Large-scale Transcriptome Mining:
 Building Integrative Regulatory Models, while Protecting Individual Privacy

Mark Gerstein, Yale

Slides freely downloadable from Lectures.GersteinLab.org \& "tweetable" (via @markgerstein)

> Modeling for RNAseq data across many samples \& individuals... while still protecting individual privacy

The Cancer Genome Atlas Network Nature 487, 330-337 (2012) doi:10.1038/nature11252

* Recent advent of much large scale RNA-seq (\& other functional genomics data) following on DNA sequencing
* Often this is of human subjects \& produced by large consortia (eg TCGA, PCAWG, GTEx) and needs to be protected
* Useful to build tools \& approaches that interact with these data
- Logical model

- Continuous model

$$
\frac{d x_{1}}{d t}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

- Probabilistic model
- Gene

Regulatory Mechanisms

The Human Genome Project

ENCODE
Pilot

nature

 oo, mama ure
初 the
 genome

ENCODE
Comparative

Epigenome
Roadmap

nature

2-sided nature of functional genomics data: Analysis can be very General/Public or Individual/Private

- General quantifications related to overall aspects of a condition \& are not tied to an individual's genotype - ie what genes go up in cancer
- However, data is derived from an individual \& tagged with an individual's genotype
- Other calculations aim to use genotype \& specific aspects of the quantification to derive general relations related to sequence variation \& gene expression
- Some calculations and data derive finding very specific to the variants in a particular individual

Comparative ENCODE Functional Genomics Resource

(EncodeProject.org/comparative)

- Broad sampling of conditions across transcriptomes \& regulomes for human, worm \& fly
- embryo \& ES cells
- developmental time course (worm-fly)
- In total: ~3000 datasets (~130B reads)

\square Chromatin features OXR $\quad \begin{aligned} & \text { Regulatory-factor } \\ & \text { binding }\end{aligned}$ $\xrightarrow[O C O]{\text { NNA transcripts }}$

Fly
Human

Time-course gene expression data of worm \& fly development

Representative Expression, Genotype, eQTL Datasets

- Genotypes are available from the 1000 Genomes Project
- mRNA sequencing for 462 individuals
- Publicly available quantification for protein coding genes
- Approximately 3,000 cis-eQTL (FDR<0.05)

SEUVA민́․

- Transcriptome analysis data
- Comparative ENCODE Lots of Matched Data
- 1000G+Geuvadis for privacy
- Expression Clustering,

Cross-species

- Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
- State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers
- Decoupling expression changes into those driven by worm-fly conserved genes vs speciesspecific ones.
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- The General Dilemma of Genomic Privacy
- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social \& tech approaches: inconsistencies \& burdensome security
- Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks \& Closely Coupled priv.-public datasets)
- Details on Relevant Hacks: Genomic, Computer Security, \& Netfix
- RNA-seq: How to Publicly Share Some of it
- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying \& removing variant info from expression levels +
eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best \& 2nd best match

Building Integrative Regulatory Mode's, while Protecting Individual Privacy

- Transcriptome analysis data
- Comparative ENCODE Lots of Matched Data
- 1000G+Geuvadis for privacy
- Expression Clustering,

Cross-species

- Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
- State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers
- Decoupling expression changes into those driven by worm-fly conserved genes vs speciesspecific ones.
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- The General Dilemma of Genomic Privacy
- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social \& tech approaches: inconsistencies \& burdensome security
- Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks \& Closely Coupled priv.-public datasets)
- Details on Relevant Hacks: Genomic, Computer Security, \& Netfix
- RNA-seq: How to Publicly Share Some of it
- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying \& removing variant info from expression levels +
eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best \& 2nd best match

Expression clustering: revisiting an ancient problem

co-expressed genes
responsible for the same
function in a species

Expression clustering: revisiting an ancient problem

Network modularity

Dolphin social network

Network modularity

$Q \approx 0$

Network modularity

A toy example [orthoclust]

Species A

2 Every node i is assigned with a spin value σ_{i} (labels of modules: $1,2, \ldots q$).

Species B

——_orthologs
reward an orthologous pair
with the same value

$$
H=\sum_{\substack{\sum_{i, j}\left(-W_{i j}^{(A)}+p_{i j}^{(A)}\right) \delta_{\sigma_{i} \sigma_{j}}+\sum_{i^{\prime}, j^{\prime}}\left(-W_{i^{\prime} j^{\prime}}^{(B)}+p_{i^{\prime} j^{\prime}}^{(B)}\right) \delta_{\sigma_{i^{\prime} \sigma_{j^{\prime}}}}-K}}^{\begin{array}{l}
\text { reward a co-expressed } \\
\text { pair with the same value }
\end{array}} \begin{aligned}
& \text { punish a non co-expressed } \\
& \text { pair with the same value }
\end{aligned}
$$

Favorableness = "Modularity" in species A + "Modularity" in species B

+ consistency betw. A \& B

Cross-species clusters for worm and fly

Building Integrative Regulatory Mode's, while Protecting Individual Privacy

- Transcriptome analysis data
- Comparative ENCODE Lots of Matched Data
- 1000G+Geuvadis for privacy
- Expression Clustering,

Cross-species

- Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
- State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers
- Decoupling expression changes into those driven by worm-fly conserved genes vs speciesspecific ones.
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- The General Dilemma of Genomic Privacy
- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social \& tech approaches: inconsistencies \& burdensome security
- Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks \& Closely Coupled priv.-public datasets)
- Details on Relevant Hacks: Genomic, Computer Security, \& Netfix
- RNA-seq: How to Publicly Share Some of it
- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying \& removing variant info from expression levels +
eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best \& 2nd best match

Internal \& external gene regulatory networks

Interested system	Internal regulatory network	External regulatory network
Cross-species conserved genes	Conserved transcriptional factors (TFs)	Non-conserved TFs
Protein-coding genes	TFs	micro-RNAs
Individual's protein coding genes	Wild-type TFs	Somatic mutated TFs
Protein-coding genes in brain	Commonly expressed TFs	Brain-specific expressed TFs
Protein-coding genes in development	House-keeping TFs	Developmental TFs

State-space model for internal and external gene regulatory networks

Decomposition of internal and external-related dynamic components

$$
\begin{aligned}
& X_{t}=A X_{t-1}+B U_{t-1} \\
& =A\left(A X_{t-2}+B U_{t-2}\right)+B U_{t-1} \\
& =A^{2} X_{t-2}+A B U_{t-2}+B U_{t-1} \\
& =A^{3} X_{t-3}+A^{2} B U_{t-3}+A B U_{t-2}+B U_{t-1} \\
& =\cdots
\end{aligned}
$$

$$
=A^{t-1} X_{1}+A^{t-2} B U_{1}+A^{t-3} B U_{2}+\cdots+A B U_{t-2}+B U_{t-1}
$$

$X_{t}^{I N T}$: Internally driven $X_{t}^{I N T E R}$: dynamic components driven by dynamic component

* Subdivision of the rest of the terms $\sum_{k=1}^{t-2} A^{k} B U_{t-1-k}+B U_{t-1}$ is completely arbitrary

Effective state space model for meta-genes

Not enough data to estimate state space model for genes (e.g., 25 time points per gene to estimate 4 million elements of A or B for 2000 genes)

$$
X_{t+1}=A X_{t}+B U_{t}
$$

Dimensionality reduction from genes to meta-genes (e.g., SVD)

Effective state space model for meta-genes (e.g., 250 time points to estimate 50 matrix elements if 5 meta-genes)

$$
\tilde{X}_{t+1}=\tilde{A} \tilde{X}_{t}+\tilde{B} \tilde{U}_{t}
$$

Eigenvalues of Ã determine internal dynamics

First-order linear matrix difference equation

Analytic solution

$$
\begin{aligned}
& \text { A general first-order linear matrix difference equation, } Q_{t+1}=C Q_{t} \text { is } \\
& Q_{i}=C^{t} Q_{0}=\left(H E H^{-1}\right)^{t} Q_{0}=H E^{t} H^{-1} Q_{0}=H E^{t} S \text {, where the columns of the matrix } H \text { are } \\
& \text { eigenvectors of } C \text {, the diagonal elements of the diagonal matrix } E \text { are eigenvalues of } C \\
& \text { such that } C H=H E \text {, and the vector } S_{=}=H^{-1} Q_{0} \text {. Then, if we rewrite } Q_{t} \text { by a linear } \\
& \text { combination of the time exponential of eigenvalues of } C \text {, we have that } Q_{t}=H E^{t} S= \\
& \sum_{i=1}^{m_{c}} \alpha_{i}^{t} s_{i} H_{i}=\sum_{i=1}^{m_{c}} \alpha_{i}^{t} K_{i} \text {, where } m_{c} \text { is the total number of eigenvalues of } C, \alpha_{i} \text { is the } i^{\text {th }} \\
& \text { eigenvalue of } C, s_{i} \text { is the } i^{\text {th }} \text { element of } S, H_{i} \text { is the } i^{\text {th }} \text { eigenvector of } C \text { (i.e., the } i^{\text {th }} \text { column } \\
& \text { of } H \text {), and } K_{i}=s_{i} H_{i} \text { is the coefficient vector of } Q_{t} \text { over the } t^{\text {th }} \text { time exponential of } \alpha_{i} \text {. }
\end{aligned}
$$

$\tilde{X}_{t}^{\text {INT }}=\sum_{p=1}^{M_{1}} \lambda_{p}^{t} \tilde{K}_{p}$; i.e., the internally driven component of $i^{\text {th }}$ meta-gene's expression across all time points, $\left[\begin{array}{llll}\tilde{X}_{1}^{\mathrm{INT}}(i) & \tilde{X}_{2}^{\mathrm{INT}}(i) & \ldots & \tilde{X}_{T}^{\mathrm{INT}}(i)\end{array}\right]=\sum_{p=1}^{M_{1}} \tilde{K}_{p}(i) \underbrace{\left[\begin{array}{llll}\lambda_{p}^{1} & \lambda_{p}^{2} & \ldots & \lambda_{p}^{T}\end{array}\right]}_{p^{\mathrm{th}} \text { iPDP }}$, a linear summation of the time exponential of eigenvalues of \tilde{A}

Canonical temporal expression trajectories from effective state space model

Canonical temporal expression trajectories (e.g., degradation, growth, damped oscillation, etc.)

Are gene regulations among orthologs conserved across species?

Are gene regulatory networks among orthologs conserved across species?
\longleftarrow Regulation among orthologs (internal)
\longleftarrow Regulation from species-specific factors (external)
Orthologous genes (orthologs)

- Species-specific transcription factors

To what degree can't ortholog expression levels be predicted due to species-specific regulation

Are there any conserved regulatory networks between worm and fly during embryonic development?

- Not enough time samples!

| Dataset | Internal
 Group | External Group | Developmental stages | \# of unknown
 parameters in A and | \# of available
 time samples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | B | |

If A_{w} and A_{f} have similarities, crossspecies conserved regulatory networks in embryonic development

Embryonic stem cells (ESCs)

A. Gene state-space model

E. Gene's internal (INT) and external (EXT) driven expression dynamics composed of PDPs

Wang et al. PLOS CB, '16]

Flowchart

C. Meta-gene state-space model
B. Dimensionality Reduction

D. Internal/External Principal Dynamic Patterns (PDPs)

$\longleftarrow \longleftarrow$ Internal regulation among internal genes/meta-genes by $\boldsymbol{A} / \tilde{A}$
 internal genes/meta-genes in Group X by B / \tilde{B}

External genes/meta-genes

Orthologs have similar internal but different external dynamic patterns during embryonic development

Fly's effective state space model

Projection back to gene space to get gene coefficients on iPDPs

Internal component of meta-genes: $\tilde{X}_{t+1}^{\mathrm{INT}}=\tilde{A} \tilde{X}_{t}^{\mathrm{INT}}$ =>
$\tilde{X}_{t}^{\text {INT }}=\sum_{p=1}^{M_{1}} \lambda_{p}^{t} \tilde{K}_{p}$; i.e., the internally driven component of $i^{\text {th }}$ meta-gene's expression across all time points, $\left[\begin{array}{llll}\tilde{X}_{1}^{\mathrm{INT}}(i) & \tilde{X}_{2}^{\mathrm{INT}}(i) & \ldots & \tilde{X}_{T}^{\mathrm{INT}}(i)\end{array}\right]=$ $\sum_{p=1}^{M_{1}} \tilde{K}_{p}(i) \underbrace{\left[\begin{array}{llll}\lambda_{p}^{1} & \lambda_{p}^{2} & \ldots & \lambda_{p}^{T}\end{array}\right]}_{p^{\mathrm{th}} \mathrm{iPDP}}$

Linear transformation between genes and meta-genes

$X_{t}^{\mathrm{INT}}=W_{X} \tilde{X}_{t}^{\mathrm{INT}}=\sum_{p=1}^{M_{1}} \lambda_{p}^{t} \underbrace{W_{X} \tilde{K}_{p}}_{C_{p}}=\sum_{p=1}^{M_{1}} \lambda_{p}^{t} C_{p}$; i.e.,
the internally driven component of $i^{\text {ih }}$ gene's expression across all time points, $\left[\begin{array}{lllll}X_{1}^{\mathrm{INT}}(i) & X_{2}^{\mathrm{INT}}(i) & \ldots & X_{T}^{\mathrm{INT}}(i)\end{array}\right]=$
$\sum_{p=1}^{M_{1}} C_{p}(i) \underbrace{\left[\begin{array}{llll}\lambda_{p}^{1} & \lambda_{p}^{2} & \ldots & \lambda_{p}^{T}\end{array}\right]}_{p^{\mathrm{th}}{ }^{\text {iPDP }}}$

Individual gene x 's coefficients on iPDPs

Orthologs have correlated iPDP coefficients

Evolutionarily conserved and younger genes exhibit the opposite internal and external PDP coefficients

Ribosomal genes have significantly larger coefficients for the internal than external PDPs, but signaling genes exhibit the opposite trend

Building Integrative Regulatory Mode's, while Protecting Individual Privacy

- Transcriptome analysis data
- Comparative ENCODE Lots of Matched Data
- 1000G+Geuvadis for privacy
- Expression Clustering,

Cross-species

- Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
- State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers
- Decoupling expression changes into those driven by worm-fly conserved genes vs speciesspecific ones.
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- The General Dilemma of Genomic Privacy
- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social \& tech approaches: inconsistencies \& burdensome security
- Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks \& Closely Coupled priv.-public datasets)
- Details on Relevant Hacks: Genomic, Computer Security, \& Netfix
- RNA-seq: How to Publicly Share Some of it
- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying \& removing variant info from expression levels +
eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best \& 2nd best match

The Conundrum of Genomic Privacy: Is it a Problem?

Yes

Genetic Exceptionalism :
The Genome is very fundamental data, potentially very revealing about one's identity \& characteristics

Identification Risk: Find that someone participated in a study [eg Craig, Erlich]
Characterization Risk: Finding that you have a particular trait from studying your identified genome [eg Watson ApoE status]

No

Shifting societal foci
No one really cares about your genes
You might not care
[Klitzman \& Sweeney ('11), J Genet Couns 20:98I; Greenbaum \& Gerstein ('09), New Sci. (Sep 23)]

Genomics has similar "Big Data" Dilemma in the Rest of Society

- Sharing \& "peerproduction" is central to success of many new ventures, with the same risks as in genomics
- EG web search: Largescale mining essential

- We confront privacy risks every day we access the internet
- (...or is the genome more exceptional \& fundamental?)

Tricky Privacy Considerations in Personal Genomics

- Personal Genomic info. essentially meaningless currently but will it be in 20 yrs? 50 yrs?
- Genomic sequence very revealing about one's children. Is true consent possible?
- Once put on the web it can't be taken back
- Culture Clash: Genomics historically has been a proponent of "open data" but not clear personal genomics fits this.
- Clinical Medline has a very different culture.
- Ethically challenged history of genetics
- Ownership of the data \& what consent means (Hela)
- Could your genetic data give rise to a product line?

The Other Side of the Coin: Why we should share

- Sharing helps speed research
- Large-scale mining of this information is important for medical research
- Privacy is cumbersome, particularly for big data
- Sharing is important for reproducible research
- Sharing is useful for education
- More fun to study a known person's genome
- Eg Zimmer's Game of Genomes in STAT

[Yale Law Roundtable ('10). Comp. in Sci. \& Eng. 12:8; D Greenbaum \& M Gerstein ('09). Am. J. Bioethics; D Greenbaum \& M Gerstein ('10). SF Chronicle, May 2, Page E-4; Greenbaum et al. PLOS CB ('11)]

The Dilemma

[Economist, 15 Aug '15]

- The individual (harmed?) v the collective (benefits)
- But do sick patients care about their privacy?
- How to balance risks v rewards - Quantification
- What is acceptable risk? What is acceptable data leakage? Can we quantify leakage?
- Ex: photos of eye color
- Cost Benefit Analysis: how helpful is identifiable data in genomic research v. potential harm from a breach?

Current Social \& Technical Solutions

- Closed Data Approach
- Consents
- "Protected" distribution via dbGAP
- Local computes on secure computer
- Issues with Closed Data
- Non-uniformity of consents \& paperwork
- Different international norms, leading to confusion
- Encryption \& computer security creates burdensome requirements on data sharing \& large scale analysis
- Many schemes get "hacked"
- Open Data
- Genomic "test pilots" (ala PGP)?
- Sports stars \& celebrities?
- Some public data \& data donation is helpful but is this a realistic solution for an unbiased sample of $\sim 1 \mathrm{M}$

Strawman Hybrid Social \& Tech Proposed Solution?

- Fundamentally, researchers have to keep genetic secrets.
- Need for an (international) legal framework
- Genetic Licensure \& training for individuals (similar to medical license, drivers license)
- Technology to make things easier
- Cloud computing \& enclaves (eg solution of Genomics England)
- Technological barriers shouldn't create a social incentive for "hacking"
- Quantifying Leakage \& allowing a small amounts of it
- Careful separation \& coupling of private \& public data
- Lightweight, freely accessible secondary datasets coupled to underlying variants
- Selection of stub \& "test pilot" datasets for benchmarking
- Develop programs on public stubs on your laptop, then move the program to the cloud for private production run

Difficulty in Securing Computers \& Data

[Smith et al ('05), Genome Bio]

Genomic Privacy Hacks, Mostly Focusing on Identification

- Early genomic studies were based on small cohorts
- Individuals give consent to participate but request anonymity
- HAPMAP, PGP, 1000 Genomes...
- Focus on hiding the participation of individuals
- Attacks aimed at detecting whether an individual with known genotypes participated a study
- "Detection of genomes in a mixture" (Homer et al 2008, Im et al 2012)
- As more people are genotyped, more individuals are in large private genomic databases
- Detection of an individual is irrelevant, as their participation is already known
- Current EX: "An individual's genomic/phenotypic data is most certainly stored in their hospital"
- Future: >1M people's health information is part of a NIH/PMI or NHS databases
- Identification attacks now focus on pinpointing individuals by crossreferencing large seemingly independent datasets
- Illustrates that a leaked/hacker/stolen dataset, even when anonymized, can leak information
- Sweeney et al 2013, Gymrek et al 2013

What is a linking attack? Case of Netflix Prize
 Robust De-anonymization of Large Datasets (How to Break Anonymity of the Netflix Prize Dataset)

Arvind Narayanan and Vitaly Shmatikov

The University of Texas at Austin

What is a linking attack? Case of Netflix Prize

Movie ratings database

NETFLIX

Anonymized Netflix Prize Training Dataset made available to contestants

User (ID)	Movie (ID)	Date of Rating	$\begin{gathered} \text { Rating } \\ {[1,2,3,4,5]} \end{gathered}$
NTFLX-0	NTFLX-19	10/12/2008	1
NTFLX-1	NTFLX-116	4/23/2009	3
NTFLX-2	NTFLX-92	5/27/2010	2
NTFLX-1	NTFLX-666	6/6/2016	5
\ldots	\ldots	\ldots	\cdots
\cdots	\ldots	\ldots	\cdots

Linking Attacks: Case of Netflix Prize

IETETLIM

Names available for many users!

User (ID)	Movie (ID)	Date of Grade	Grade [0-10]
IMDB-0	IMDB-173	$4 / 20 / 2009$	5
IMDB-1	IMDB-18	$10 / 18 / 2008$	0
IMDB-2	IMDB-341	$5 / 27 / 2010$	-

\ldots	\ldots	\ldots	\ldots

Linking Attacks: Case of Netflix Prize

Linking Attacks: Case of Netflix Prize

Building Integrative Regulatory Mode's, while Protecting Individual Privacy

- Transcriptome analysis data
- Comparative ENCODE Lots of Matched Data
- 1000G+Geuvadis for privacy
- Expression Clustering,

Cross-species

- Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
- State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers
- Decoupling expression changes into those driven by worm-fly conserved genes vs speciesspecific ones.
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- The General Dilemma of Genomic Privacy
- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social \& tech approaches: inconsistencies \& burdensome security
- Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks \& Closely Coupled priv.-public datasets)
- Details on Relevant Hacks: Genomic, Computer Security, \& Netfix
- RNA-seq: How to Publicly Share Some of it
- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying \& removing variant info from expression levels +
eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best \& 2nd best match

RNA-seq

RNA-seq uses next-generation sequencing technologies to reveal RNA presence and quantity within a biological sample.

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT GGAGGCTGGAGTTGGGGACGTATGCGGCATAG TACCGATCGAGTCGACTGTAAACGTAGGCATA ATTCTGACTGGTGTCATGCTGATGTACTTAAA

Reads (fasta)

- Quality scores (fastq)
- Mapping (BAM)
- Contain variant information in transcribed regions

Quantitative information from RNA-seq signal: average signals at exon level (RPKMs)

Reads $=>$ Signal

Light-weight formats

- Some lightweight format clearly separate public \& private info., aiding exchange
- Files become much smaller
- Distinction between formats to compute on and those to archive with - become sharper with big data

Mapping coordinates without variants (MRF)

Reads (linked via ID, 10X larger than mapping coord.)

MRF
 Examples

Reference based compression
(ie CRAM)
is similar but it stores actual variant beyond just position of alignment block

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd

$$
\operatorname{chr} 9:+: 431: 480: 1: 50 \mid \operatorname{chr} 9:+: 945: 994: 1: 50
$$

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd

Information Content and Predictability

$$
\left\lvert\, C /\left(\begin{array}{c}
\text { Individual has variant } \\
\text { genotypes } g_{1}, g_{2}, \ldots, g_{n} \\
\text { for variants } V_{1}, V_{1}, \ldots, V_{n}
\end{array}\right)=\log \left(\begin{array}{c}
\frac{1}{\text { Frequency of }} \\
V_{1} \text { genotype } \\
g_{1}=2
\end{array}\right)+\log \left(\begin{array}{c}
\frac{1}{\text { Frequency of }} \\
V_{2} \text { genotype } \\
g_{2}=1
\end{array}\right)+\ldots+\log \left(\begin{array}{c}
\frac{1}{\text { Frequency of }} \\
V_{n} \text { genotype } \\
g_{n}=2
\end{array}\right)\right.
$$

- Higher frequency: Lower ICI
- Lower frequency: Higher ICI
- Additive for multiple variants

- Higher cond. entropy: Lower predictability
- Lower cond. entropy: Higher predictability
- Additive for multiple eQTLs

Per eQTL and ICI Cumulative Leakage versus Genotype Predictability

Colors by absolute correlation

Cumulative Leakage versus Joint Predictability

More \# Vulnerable

Less \# Vulnerable

Linking Attack Scenario

Steps in Instantiation of a (Mock) Linking Attack

Levels of Expression-Genotype Model Simplifications

Linking Attack with Extremity based Genotype Prediction

Linking Attack with Extremity based Genotype Prediction

200 individuals eQTL Discovery 200 individuals in Linking Attack

200 individuals eQTL Discovery 100,200 individuals in Linking Attack

Which 70\%?

- Attacker arbitrarily selects eQTLs with association strength above 10
- 70\% of the individuals are linked correctly
- But which 70% ?
- Attacker arbitrarily selects eQTLs with
association strength above 10
- 708fers the individuals are linked correctly
- But which 70\%?
- Is there a way to dirierentiate between linkings
to distinguish their "sliability?
- First Distance Gap:
- Difference betw cen the genotype distance of second best matching and best matching individuals
$-d_{1,2}=d_{\text {second }}-d_{\text {first }}$
- Is there a way to differentiate between linkings to distinguish their reliability?
- First Distance Gap:
- Difference between the genotype distance of second best matching and best matching individuals
$-d_{1,2}=d_{\text {second }}-d_{f \text { irst }}$

Sensitivity vs PPV for Linkings selected per first distance gap, $d_{1,2}$

Relatives are also vulnerable (30 CEU Trios)

Small Data Leakage from just Gene Expression Data:
 4 eQTL-SNP genotypes

Example: Vulnerable sample variants, expressions

- Variant $0(1,6)$
- Variant $1(0,2)$
- Variant $2(1,3)$
- Variant $3(0,2)$

Expression levels are outliers and are predictive of the genotype!

Building Integrative Regulatory Mode's, while Protecting Individual Privacy

- Transcriptome analysis data
- Comparative ENCODE Lots of Matched Data
- 1000G+Geuvadis for privacy
- Expression Clustering,

Cross-species

- Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
- State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers
- Decoupling expression changes into those driven by worm-fly conserved genes vs speciesspecific ones.
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- The General Dilemma of Genomic Privacy
- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social \& tech approaches: inconsistencies \& burdensome security
- Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks \& Closely Coupled priv.-public datasets)
- Details on Relevant Hacks: Genomic, Computer Security, \& Netfix
- RNA-seq: How to Publicly Share Some of it
- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying \& removing variant info from expression levels +
eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best \& 2nd best match
- Transcriptome analysis data
- Comparative ENCODE Lots of Matched Data
- 1000G+Geuvadis for privacy
- Expression Clustering,

Cross-species

- Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
- State Space Models of Gene Expression
- Using dimensionality reduction to help determine internal \& external drivers
- Decoupling expression changes into those driven by worm-fly conserved genes vs speciesspecific ones.
- Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)
- The General Dilemma of Genomic Privacy
- Fundamental, inherited info that's very private v need for large-scale mining for med. research
- Issues w/ current social \& tech approaches: inconsistencies \& burdensome security
- Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks \& Closely Coupled priv.-public datasets)
- Details on Relevant Hacks: Genomic, Computer Security, \& Netfix
- RNA-seq: How to Publicly Share Some of it
- Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it's tagged with individual information
- Removing SNVs in reads w/ MRF
- Quantifying \& removing variant info from expression levels +
eQTLs using ICI \& predictability
- Instantiating a practical linking attack using extreme expression levels
- Quantifying accuracy of prediction, via gap between best \& 2nd best match

DREISS.gersteinlab.org - D Wang, f He, S Maslov
Acknowledgements
papers.gersteinlab.org/subject/privacy - d Greenbaum

PrivaSeq.gersteinlab.org - A Harmanci

Extra

Info about content in this slide pack

- General PERMISSIONS
- This Presentation is copyright Mark Gerstein, Yale University, 2016.
- Please read permissions statement at www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides \& images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
- Paper references in the talk were mostly from Papers.GersteinLab.org.
- PHOTOS \& IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info .
- In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt

