

[Wang	et	al.	PLOS	CB, ‘16]
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Internal & external 
gene regulatory networks

Internal regulation

External regulation
How to identify gene 
expression dynamics 
driven by 
internal/external 
regulation?

Internal	Group External	Group

[Wang	et	al.	PLOS	CB (in	revision,	‘15)]

External force

Interested system Internal regulatory 
network

External regulatory 
network

Cross-species conserved 
genes

Conserved 
transcriptional factors 
(TFs)

Non-conserved TFs

Protein-coding genes TFs micro-RNAs

Individual’s protein 
coding genes

Wild-type TFs Somatic mutated TFs

Protein-coding genes in 
brain

Commonly expressed 
TFs

Brain-specific expressed 
TFs

Protein-coding genes in 
development

House-keeping TFs Developmental TFs
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State-space model for internal 
and external gene regulatory networks

Xt+1 XtA UtBState 
space 
model

Aij captures temporal 
casual influence from 
Gene i to Gene j in 
internal group

Bkl captures temporal 
casual influence from 
external factor k to Gene l 
in internal group

State: Gene 
expression vector of 
internal group at 
time t

Control: Gene 
expression 
vector of 
external factors 
at time t

State: Gene expression 
vector of Group X at 
time t+1

Internal regulation

External regulation
How to identify gene 
expression dynamics 
driven by 
internal/external 
regulation?

Internal	Group External	Group

[Wang	et	al.	PLOS	CB, ‘16]
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Effective state space model for meta-genes

Xt+1 Xt A Ut B 

!A =WX
*AWX

!B =WX
*BWU

!Xt+1
!A !Xt

!B !Ut!Xt+1 = !A !Xt + !B !Ut

Effective state space model for meta-genes
(e.g., 250 time points to estimate 50 matrix elements 

if 5 meta-genes)

ttt BUAXX +=+1

Not enough data to estimate state 
space model for genes 
(e.g., 25 time points per gene to estimate 4 
million elements of A or B for 2000 genes)

Dimensionality reduction from 
genes to meta-genes (e.g., SVD)

[Wang	et	al.	PLOS	CB, ‘16]
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Canonical temporal expression trajectories from effective 
state space model

pth internal principal dynamic pattern 
(iPDP): [λp

1
, λp

2, …, λp
T],

where λp is pth eigenvalue of Ã.

Canonical temporal expression trajectories
(e.g., degradation, growth, damped oscillation, etc.) 

Internal driven 
dynamics

timeiP
D

P
ex

pr
es

si
on

Xt+1 Xt A Ut B 

!A =WX
*AWX

!B =WX
*BWU

!Xt+1
!A !Xt

!B !Ut

[Wang	et	al.	PLOS	CB, ‘16]
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B. Dimensionality Reduction

time

G
en

es
of

 X

X X

M
et

a-
ge

ne
s 

of
 X

time

G
en

es
of

 U

U
U

time M
et

a-
ge

ne
s 

of
 U

Internal genes/meta-genes External genes/meta-genes

Internal regulation among internal genes/meta-genes by A/Ã

External regulation from external genes/meta-genes to internal 
genes/meta-genes in Group X by B/ !B

A. Gene state-space model C. Meta-gene state-space model

Xt+1=AXt+BUt

time

D. Internal/External Principal 
Dynamic Patterns (PDPs)

[λp
1
, λp

2, …, λp
T]

xEXT =    d1      +d2

+d3 +d4

E. Gene’s internal (INT) and external 
(EXT) driven expression dynamics 
composed of PDPs

xINT =   c1                  +c2                  

+c3 +c4

Xt+1 = AXt +BUt
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Specific Scale of the Data Used

Dataset Internal 
Group

External Group Developmental stages # of unknown
parameters in A and 

B

# of available 
time samples

worm 
(C. elegans)

N1=3147 
worm-fly 
orthologs

(incl. 
ortholog TFs)

N2=509 worm-specific 
transcription factors

T=25 time points: 0, 
0.5, 1, …, 12 hours

3147*3147+3147*50
9=11.5M

3147*25+509
*25=91400

fly
(D. mel.)

N2=442 fly-specific 
transcription factors

T=12 time points: 0, 2, 
4, 6, 8,…, 20, 22 hours

3147*3147+3147*44
2=11.3M

3147*25+442
*25=89725

Not enough time samples!
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Different

1st ePDP 2nd ePDP 3rd ePDP 4th ePDP

Ex
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1st ePDP
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2nd ePDP 3rd ePDP 4th ePDP

1st iPDP 2nd iPDP 3rd iPDP 4th iPDP
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1st iPDP 2nd iPDP 3rd iPDP 4th iPDP
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Worm’s effective state space model

Similar

Fly’s effective state space model
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5th ePDP

Xt+1 = AXt +BUt

Orthologs have similar internal but different external dynamic 
patterns during embryonic development

[Wang	et	al.	PLOS	CB, ‘16]
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[Wang	et	al.	PLOS	CB, ‘16]
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Evolutionarily conserved & younger genes exhibit the 
opposite internal & external PDP coefficients

Ribosomal genes have significantly larger coefficients for the internal 
than external PDPs, but signaling genes exhibit the opposite trend

[Wang	et	al.	PLOS	CB, ‘16]



Large-scale Transcriptome Mining: 
Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

• Much RNA-seq (+TF ChIP) Data 
- Comparative ENCODE – Lots of Matched 

Data 
- TCGA
- Geuvadis w/ 1000G genotypes

• Expression Clustering, Cross-
species 
- Optimization gives 16 conserved co-

expression modules

• State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers
- Decoupling expression changes into those 

from conserved vs species-specific genes
- Also, conserved genes have similar 

canonical patterns (iPDPs) in contrast to 
species specific ones (Ex of ribosomal v 
signaling genes)

• Using Logic Gates to Model of 
Transcriptome Activity
- Preponderance of OR gates in cancer v. 

cell-cycle (esp. for MYC) 

• The General 
Dilemma of Genomic Privacy
- Fundamental, inherited info that’s very private v need 

for large-scale mining for med. research
- Issues w/ current social & tech approaches: 

inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it
- Presents a tricky privacy issue since much of the 

sequencing is for general, non-individual specific 
results yet it’s tagged with individual information

- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression 

levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme 

expression levels
- Quantifying accuracy of prediction, via gap between 

best & 2nd best match

• Value of publication patterns generated by 
the data producing consortia
- Co-authorship network statistics relate to publication 

rollouts & show gradual adoption by a diverse 
community

- Key role of brokers in data dissemination
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Modeling cooperativity between 
TFs to target gene using logic gates

Input type 
(RF1, RF2)

RF1 0 0 1 1
RF2 0 1 0 1

Output T X X X X

RF1

RF2

T?

2-input-1-output logic gate

00110101…

10110101…

01110111…

X can be 0 or 1, so there are 24=16 possible 
output combinations, each of which corresponds 
to a unique 2-input-1-output logic gate

Binarized
expression

…

A regulatory triplet

RF1

RF2
T

10110101…

10110101…
00110101…

0 – gene off 
1 – gene on
after binarizing gene 
expression data*

*BoolNet, R package
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An example: selection of the best-matched logic gate

Gene 20 samples

RF1=TF 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

RF2=TF 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T=Gene 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1

0

0

0 1

0

1

0 1

1

0

0 1

1

1

0 1

RF1

RF2

T

5 0 4            1 5            0 1            4

RF1=TF 1 0 0 1 1

RF2=TF 2 0 1 0 1

T=Gene 1 0 0 0 1

AND

TF2TF1

Gene 1

Consistency score:

6/7*5/7*6/7*5/7 = 0.37

s1=(5+1)/(5+2)
=6/7

s2=(4+1)/(5+2)
=5/7

s4=(4+1)/(5+2)
=5/7

s3=(5+1)/(5+2)
=6/7

RF1

TF1
RF2

TF2

T
Gene 1

Laplace’s rule of succession
s=(# of selected output state for 
the input type + 1)
/(# of input type + 2)

Consistency score:
6/7*5/7*6/7*5/7=0.37

Wang, et al., PLoS Computational Biology, 2015
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Triplet 
ID

RF1 RF2 Common 
Target 
Gene (T)

Matched 
logic gate

1 YHR084W YBR083W YBR082C AND 

2 YKL112W YIL131C YMR198W OR 

… … … … …

39011 YOR113W YBL103C YDR042C XOR 
Nu

m
be

r o
f g

at
e-

co
ns

ist
en

t t
rip

le
ts

T=
0

AN
D

RF
1*

~R
F2 RF

1

~R
F1

*R
F2 RF

2

XO
R

O
R

NO
R

XN
O

R

~R
F2

RF
1+

~R
F2

~R
F1

~R
F1

+R
F2

NA
ND T=

1

0

200

400

600

800

RF1 RF2 Common 
Target Gene 
(T)

Matched 
logic gate

YML113W YBR083W

YER189W AND

YER190W AND

YLR463C AND

YNL337W AND

YLR467W AND

RF1 RF2 Common 
Target Gene 
(T)

Matched
logic gate

YMR037C YOR344C

YER177W NONE

YGR192C NONE

YKL060C NONE

YAL060W NONE

YDR042C NONE

RF1 RF2 Common 
Target Gene 
(T)

Matched  
logic gate

YKL015W YKL032C

YLL033W T=~RF1*RF2

YLL034C T=~RF1*RF2

YLR143W T=RF1*~RF2

YMR177W AND

RF1-RF2 pairs with preserved matched 
logic gate across targets

RF1-RF2 pairs with varied matched logic 
gate(s) across targets

RF1-RF2 pairs without matched logic gate

Yeast Cell Cycle

A B

1 1

2 2

3 34 4

RF1

TF1
RF2

TF2

T
All common gene

targets

Regulatory triplets

i symetric gates
i=1, 2, 3, 4

App. 1 – TF cooperativity in the cell cycle

Triplet 
ID
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Cancer-related TF, MYC, 
universally amplifies target expression
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c-Myc Is a Universal Amplifier
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SUMMARY

The c-Myc HLH-bZIP protein has been implicated in
physiological or pathological growth, proliferation,
apoptosis, metabolism, and differentiation at the
cellular, tissue, or organismal levels via regulation
of numerous target genes. No principle yet unifies
Myc action due partly to an incomplete inventory
and functional accounting of Myc’s targets. To
observe Myc target expression and function in a
system where Myc is temporally and physiologically
regulated, the transcriptomes and the genome-wide
distributions of Myc, RNA polymerase II, and chro-
matin modifications were compared during lympho-
cyte activation and in ES cells as well. A remarkably
simple rule emerged from this quantitative analysis:
Myc is not an on-off specifier of gene activity, but is
a nonlinear amplifier of expression, acting universally
at active genes, except for immediate early genes
that are strongly induced before Myc. This rule of
Myc action explains the vast majority of Myc biology
observed in literature.

INTRODUCTION

The c-Myc oncogene, identified three decades ago, is associ-
ated with many human cancers (Dang, 2010; Wasylishen and
Penn, 2010). Numerous chromatin and transcription regulating
factors interact with Myc (Cheng et al., 1999; Cowling and
Cole, 2006; Eilers and Eisenman, 2008; Rahl et al., 2010; Wasy-
lishen and Penn, 2010). mRNA expression and DNA-binding
studies, in vitro and in vivo, have nominated an ever increasing
number of genes as Myc targets including a core constituting
a Myc signature (Ji et al., 2011; Margolin et al., 2009; Shaffer
et al., 2006; Wasylishen and Penn, 2010). However, no single
subset of Myc targets accounts for its oncogenic activity (Berns
et al., 2000; Nikiforov et al., 2002); the diversity of Myc targets

between systems, has further confounded the explication of
discrete, linear pathway(s) for Myc-driven neoplasia.
Myc is often associated with cell activation. Typically a pulse

of Myc is induced starting from a very low baseline during
the G0–G1 transition or in response to numerous signals and
stresses (Rabbitts et al., 1985). Thereafter, in steady-state
cycling cells, c-myc output is stably maintained. In some sett-
ings, a second Myc peak ensues 12–24 hr later (Kelly et al.,
1983; Nepveu et al., 1987; Tonini et al., 1987). The relationship
between Myc targets in these primary and secondary peaks
has not been investigated. Although Myc pathology has been
extensively studied in lymphoid neoplasms, including Burkitt
lymphoma, large cell lymphoma,multiple myeloma, and plasma-
cytoma, Myc action in primary lymphocytes, has been less
studied making it difficult to compare the physiological versus
pathological Myc networks. Because most cancer lines or trans-
genic models do not recapitulate the physiologic regulation of
Myc expression (Levens, 2010), we decided to investigate Myc
function in primary lymphocytes by using a mouse line that fuses
endogenousMyc to enhanced green fluorescent protein (EGFP).
TheMyc network was then interrogated in related but physiolog-
ically distinct situations, and the profiles of global gene expres-
sion and of Myc binding to its target genes were examined.
The genome-wide patterns ofMyc recruitment, RNA polymerase
binding and chromatin modifications were overlaid to reveal the
dynamics of Myc upregulation and its relationship to lymphocyte
gene expression. These same genome-wide patterns were
assessed in ES cells to gain insight into the cell-type- and differ-
entiation-specific roles of c-Myc. Putting these data together
revealed that physiologically, Myc is not an on-off specifier of
a particular transcriptional program(s) but is a universal amplifier
of gene expression increasing output at all active promoters.
This rule predicts and explains many features of Myc biology.

RESULTS

A Model to Study Physiological Myc Function
EGFP was homologously recombined with c-myc exon 3 in
mouse ES cells (Figure S1A available online) to provide a tag

68 Cell 151, 68–79, September 28, 2012 ª2012 Elsevier Inc.

High expression of MYC is sufficient 
for high target gene expression
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Figure 5A

Restrict to RF1=MYC, giving 2,153  triplets

Wang, et al., PLoS Computational Biology, 2015
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Large-scale Transcriptome Mining: 
Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

• Much RNA-seq (+TF ChIP) Data 
- Comparative ENCODE – Lots of Matched 

Data 
- TCGA
- Geuvadis w/ 1000G genotypes

• Expression Clustering, Cross-
species 
- Optimization gives 16 conserved co-

expression modules

• State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers
- Decoupling expression changes into those 

from conserved vs species-specific genes
- Also, conserved genes have similar 

canonical patterns (iPDPs) in contrast to 
species specific ones (Ex of ribosomal v 
signaling genes)

• Using Logic Gates to Model of 
Transcriptome Activity
- Preponderance of OR gates in cancer v. 

cell-cycle (esp. for MYC) 

• The General 
Dilemma of Genomic Privacy
- Fundamental, inherited info that’s very private v need 

for large-scale mining for med. research
- Issues w/ current social & tech approaches: 

inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it
- Presents a tricky privacy issue since much of the 

sequencing is for general, non-individual specific 
results yet it’s tagged with individual information

- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression 

levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme 

expression levels
- Quantifying accuracy of prediction, via gap between 

best & 2nd best match

• Value of publication patterns generated by 
the data producing consortia
- Co-authorship network statistics relate to publication 

rollouts & show gradual adoption by a diverse 
community

- Key role of brokers in data dissemination
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The Conundrum of Genomic Privacy: Is it a Problem?

Yes
Genetic Exceptionalism : 

The Genome is very fundamental data, 
potentially very revealing about one’s identity & 
characteristics

Identification Risk: Find that someone participated 
in a study [eg Craig, Erlich]

Characterization Risk: Finding that you have a 
particular trait from studying your identified 
genome [eg Watson ApoE status]

No
Shifting	societal	foci
No	one	really	cares	

about	your genes
You might	not	care [Klitzman & Sweeney ('11), J Genet Couns

20:98l; Greenbaum & Gerstein ('09), New Sci. 
(Sep 23)  ] 
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Genomics has similar 
"Big Data" Dilemma in 

the Rest of Society

• Sharing & "peer-
production" is central to 
success of many new 
ventures, with the same 
risks as in genomics
-EG web search: Large-

scale mining essential

• We confront privacy 
risks every day we 
access the internet

• (...or is the genome 
more exceptional & 
fundamental?)

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct)]
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Tricky	Privacy	Considerations	in	Personal	Genomics

• Personal Genomic info. 
essentially meaningless 
currently but will it be in 
20 yrs? 50 yrs?
- Genomic sequence very 

revealing about one’s 
children. Is true consent 
possible?

- Once put on the web it can’t 
be taken back 

• Culture Clash:
Genomics historically has 
been a proponent of “open 
data” but not clear personal 
genomics fits this. 
- Clinical Medline has a very 

different culture.

• Ethically challenged
history of genetics 
- Ownership of the data & 

what consent means 
(Hela)
• Could your genetic data 

give rise to a product 
line? 

[D Greenbaum & M Gerstein (’08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08; 
Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]
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The Other Side of the Coin:
Why we should share

• Sharing helps speed research
- Large-scale mining of this information is 

important for medical research
- Privacy is cumbersome, particularly for big 

data
• Sharing is important for reproducible research
• Sharing is useful for education
- More fun to study a known person’s genome 

• Eg Zimmer’s Game of Genomes in STAT 
[Yale Law Roundtable (‘10). Comp. in Sci. & 
Eng. 12:8; D Greenbaum & M Gerstein (‘09). 
Am. J. Bioethics; D Greenbaum & M Gerstein 
(‘10). SF Chronicle, May 2, Page E-4; 
Greenbaum et al. PLOS CB (‘11)]
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The Dilemma

• The individual (harmed?) v the collective (benefits)
- But do sick patients care about their privacy?

• How to balance risks v rewards - Quantification
- What is acceptable risk? What is acceptable data leakage? 

Can we quantify leakage?
• Ex: photos of eye color

- Cost Benefit Analysis: how helpful is identifiable data in 
genomic research v. potential harm from a breach?

[Economist, 15 Aug ‘15]
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Current Social & Technical Solutions

• Closed Data Approach
- Consents
- “Protected” distribution via dbGAP
- Local computes on secure computer

• Issues with Closed Data
- Non-uniformity of consents & paperwork

• Different international norms, leading to 
confusion

- Encryption & computer security creates 
burdensome requirements on data 
sharing & large scale analysis

- Many schemes get “hacked”

• Open Data
- Genomic "test pilots” 

(ala PGP)?
• Sports stars & 

celebrities?

- Some public data & 
data donation is 
helpful but is this a 
realistic solution for 
an unbiased sample 
of ~1M

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]
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Strawman Hybrid Social & Tech Proposed Solution?

• Fundamentally, researchers 
have to keep genetic secrets.
- Need for an (international) 

legal framework
- Genetic Licensure & training 

for individuals 
(similar to medical license, 
drivers license)

• Technology to make things 
easier
- Cloud computing & enclaves 

(eg solution of Genomics 
England)

• Technological barriers 
shouldn't create a social 
incentive for “hacking”

• Quantifying Leakage & 
allowing a small amounts of it 

• Careful separation & coupling 
of private & public data 
- Lightweight, freely accessible 

secondary datasets coupled 
to underlying variants 

- Selection of stub & "test pilot" 
datasets for benchmarking

- Develop programs on public 
stubs on your laptop, then move 
the program to the cloud for 
private production run

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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What is a linking attack? Case of Netflix Prize

User (ID) Movie (ID) Date of Rating Rating
[1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

100 million ratings
500,000 users

200 movie ratings/user
5,000 users/movie rating

Anonymized	Netflix	Prize	Training	Dataset	
made	available	to	contestants

Movie	ratings	database
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases

• IMDB users are public

• NetFLIX and IMdB moves are public
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Linking Attacks: Case of Netflix Prize

User (ID) Movie (ID) Date of Grade Grade [1,2,3,4,5]

NTFLX-0 NTFLX-19 10/12/2008 1

NTFLX-1 NTFLX-116 4/23/2009 3

NTFLX-2 NTFLX-92 5/27/2010 2

NTFLX-1 NTFLX-666 6/6/2016 5

… … … …

… … … …

User (ID) Movie (ID) Date of Grade Grade [0-10]

IMDB-0 IMDB-173 4/20/2009 5

IMDB-1 IMDB-18 10/18/2008 0

IMDB-2 IMDB-341 5/27/2010 -

… … … …

… … … …

… … … …

Names available for many users!

• Many users are shared
• The grades of same users are correlated
• A user grades one movie around the same date in two databases



Large-scale Transcriptome Mining: 
Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

• Much RNA-seq (+TF ChIP) Data 
- Comparative ENCODE – Lots of Matched 

Data 
- TCGA
- Geuvadis w/ 1000G genotypes

• Expression Clustering, Cross-
species 
- Optimization gives 16 conserved co-

expression modules

• State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers
- Decoupling expression changes into those 

from conserved vs species-specific genes
- Also, conserved genes have similar 

canonical patterns (iPDPs) in contrast to 
species specific ones (Ex of ribosomal v 
signaling genes)

• Using Logic Gates to Model of 
Transcriptome Activity
- Preponderance of OR gates in cancer v. 

cell-cycle (esp. for MYC) 

• The General 
Dilemma of Genomic Privacy
- Fundamental, inherited info that’s very private v need 

for large-scale mining for med. research
- Issues w/ current social & tech approaches: 

inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it
- Presents a tricky privacy issue since much of the 

sequencing is for general, non-individual specific 
results yet it’s tagged with individual information

- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression 

levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme 

expression levels
- Quantifying accuracy of prediction, via gap between 

best & 2nd best match

• Value of publication patterns generated by 
the data producing consortia
- Co-authorship network statistics relate to publication 

rollouts & show gradual adoption by a diverse 
community

- Key role of brokers in data dissemination
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Light-weight formats

Mapping coordinates 
without variants (MRF)

Reads 
(linked via ID, 
10X larger than 
mapping coord.)

• Some lightweight format clearly separate public & 
private info., aiding exchange

• Files become much smaller
• Distinction between formats to compute on and those 

to archive with – become sharper with big data

[Bioinformatics 27: 281]
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eQTL Mapping 
Using RNA-Seq

Data

[Biometrics 68(1) 1–11]

• eQTLs are genomic loci 
that contribute to 
variation in mRNA 
expression levels

• eQTLs provide insights 
on transcription 
regulation, and the 
molecular basis of 
phenotypic outcomes

• eQTL mapping can be 
done with RNA-Seq data
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Information Content and Predictability

[Harmanci et al. Nat. Meth.  2016]

• Higher frequency: Lower ICI
• Lower frequency: Higher ICI
• Additive for multiple variants

• Higher cond. entropy: Lower 
predictability

• Lower cond. entropy: Higher 
predictability

• Additive for multiple eQTLs
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Per eQTL and ICI Cumulative 
Leakage versus Genotype 

Predictability
Colors by absolute correlation

Ab
so

lu
te

 C
or

re
la

tio
n

[Harmanciet al. Nat. Meth. (in revision)]
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Cumulative Leakage versus Joint Predictability

[Harmanciet al. Nat. Meth. (in revision)]

Less #
Vulnerable

More #
Vulnerable
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Linking Attack Scenario

[Harmanciet al. Nat. Meth. (in revision)]
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Levels of Expression-Genotype Model 
Simplifications for Genotype Prediction

[Harmanci et al. Nat. Meth. (16)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking AttackHigh

Sensitivity

Low
Sensitivity

High Number
Of eQTLs

Low Number
Of eQTLs

[Harmanci et al. Nat. Meth. (16)]
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Success in Linking Attack 
with Extremity based Genotype Prediction

200 individuals eQTL Discovery 
200 individuals in Linking Attack

200 individuals eQTL Discovery 
100,200 individuals in Linking Attack

[Harmanci et al. Nat. Meth. (16)]
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Sensitivity vs PPV for 
Linkings selected per 
1st distance gap, 𝑑",$

Decreasing 𝑑",$

[Harmanci et al. Nat. Meth. (16)]

• Say
- Attacker arbitrarily selects 

eQTLs with strength >10
- 70% of the individuals are 

linked correctly…but which 
70%?

• Is there a way ahead of time to 
differentiate linkings based on 
their reliability?

• 1st Distance Gap:
- Difference between the 

genotype distance of 
2nd best & 1st best 
matching individuals

- 𝑑",$ = 𝑑&'()*+ − 𝑑-./&0



Large-scale Transcriptome Mining: 
Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

• Much RNA-seq (+TF ChIP) Data 
- Comparative ENCODE – Lots of Matched 

Data 
- TCGA
- Geuvadis w/ 1000G genotypes

• Expression Clustering, Cross-
species 
- Optimization gives 16 conserved co-

expression modules

• State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers
- Decoupling expression changes into those 

from conserved vs species-specific genes
- Also, conserved genes have similar 

canonical patterns (iPDPs) in contrast to 
species specific ones (Ex of ribosomal v 
signaling genes)

• Using Logic Gates to Model of 
Transcriptome Activity
- Preponderance of OR gates in cancer v. 

cell-cycle (esp. for MYC) 

• The General 
Dilemma of Genomic Privacy
- Fundamental, inherited info that’s very private v need 

for large-scale mining for med. research
- Issues w/ current social & tech approaches: 

inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it
- Presents a tricky privacy issue since much of the 

sequencing is for general, non-individual specific 
results yet it’s tagged with individual information

- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression 

levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme 

expression levels
- Quantifying accuracy of prediction, via gap between 

best & 2nd best match

• Value of publication patterns generated by 
the data producing consortia
- Co-authorship network statistics relate to publication 

rollouts & show gradual adoption by a diverse 
community

- Key role of brokers in data dissemination
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Genome
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

ENCODE
Production

modENCODE
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The Human
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Worm
Genome

ENCODE
Pilot

ENCODE
Production

modENCODE

Comparative
ENCODE
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

1000 Genomes
Pilot

ENCODE
Production

1000 Genomes
Production

modENCODE

Comparative
ENCODE
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The Human
Genome Project

Worm
Genome

ENCODE
Pilot

Comparative
ENCODE

Epigenome
Roadmap

1000 Genomes
Pilot

GTEx

ENCODE
Production

1000 Genomes
Production

modENCODE
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With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE 
data but were not supported by ENCODE funding & 
558 consortium papers supported by ENCODE funding
(https://www.encodeproject.org/search/?type=Publication for up-to-date query)  
Then identified 1,786 ENCODE members & 8,263 non-members .
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co-authorship

[Wang	et	al.,	TIG	(’16)]2014

Co-authorship Network of 
ENCODE members 

& Data Users



6
9

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

co-authorship

[Wang	et	al.,	TIG	(’16)]2014

Co-authorship Network of 
ENCODE members 

& Data Users

#	neighbors:	 ==>	

#	
ne

ig
hb

or
s:
		n
on

-E
N
CO

DE
==
>	



7
0

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

co-authorship

[Wang	et	al.,	TIG	(’16)]2014

Co-authorship Network of 
ENCODE members 

& Data Users
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2014
co-authorship [Wang	et	al.,	TIG	(’16)]

Dynamics of co-
authorship network
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co-authorship [Wang	et	al.,	TIG	(’16)]

Dynamics of co-
authorship network
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co-authorship [Wang	et	al.,	TIG	(’16)]

Dynamics of co-
authorship network
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Similar findings in terms of slow growth trends & broker 
scientists in the modENCODE consortium as for ENCODE



Large-scale Transcriptome Mining: 
Clustering, Dynamic Modelling & Logic-gate Analysis while Protecting Individual Privacy

• Much RNA-seq (+TF ChIP) Data 
- Comparative ENCODE – Lots of Matched 

Data 
- TCGA
- Geuvadis w/ 1000G genotypes

• Expression Clustering, Cross-
species 
- Optimization gives 16 conserved co-

expression modules

• State Space Models
of Gene Expression
- Using dimensionality reduction to help 

determine internal & external drivers
- Decoupling expression changes into those 

from conserved vs species-specific genes
- Also, conserved genes have similar 

canonical patterns (iPDPs) in contrast to 
species specific ones (Ex of ribosomal v 
signaling genes)

• Using Logic Gates to Model of 
Transcriptome Activity
- Preponderance of OR gates in cancer v. 

cell-cycle (esp. for MYC) 

• The General 
Dilemma of Genomic Privacy
- Fundamental, inherited info that’s very private v need 

for large-scale mining for med. research
- Issues w/ current social & tech approaches: 

inconsistencies & burdensome security

• RNA-seq: How to Publicly Share it
- Presents a tricky privacy issue since much of the 

sequencing is for general, non-individual specific 
results yet it’s tagged with individual information

- Removing SNVs in reads w/ MRF
- Quantifying & removing variant info from expression 

levels + eQTLs using ICI & predictability
- Instantiating a practical linking attack using extreme 

expression levels
- Quantifying accuracy of prediction, via gap between 

best & 2nd best match

• Value of publication patterns generated by 
the data producing consortia
- Co-authorship network statistics relate to publication 

rollouts & show gradual adoption by a diverse 
community

- Key role of brokers in data dissemination
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DREISS.gersteinlab.org - D Wang, F He, S Maslov

papers.gersteinlab.org/subject/privacy - D Greenbaum
PrivaSeq.gersteinlab.org - A Harmanci

Loregic.gersteinlab.org - D Wang, KK Yan, C Sisu, C Cheng, J Rozowsky, W Meyerson

github.com/gersteinlab/OrthoClust - K Yan, D Wang, J Rozowsky, H Zheng, C Cheng

Publication patterns [“encode authors”] - D Wang, KK Yan, J Rozowsky, E Pan
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2016. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt 


