Large-scale Transcriptome Mining:
Building Integrative Regulatory Models,
while Protecting Individual Privacy

Mark Gerstein, Yale

Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @markgerstein)

See last slide for more info.
Modeling for RNA-seq data across many samples & individuals... while still protecting individual privacy

* Recent advent of much large scale RNA-seq (& other functional genomics data) following on DNA sequencing
* Often this is of human subjects & produced by large consortia (eg TCGA, PCAWG, GTEx) and needs to be protected
* Useful to build tools & approaches that interact with these data

- **Logical model**

- **Continuous model**

- **Probabilistic model**

Istrail & Davidson, PNAS, ’04 Nicolas Le Novère, Nature Reviews Genetics, ’15
2-sided nature of functional genomics data: Analysis can be very General/Public or Individual/Private

- General quantifications related to overall aspects of a condition & are not tied to an individual’s genotype - ie what genes go up in cancer
 - However, data is derived from an individual & tagged with an individual’s genotype

- Other calculations aim to use genotype & specific aspects of the quantification to derive general relations related to sequence variation & gene expression

- Some calculations and data derive finding very specific to the variants in a particular individual
Comparative ENCODE Functional Genomics Resource

(EncodeProject.org/comparative)

- Broad sampling of conditions across transcriptomes & regulomes for human, worm & fly
 - embryo & ES cells
 - developmental time course (worm-fly)
- In total: ~3000 datasets (~130B reads)
Time-course gene expression data of worm & fly development

<table>
<thead>
<tr>
<th>Organism</th>
<th>Major developmental stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>worm (C. elegans)</td>
<td>33 stages: 0, 0.5, 1, …, 12 hours, L1, L2, L3, L4, …, Young Adults, Adults</td>
</tr>
<tr>
<td>fly (D. mel.)</td>
<td>30 stages: 0, 2, 4, 6, 8,…, 20, 22 hours, L1-L4, Pupaes, Adults</td>
</tr>
</tbody>
</table>
Representative Expression, Genotype, eQTL Datasets

- Genotypes are available from the 1000 Genomes Project
- mRNA sequencing for 462 individuals
 - Publicly available quantification for protein coding genes
- Approximately 3,000 cis-eQTL (FDR<0.05)
Large-scale Transcriptome Mining:
Building Integrative Regulatory Models, while Protecting Individual Privacy

• Transcriptome analysis data
 – Comparative ENCODE – Lots of Matched Data
 – 1000G+Geuvadis for privacy

• Expression Clustering, Cross-species
 – Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)

• State Space Models of Gene Expression
 – Using dimensionality reduction to help determine internal & external drivers
 – Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones.
 – Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• The General Dilemma of Genomic Privacy
 – Fundamental, inherited info that’s very private v need for large-scale mining for med. research
 – Issues w/ current social & tech approaches: inconsistencies & burdensome security
 – Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks & Closely Coupled priv.-public datasets)
 – Details on Relevant Hacks: Genomic, Computer Security, & Netflix

• RNA-seq: How to Publicly Share Some of it
 – Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it’s tagged with individual information
 – Removing SNVs in reads w/ MRF
 – Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
 – Instantiating a practical linking attack using extreme expression levels
 – Quantifying accuracy of prediction, via gap between best & 2nd best match
Large-scale Transcriptome Mining: Building Integrative Regulatory Models, while Protecting Individual Privacy

- Transcriptome analysis **data**
 - Comparative ENCODE – Lots of Matched Data
 - 1000G+Geuvadis for privacy

- **Expression Clustering**, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)

- **State Space Models** of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones.
 - Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- The General **Dilemma of Genomic Privacy**
 - Fundamental, inherited info that’s very private v need for large-scale mining for med. research
 - Issues w/ current social & tech approaches: inconsistencies & burdensome security
 - Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves, Quantifying Leaks & Closely Coupled priv.-public datasets)
 - Details on Relevant Hacks: Genomic, Computer Security, & Netflix

- **RNA-seq: How to Publicly Share Some of it**
 - Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it’s tagged with individual information
 - Removing SNVs in reads w/ MRF
 - Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
 - Instantiating a practical linking attack using extreme expression levels
 - Quantifying accuracy of prediction, via gap between best & 2nd best match
Expression clustering: revisiting an ancient problem

Species A

Clustering algorithm

do co-expressed genes responsible for the same function in a species

Species B

Clustering algorithm

do co-expressed genes responsible for the same function in a species

two independent sets of modules

Eisen MB et al. PNAS 1998
Langfelder P et al. BMC Bioinfo. 2008
Tamayo P et al. PNAS 1999
Kluger Y et al. Genome Res. 2003
Expression clustering: revisiting an ancient problem

Species A

Orthologous pairs between species

Species B

A novel unified framework to integrate co-expression data across species

OrthoClust

cross species modules

Yan et al. Genome Biol. 2014
Network modularity

\[Q = \frac{1}{2m} \sum_{i,j} \left(W_{ij} - \frac{k_i k_j}{2m} \right) \delta_{\sigma_i \sigma_j} \]

- **Dolphin social network**
- **Political books**

adjacency matrix

- number of edges
- degree of node \(i \)
- degree of node \(j \)
- expected number of edges between \(i \) and \(j \)
- whether or not \(i, j \) are in the same module

Network modularity

\[Q = \frac{1}{2m} \sum_{i,j} \left(W_{ij} - \frac{k_i k_j}{2m} \right) \delta_{\sigma_i \sigma_j} \]

- \(Q \approx 0 \) indicates the network is modular.

- \(Q \) is the modularity score.

- \(W_{ij} \) is the adjacency matrix.

- \(k_i \) and \(k_j \) are the degrees of nodes \(i \) and \(j \), respectively.

- \(\delta_{\sigma_i \sigma_j} \) is 1 if \(i \) and \(j \) are in the same module, 0 otherwise.

- \(m \) is the total number of edges.

- The score measures the difference between the actual number of edges and the expected number under a random assignment.
Network modularity

\[Q = \frac{1}{2m} \sum_{i,j} \left(W_{ij} - \frac{k_i k_j}{2m} \right) \delta_{\sigma_i \sigma_j} \]

- **Number of edges**: \(\sum_{i,j} \)
- **Adjacency matrix**: \(W_{ij} \)
- **Degree of node i**: \(k_i \)
- **Expected number of edges between i and j**: \(\frac{k_i k_j}{2m} \)
- **Optimization problem**: \(Q = Q_{\text{max}} \)
- **Whether or not i, j are in the same module**: \(\delta_{\sigma_i \sigma_j} \)
A toy example [orthoclust]

Every node i is assigned with a spin value σ_i (labels of modules: 1, 2, ..., q).

![Graph showing nodes and edges for species A and B]

\[
H = \sum_{i,j} \left(-W_{ij}^{(A)} + p_{ij}^{(A)} \right) \delta_{\sigma_i \sigma_j} + \sum_{i',j'} \left(-W_{i'j'}^{(B)} + p_{i'j'}^{(B)} \right) \delta_{\sigma_{i'} \sigma_{j'}} - \kappa \sum_{(i,j) \in Ortho} \delta_{\sigma_i \sigma_j}
\]

Favorableness = "Modularity" in species A + "Modularity" in species B + consistency betw. A & B
Use Potts model (generalized Ising model) to simultaneously cluster co-expressed genes within an organism as well as orthologs shared between organisms. Here, the ground state configuration correspond to three modules: 1, 2, 4.
Cross-species clusters for worm and fly

Fly genes (13623) Worm genes (20377)

GO terms of conserved modules
- nucleobase-containing compound metabolism
- nucleic acid metabolism
- cellular aromatic compound metabolism
- biological regulation
- metabolism
- cellular process
- developmental process
- macromolecule metabolism
- nitrogen compound metabolism
- RNA metabolism
- RNA biosynthesis
- transcription initiation, DNA-dependent
- macromolecule biosynthesis
- RNA processing
- mRNA processing
- RNA splicing
- mRNA processing
- cell division
- cell cycle process
- regulation of cell cycle process
- positive regulation of cellular process
- regulation of biological process

GO terms of specific modules
- worm specific
- dauer entry
- fly specific
- chitin activities

Yan KK et al. Genome Biology. 2014
Large-scale Transcriptome Mining: Building Integrative Regulatory Models, while Protecting Individual Privacy

• Transcriptome analysis **data**
 - Comparative ENCODE – Lots of Matched Data
 - 1000G+Geuvadis for privacy

• **Expression Clustering**, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)

• **State Space Models** of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones.
 - Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• The General Dilemma of Genomic Privacy
 - Fundamental, inherited info that’s very private v need for large-scale mining for med. research
 - Issues w/ current social & tech approaches: inconsistencies & burdensome security
 - Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks & Closely Coupled priv.-public datasets)
 - Details on Relevant Hacks: Genomic, Computer Security, & Netflix

• **RNA-seq: How to Publicly Share Some of it**
 - Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it’s tagged with individual information
 - Removing SNVs in reads w/ MRF
 - Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
 - Instantiating a practical linking attack using extreme expression levels
 - Quantifying accuracy of prediction, via gap between best & 2nd best match
Internal & external gene regulatory networks

How to identify gene expression dynamics driven by internal/external regulation?

<table>
<thead>
<tr>
<th>Interested system</th>
<th>Internal regulatory network</th>
<th>External regulatory network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-species conserved genes</td>
<td>Conserved transcriptional factors (TFs)</td>
<td>Non-conserved TFs</td>
</tr>
<tr>
<td>Protein-coding genes</td>
<td>TFs</td>
<td>micro-RNAs</td>
</tr>
<tr>
<td>Individual’s protein coding genes</td>
<td>Wild-type TFs</td>
<td>Somatic mutated TFs</td>
</tr>
<tr>
<td>Protein-coding genes in brain</td>
<td>Commonly expressed TFs</td>
<td>Brain-specific expressed TFs</td>
</tr>
<tr>
<td>Protein-coding genes in development</td>
<td>House-keeping TFs</td>
<td>Developmental TFs</td>
</tr>
</tbody>
</table>

[Wang et al. PLOS CB (in revision, ‘15)]
State-space model for internal and external gene regulatory networks

How to identify gene expression dynamics driven by internal/external regulation?

\[X_{t+1} = A X_t + B U_t \]

State: Gene expression vector of Group \(X \) at time \(t+1 \)

\(A_{ij} \) captures temporal casual influence from Gene \(i \) to Gene \(j \) in internal group

State: Gene expression vector of internal group at time \(t \)

\(B_{kl} \) captures temporal casual influence from external factor \(k \) to Gene \(l \) in internal group

Control: Gene expression vector of external factors at time \(t \)

[Wang et al. PLOS CB, '16]
Decomposition of internal and external-related dynamic components

\[X_t = AX_{t-1} + BU_{t-1} \]
\[= A(AX_{t-2} + BU_{t-2}) + BU_{t-1} \]
\[= A^2X_{t-2} + ABU_{t-2} + BU_{t-1} \]
\[= A^3X_{t-3} + A^2BU_{t-3} + ABU_{t-2} + BU_{t-1} \]
\[= \ldots \]
\[= A^{t-1}X_1 + A^{t-2}BU_1 + A^{t-3}BU_2 + \ldots + ABU_{t-2} + BU_{t-1} \]

\[= \underbrace{A^{t-1}X_1}_{X_t^{INT}} + \underbrace{\sum_{k=1}^{t-2} A^kBU_{t-1-k}}_{X_t^{INTER}} + \underbrace{BU_{t-1}}_{X_t^{EXT}} \]

\[X_t^{INT} \]: Internally driven dynamic component
\[X_t^{INTER} \]: dynamic components driven by interactions between internal and external terms
\[X_t^{EXT} \]: externally driven dynamic component

* Subdivision of the rest of the terms \(\sum_{k=1}^{t-2} A^kBU_{t-1-k} + BU_{t-1} \) is completely arbitrary

[Wang et al. PLOS CB, '16]
Effective state space model for meta-genes

Not enough data to estimate state space model for genes
(e.g., 25 time points per gene to estimate 4 million elements of A or B for 2000 genes)

$$X_{t+1} = AX_t + BU_t$$

Dimensionality reduction from genes to meta-genes (e.g., SVD)

Effective state space model for meta-genes
(e.g., 250 time points to estimate 50 matrix elements if 5 meta-genes)

$$\tilde{X}_{t+1} = \tilde{A}\tilde{X}_t + \tilde{B}\tilde{U}_t$$

[Wang et al. PLOS CB, '16]
Eigenvalues of \tilde{A} determine internal dynamics

First-order linear matrix difference equation

A general first-order linear matrix difference equation, $Q_{i+1} = CQ_i$ is

$$Q_t = CQ_0 = (HEH^{-1})^t Q_0 = HEH^{-1} Q_0 = HE S,$$

where the columns of the matrix H are eigenvectors of C, the diagonal elements of the diagonal matrix E are eigenvalues of C such that $CH = HE$, and the vector $S = H^{-1} Q_0$. Then, if we rewrite Q_t by a linear combination of the time exponential of eigenvalues of C, we have that $Q_t = HE S = \sum_{i=1}^{m_c} \alpha_i^t s_i H_i = \sum_{i=1}^{m_c} \alpha_i^t K_i$, where m_c is the total number of eigenvalues of C, α_i is the ith eigenvalue of C, s_i is the ith element of S, H_i is the ith eigenvector of C (i.e., the ith column of H), and $K_i = s_i H_i$ is the coefficient vector of Q_t over the ith time exponential of α_i.

$$\tilde{X}_{i+1}^{\text{INT}} = \tilde{A} \tilde{X}_i^{\text{INT}}; \text{ i.e., the internally driven component of } \alpha^t \text{ meta-gene’s expression across all time points, } \begin{bmatrix} \tilde{X}_1^{\text{INT}}(i) & \tilde{X}_2^{\text{INT}}(i) & \ldots & \tilde{X}_T^{\text{INT}}(i) \end{bmatrix} = \sum_{p=1}^{M_1} R_p(i) \begin{bmatrix} \lambda_1^p & \lambda_2^p & \ldots & \lambda_T^p \end{bmatrix},$$

a linear summation of the time exponential of eigenvalues of \tilde{A}.
Canonical temporal expression trajectories from effective state space model

p^{th} internal principal dynamic pattern (iPDP): $[\lambda_p^1, \lambda_p^2, \ldots, \lambda_p^T]$, where λ_p is p^{th} eigenvalue of \tilde{A}.

Internal driven dynamics

Canonical temporal expression trajectories (e.g., degradation, growth, damped oscillation, etc.)

[Wang et al. PLOS CB, '16]
Are gene regulations among orthologs conserved across species?

Species A
Species B

orthologs
co-expressed

Regulation among orthologs (internal)
Regulation from species-specific factors (external)

Orthologous genes (orthologs)
Species-specific transcription factors

To what degree can’t ortholog expression levels be predicted due to species-specific regulation

[Wang et al. PLOS CB, ’16]
Are there any conserved regulatory networks between worm and fly during embryonic development?

If A_w and A_f have similarities, cross-species conserved regulatory networks in embryonic development

Embryonic stem cells (ESCs)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Internal Group</th>
<th>External Group</th>
<th>Developmental stages</th>
<th># of unknown parameters in A and B</th>
<th># of available time samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>worm ($C. elegans$)</td>
<td>$N_1=3147$ worm-fly orthologs (incl. ortholog TFs)</td>
<td>$N_2=509$ worm-specific transcription factors</td>
<td>$T=25$ time points: 0, 0.5, 1, \ldots, 12 hours</td>
<td>$31473147+314750*25=11.5M$</td>
<td>$314725+50925=91400$</td>
</tr>
<tr>
<td>fly ($D. mel.$)</td>
<td>$N_2=442$ fly-specific transcription factors</td>
<td>$T=12$ time points: 0, 2, 4, 6, 8, \ldots, 20, 22 hours</td>
<td>$31473147+314744*25=11.3M$</td>
<td>$314725+44225=89725$</td>
<td></td>
</tr>
</tbody>
</table>
[Wang et al. PLOS CB, ’16]

Flowchart

A. Gene state-space model

\[X_{t+1} = AX_t + BU_t \]

B. Dimensionality Reduction

\[\tilde{X} \]

\[\tilde{U} \]

C. Meta-gene state-space model

\[\tilde{X}_{t+1} = \tilde{A} \tilde{X}_t + \tilde{B} \tilde{U}_t \]

D. Internal/External Principal Dynamic Patterns (PDPs)

\[[\lambda_p^1, \lambda_p^2, ..., \lambda_p^T] \]

\[\tilde{u}_i(p) \]

\[\tilde{u}_j(p) \]

\[\tilde{u}_k(p) \]

E. Gene’s internal (INT) and external (EXT) driven expression dynamics composed of PDPs

\[x_{\text{INT}} = c_1 + c_2 \]

\[x_{\text{EXT}} = d_1 + d_2 \]

\[+c_3 \]

\[+c_4 \]

\[+d_3 \]

\[+d_4 \]

Internal regulation among internal genes/meta-genes by \[\tilde{A}/\tilde{A} \]

External regulation from external genes/meta-genes to internal genes/meta-genes in Group X by \[\tilde{B}/\tilde{B} \]

Internal genes/meta-genes

External genes/meta-genes
Orthologs have similar internal but different external dynamic patterns during embryonic development.

\[
\tilde{X}_{t+1} = \tilde{A}\tilde{X}_t + \tilde{B}\tilde{U}_t
\]

Worm’s effective state space model

\[
X_{t+1} = AX_t + BU_t
\]

Fly’s effective state space model

iPDPs: time exponentials of \(\tilde{A} \) eigenvalues in worm

Similar iPDPs

ePDPs: \(\tilde{U} \) in worm

Different ePDPs

iPDPs: time exponentials of \(\tilde{A} \) eigenvalues in fly

[Wang et al. PLOS CB, ’16]
Projection back to gene space to get gene coefficients on iPDPs

Internal component of meta-genes: $\tilde{X}_{t+1}^{\text{INT}} = \tilde{A}\tilde{X}_t^{\text{INT}}$ =>

$\tilde{X}_t^{\text{INT}} = \sum_{p=1}^{M_1} \lambda^*_p \tilde{K}_p$; i.e., the internally driven component of i^{th} meta-gene’s expression across all time points, $[\tilde{X}_1^{\text{INT}}(i) \ \tilde{X}_2^{\text{INT}}(i) \ ... \ \tilde{X}_T^{\text{INT}}(i)] = \sum_{p=1}^{M_1} \tilde{K}_p(i) \begin{bmatrix} \lambda^1_p \\ \lambda^2_p \\ \vdots \\ \lambda^T_p \end{bmatrix}_{p^{\text{th}}}$

* $V(i)$ represents i^{th} element of vector V

Linear transformation between genes and meta-genes

$X_t^{\text{INT}} = W_X \tilde{X}_t^{\text{INT}} = \sum_{p=1}^{M_1} \lambda^t_p W_X \tilde{K}_p = \sum_{p=1}^{M_1} \lambda^t_p C_p$; i.e.,

the internally driven component of i^{th} gene’s expression across all time points, $[X_1^{\text{INT}}(i) \ X_2^{\text{INT}}(i) \ ... \ X_T^{\text{INT}}(i)] = \sum_{p=1}^{M_1} C_p(i) \begin{bmatrix} \lambda^1_p \\ \lambda^2_p \\ \vdots \\ \lambda^T_p \end{bmatrix}_{p^{\text{th}}}$

Individual gene x’s coefficients on iPDPs
Orthologs have correlated iPDP coefficients

[Wang et al. PLOS CB, '16]
Evolutionarily conserved and younger genes exhibit the opposite internal and external PDP coefficients.

Ribosomal genes have significantly larger coefficients for the internal than external PDPs, but signaling genes exhibit the opposite trend.

[Wang et al. *PLOS CB*, '16]
Large-scale Transcriptome Mining: Building Integrative Regulatory Models, while Protecting Individual Privacy

- **Transcriptome analysis data**
 - Comparative ENCODE – Lots of Matched Data
 - 1000G+Geuvadis for privacy

- **Expression Clustering**
 - Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)

- **State Space Models** of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones.
 - Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- **The General Dilemma of Genomic Privacy**
 - Fundamental, inherited info that’s very private v need for large-scale mining for med. research
 - Issues w/ current social & tech approaches: inconsistencies & burdensome security
 - Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks & Closely Coupled priv.-public datasets)
 - Details on Relevant Hacks: Genomic, Computer Security, & Netflix

- **RNA-seq: How to Publicly Share Some of it**
 - Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it’s tagged with individual information
 - Removing SNVs in reads w/ MRF
 - Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
 - Instantiating a practical linking attack using extreme expression levels
 - Quantifying accuracy of prediction, via gap between best & 2nd best match
The Conundrum of Genomic Privacy: Is it a Problem?

Yes

Genetic Exceptionalism:
The Genome is very fundamental data, potentially very revealing about one’s identity & characteristics

Identification Risk: Find that someone participated in a study [eg Craig, Erlich]

Characterization Risk: Finding that you have a particular trait from studying your identified genome [eg Watson ApoE status]

No

Shifting societal foci

No one really cares about your genes

You might not care

[Klitzman & Sweeney ('11), J Genet Couns 20:98I; Greenbaum & Gerstein ('09), New Sci. (Sep 23)]
Genomics has similar "Big Data" Dilemma in the Rest of Society

- Sharing & "peer-production" is central to success of many new ventures, with the same risks as in genomics
 - EG web search: Large-scale mining essential

- We confront privacy risks every day we access the internet
- (...or is the genome more exceptional & fundamental?)

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct)]
Tricky Privacy Considerations in Personal Genomics

• Personal Genomic info. essentially meaningless currently but will it be in 20 yrs? 50 yrs?
 – Genomic sequence very revealing about one’s children. Is true consent possible?
 – Once put on the web it can’t be taken back

• Ethically challenged history of genetics
 – Ownership of the data & what consent means (Hela)
 • Could your genetic data give rise to a product line?

• Culture Clash:
 Genomics historically has been a proponent of “open data” but not clear personal genomics fits this.
 – Clinical Medline has a very different culture.

[D Greenbaum & M Gerstein (’08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. ’08 ; SF Chronicle, 2 Nov. ’08; Greenbaum et al. PLOS CB (’11); Greenbaum & Gerstein (’13), The Scientist; Photo from NY Times]
The Other Side of the Coin: Why we should share

• Sharing helps **speed research**
 – Large-scale mining of this information is important for medical research
 – Privacy is cumbersome, particularly for big data

• Sharing is important for **reproducible research**

• Sharing is useful for **education**
 – More fun to study a known person’s genome
 • Eg Zimmer’s Game of Genomes in STAT

The Dilemma

• The individual (harmed?) v the collective (benefits)
 – But do sick patients care about their privacy?
• How to balance risks v rewards - Quantification
 – What is acceptable risk? What is acceptable data leakage? Can we quantify leakage?
 • Ex: photos of eye color
 – Cost Benefit Analysis: how helpful is identifiable data in genomic research v. potential harm from a breach?
Current Social & Technical Solutions

• **Closed Data** Approach
 - Consents
 - “Protected” distribution via dbGAP
 - Local computes on secure computer

• **Issues with Closed Data**
 - Non-uniformity of consents & paperwork
 • Different international norms, leading to confusion
 - Encryption & computer security creates burdensome requirements on data sharing & large scale analysis
 - Many schemes get “hacked”

• **Open Data**
 - Genomic "test pilots" (ala PGP)?
 • Sports stars & celebrities?
 - Some public data & data donation is helpful but is this a realistic solution for an unbiased sample of ~1M

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]
Strawman Hybrid Social & Tech Proposed Solution?

- Fundamentally, researchers have to keep genetic secrets.
 - Need for an (international) legal framework
 - Genetic Licensure & training for individuals (similar to medical license, drivers license)
- Technology to make things easier
 - Cloud computing & enclaves (eg solution of Genomics England)
- Technological barriers shouldn't create a social incentive for “hacking”

- Quantifying Leakage & allowing a small amounts of it
- Careful separation & coupling of private & public data
 - Lightweight, freely accessible secondary datasets coupled to underlying variants
 - Selection of stub & "test pilot" datasets for benchmarking
 - Develop programs on public stubs on your laptop, then move the program to the cloud for private production run

Difficulty in Securing Computers & Data

[Smith et al ('05), Genome Bio]
Genomic Privacy Hacks, Mostly Focusing on Identification

- Early genomic studies were based on small cohorts
 - Individuals give consent to participate but request anonymity
 - HAPMAP, PGP, 1000 Genomes…
 - Focus on hiding the participation of individuals
 - Attacks aimed at detecting whether an individual with known genotypes participated a study
 - “Detection of genomes in a mixture” (Homer et al 2008, Im et al 2012)

- As more people are genotyped, more individuals are in large private genomic databases
 - Detection of an individual is irrelevant, as their participation is already known
 - Current EX: “An individual’s genomic/phenotypic data is most certainly stored in their hospital”
 - Future: >1M people’s health information is part of a NIH/PMI or NHS databases

- Identification attacks now focus on pinpointing individuals by cross-referencing large seemingly independent datasets
 - Illustrates that a leaked/hacker/stolen dataset, even when anonymized, can leak information
 - Sweeney et al 2013, Gymrek et al 2013

Gymrek et al, "Identifying Personal Genomes by Surname Inference" (2013)
Homer et al, "Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays.” (2008)
Im et al, “On Sharing Quantitative Trait GWAS Results in an Era of Multiple-omics Data and the Limits of Genomic Privacy” (2012)
Sweeney et al, "Identifying Participants in the Personal Genome Project by Name" (2013)
What is a linking attack? Case of Netflix Prize

Robust De-anonymization of Large Datasets
(How to Break Anonymity of the Netflix Prize Dataset)

Arvind Narayanan and Vitaly Shmatikov

The University of Texas at Austin

1. Very large datasets
2. A lot of users have a Netflix and an IMDb account
3. A user rates similar scores to a movie in Netflix and IMDb
4. A user rates a particular movie around the same date in Netflix and IMDb
What is a linking attack? Case of Netflix Prize

Movie ratings database

100 million ratings
500,000 users
200 movie ratings/user
5,000 users/movie rating

Anonymized Netflix Prize Training Dataset made available to contestants

<table>
<thead>
<tr>
<th>User (ID)</th>
<th>Movie (ID)</th>
<th>Date of Rating</th>
<th>Rating [1,2,3,4,5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTFLX-0</td>
<td>NTFLX-19</td>
<td>10/12/2008</td>
<td>1</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-116</td>
<td>4/23/2009</td>
<td>3</td>
</tr>
<tr>
<td>NTFLX-2</td>
<td>NTFLX-92</td>
<td>5/27/2010</td>
<td>2</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-666</td>
<td>6/6/2016</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Linking Attacks: Case of Netflix Prize

<table>
<thead>
<tr>
<th>User (ID)</th>
<th>Movie (ID)</th>
<th>Date of Grade</th>
<th>Grade [1,2,3,4,5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTFLX-0</td>
<td>NTFLX-19</td>
<td>10/12/2008</td>
<td>1</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-116</td>
<td>4/23/2009</td>
<td>3</td>
</tr>
<tr>
<td>NTFLX-2</td>
<td>NTFLX-92</td>
<td>5/27/2010</td>
<td>2</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-666</td>
<td>6/6/2016</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

IMDB

<table>
<thead>
<tr>
<th>User (ID)</th>
<th>Movie (ID)</th>
<th>Date of Grade</th>
<th>Grade [0-10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDB-0</td>
<td>IMDB-173</td>
<td>4/20/2009</td>
<td>5</td>
</tr>
<tr>
<td>IMDB-1</td>
<td>IMDB-18</td>
<td>10/18/2008</td>
<td>0</td>
</tr>
<tr>
<td>IMDB-2</td>
<td>IMDB-341</td>
<td>5/27/2010</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Names available for many users!

- Many users are shared
- The grades of same users are correlated
- A user grades one movie around the same date in two databases
Linking Attacks: Case of Netflix Prize

Netflix Example

<table>
<thead>
<tr>
<th>User (ID)</th>
<th>Movie (ID)</th>
<th>Date of Grade</th>
<th>Grade [1,2,3,4,5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTFLX-0</td>
<td>NTFLX-19</td>
<td>10/12/2008</td>
<td>1</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-116</td>
<td>4/23/2009</td>
<td>3</td>
</tr>
<tr>
<td>NTFLX-2</td>
<td>NTFLX-92</td>
<td>5/27/2010</td>
<td>2</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-666</td>
<td>6/6/2016</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

IMDB Example

<table>
<thead>
<tr>
<th>User (ID)</th>
<th>Movie (ID)</th>
<th>Date of Grade</th>
<th>Grade [0-10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDB-0</td>
<td>IMDB-173</td>
<td>4/20/2009</td>
<td>5</td>
</tr>
<tr>
<td>IMDB-1</td>
<td>IMDB-18</td>
<td>10/18/2008</td>
<td>0</td>
</tr>
<tr>
<td>IMDB-2</td>
<td>IMDB-341</td>
<td>5/27/2010</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Many users are shared
- The grades of same users are correlated
- A user grades one movie around the same date in two databases
- IMDB users are public
- NetFLIX and IMDb moves are public

Names available for many users!
Linking Attacks: Case of Netflix Prize

Netflix vs. IMDb

<table>
<thead>
<tr>
<th>User (ID)</th>
<th>Movie (ID)</th>
<th>Date of Grade</th>
<th>Grade [1,2,3,4,5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTFLX-0</td>
<td>NTFLX-19</td>
<td>10/12/2008</td>
<td>1</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-116</td>
<td>4/23/2009</td>
<td>3</td>
</tr>
<tr>
<td>NTFLX-2</td>
<td>NTFLX-92</td>
<td>5/27/2010</td>
<td>2</td>
</tr>
<tr>
<td>NTFLX-1</td>
<td>NTFLX-666</td>
<td>6/6/2016</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User (ID)</th>
<th>Movie (ID)</th>
<th>Date of Grade</th>
<th>Grade [0-10]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMDB-0</td>
<td>IMDB-173</td>
<td>4/20/2009</td>
<td>5</td>
</tr>
<tr>
<td>IMDB-1</td>
<td>IMDB-18</td>
<td>10/18/2008</td>
<td>0</td>
</tr>
<tr>
<td>IMDB-2</td>
<td>IMDB-341</td>
<td>5/27/2010</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Names available for many users!

- Many users are shared
- The grades of same users are correlated
- A user grades one movie around the same date in two databases
<table>
<thead>
<tr>
<th>Large-scale Transcriptome Mining: Building Integrative Regulatory Models, while Protecting Individual Privacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcriptome analysis data</td>
</tr>
<tr>
<td>• Comparative ENCODE – Lots of Matched Data</td>
</tr>
<tr>
<td>• 1000G+Geuvadis for privacy</td>
</tr>
<tr>
<td>Expression Clustering, Cross-species</td>
</tr>
<tr>
<td>• Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)</td>
</tr>
<tr>
<td>State Space Models of Gene Expression</td>
</tr>
<tr>
<td>• Using dimensionality reduction to help determine internal & external drivers</td>
</tr>
<tr>
<td>• Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones.</td>
</tr>
<tr>
<td>• Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)</td>
</tr>
<tr>
<td>The General Dilemma of Genomic Privacy</td>
</tr>
<tr>
<td>• Fundamental, inherited info that’s very private v need for large-scale mining for med. research</td>
</tr>
<tr>
<td>• Issues w/ current social & tech approaches: inconsistencies & burdensome security</td>
</tr>
<tr>
<td>• Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks & Closely Coupled priv.-public datasets)</td>
</tr>
<tr>
<td>• Details on Relevant Hacks: Genomic, Computer Security, & Netflix</td>
</tr>
<tr>
<td>RNA-seq: How to Publicly Share Some of it</td>
</tr>
<tr>
<td>• Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it’s tagged with individual information</td>
</tr>
<tr>
<td>• Removing SNVs in reads w/ MRF</td>
</tr>
<tr>
<td>• Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability</td>
</tr>
<tr>
<td>• Instantiating a practical linking attack using extreme expression levels</td>
</tr>
<tr>
<td>• Quantifying accuracy of prediction, via gap between best & 2nd best match</td>
</tr>
</tbody>
</table>
RNA-seq

RNA-seq uses next-generation sequencing technologies to reveal RNA presence and quantity within a biological sample.

ATACAAGCAAGTATAAAGTTTGTATGCCGTCTT
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG
TACCGATCGAGTCGACTGTAAACGTAGGCATA
ATTCTGACTGGTGCTATGCTGATGTACTTAAA

Reads (fasta)
- Quality scores (fastq)
- Mapping (BAM)
- Contain variant information in transcribed regions

Quantitative information from RNA-seq signal: average signals at exon level (RPKMs)
Light-weight formats

- Some lightweight format clearly separate public & private info., aiding exchange
- Files become much smaller
- Distinction between formats to compute on and those to archive with – become sharper with big data

Anonymization (Optional)

<table>
<thead>
<tr>
<th>Public</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlignmentBlocks</td>
<td>ID</td>
</tr>
<tr>
<td>chr1:++:201:250:1:50 1</td>
<td>ID</td>
</tr>
<tr>
<td>chr5:--:561:510:1:50 2</td>
<td>Sequences</td>
</tr>
<tr>
<td>chr3:+:724:773:1:50 3</td>
<td>1 GTCGTGTCTGTATCCA...</td>
</tr>
<tr>
<td>...</td>
<td>2 ATGGCTCGTTGGGATT...</td>
</tr>
<tr>
<td>...</td>
<td>3 CTCTGGTCTGTGTACCC...</td>
</tr>
</tbody>
</table>

Mapping coordinates without variants (MRF)

Reads (linked via ID, 10X larger than mapping coord.)

[Bioinformatics 27: 281]
MRF Examples

Reference based compression (ie CRAM) is similar but it stores actual variant beyond just position of alignment block.

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd

Reference based compression (ie CRAM) is similar but it stores actual variant beyond just position of alignment block.

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd

[Habegger et al., Bioinformatics ('11)]
eQTL Mapping Using RNA-Seq Data

- eQTLs are genomic loci that contribute to variation in mRNA expression levels
- eQTLs provide insights on transcription regulation, and the molecular basis of phenotypic outcomes
- eQTL mapping can be done with RNA-Seq data
Information Content and Predictability

\[ICI = \log \left(\frac{1}{\text{Frequency of } V_1 \text{ genotype } g_1 = 2} \right) + \log \left(\frac{1}{\text{Frequency of } V_2 \text{ genotype } g_2 = 1} \right) + \ldots + \log \left(\frac{1}{\text{Frequency of } V_n \text{ genotype } g_n = 2} \right) \]

- Higher frequency: Lower ICI
- Lower frequency: Higher ICI
- Additive for multiple variants

Higher cond. entropy: Lower predictability
Lower cond. entropy: Higher predictability
Additive for multiple eQTLs
Per eQTL and ICI Cumulative Leakage versus Genotype Predictability

Colors by absolute correlation

[Harmanci et al. Nat. Meth. (in revision)]
Cumulative Leakage versus Joint Predictability

[Graph showing cumulative leakage versus joint predictability with curves for different numbers of eQTLs (Best 5 eQTLs, Best 4 eQTLs, Best 3 eQTLs, Best 2 eQTLs, Best eQTL) and comparisons between real and shuffled data.]
Linking Attack Scenario

Phenotype dataset (Public)

<table>
<thead>
<tr>
<th>Phenotype ID</th>
<th>HIV Status</th>
<th>Phenotype 1</th>
<th>Phenotype 2</th>
<th>Phenotype q</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID-1</td>
<td>HIV+</td>
<td>0.1</td>
<td>-2.7</td>
<td>...</td>
</tr>
<tr>
<td>PID-2</td>
<td>HIV-</td>
<td>0.5</td>
<td>8.6</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>PID-n</td>
<td>HIV-</td>
<td>-0.2</td>
<td>5.4</td>
<td>...</td>
</tr>
</tbody>
</table>

Phenotype-Genotype correlation dataset

Genotype dataset (Stolen/Hacked/Queried)

<table>
<thead>
<tr>
<th>Genotype ID</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant q</th>
</tr>
</thead>
<tbody>
<tr>
<td>GID-1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>GID-2</td>
<td>2</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>GID-m</td>
<td>1</td>
<td>2</td>
<td>...</td>
</tr>
</tbody>
</table>

Genotype prediction

Predicted variant genotypes

<table>
<thead>
<tr>
<th>Phenotype ID</th>
<th>HIV Status</th>
<th>Predicted variant</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant q</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID-1</td>
<td>HIV+</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td>PID-2</td>
<td>HIV-</td>
<td>2</td>
<td>2</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>PID-n</td>
<td>HIV-</td>
<td>0</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Genotype comparison and matching

Predicted/Matched genotypes

<table>
<thead>
<tr>
<th>Genotype ID</th>
<th>Phenotype ID</th>
<th>HIV Status</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant q</th>
</tr>
</thead>
<tbody>
<tr>
<td>GID-1</td>
<td>PID-8</td>
<td>HIV+</td>
<td>0/0</td>
<td>1/1</td>
<td>...</td>
</tr>
<tr>
<td>GID-2</td>
<td>PID-3</td>
<td>HIV-</td>
<td>2/2</td>
<td>1/1</td>
<td>...</td>
</tr>
<tr>
<td>GID-3</td>
<td>PID-1</td>
<td>HIV-</td>
<td>1/0</td>
<td>1/0</td>
<td>...</td>
</tr>
<tr>
<td>GID-4</td>
<td>PID-2</td>
<td>HIV+</td>
<td>2/2</td>
<td>0/0</td>
<td>...</td>
</tr>
<tr>
<td>GID-5</td>
<td>PID-3</td>
<td>HIV-</td>
<td>0/1</td>
<td>1/1</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

[Harmanciet al. Nat. Meth. (in revision)]
Steps in Instantiation of a (Mock) Linking Attack

Step 1
- G-P correlation dataset
 - Phenotype and genotype selection
 - Absolute Value of Correlation

Step 2
- Prediction methodology
 - Genotype prediction
 - Maximum a Posteriori Genotype

Step 3
- Auxiliary information
 - Linking
 - Minimum Distance between Predicted and Individual Genotypes
 - Gender, Population, Age
 - Estimate Reliability of Linking
 - How far is the linked genotype distance from second in ranked list? ($d_{1,2}$) (Higher: More accurate linking)

[Harmanci et al. Nat. Meth. (16)]
Levels of Expression-Genotype Model
Simplifications

[Harmanci et al. Nat. Meth. (16)]
Linking Attack with Extremity based Genotype Prediction

200 individuals eQTL Discovery
200 individuals in Linking Attack

- X-axis: The threshold of association for selecting the eQTLs
 - Higher threshold: Smaller number of eQTLs
- Y-axis: Fraction of correctly linked individuals
 - Measures the Sensitivity of the attack

[Linking Attack with Extremity based Genotype Prediction](Harmanci et al. Nat. Meth. (16))
Linking Attack with Extremity based Genotype Prediction

200 individuals eQTL Discovery
200 individuals in Linking Attack

200 individuals eQTL Discovery
100,200 individuals in Linking Attack

[Linking Attack with Extremity based Genotype Prediction](Harmanci et al. Nat. Meth. (16))
Which 70%?

• Attacker arbitrarily selects eQTLs with association strength above 10
• 70% of the individuals are linked correctly
• But which 70%?
• Is there a way to differentiate between linkings to distinguish their reliability?
• First Distance Gap:
 – Difference between the genotype distance of second best matching and best matching individuals
 – \(d_{1,2} = d_{\text{second}} - d_{\text{first}} \)

[Harmanci et al. Nat. Meth. (16)]
Sensitivity vs PPV for Linkings selected per first distance gap, $d_{1,2}$

Decreasing $d_{1,2}$

[Harmanci et al. Nat. Meth. (16)]
Relatives are also vulnerable (30 CEU Trios)

[Harmanci et al. Nat. Meth. (16)]
Small Data Leakage from just Gene Expression Data:

4 eQTL-SNP genotypes

Example: Vulnerable sample variants, expressions

• Variant 0 (1, 6)
• Variant 1 (0, 2)
• Variant 2 (1, 3)
• Variant 3 (0, 2)

Expression levels are outliers and are predictive of the genotype!
Large-scale Transcriptome Mining:
Building Integrative Regulatory Models, while Protecting Individual Privacy

• Transcriptome analysis **data**
 - Comparative ENCODE – Lots of Matched Data
 - 1000G+Geuvadis for privacy

• **Expression Clustering**, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)

• **State Space Models** of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones.
 - Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

• The General **Dilemma of Genomic Privacy**
 - Fundamental, inherited info that’s very private v need for large-scale mining for med. research
 - Issues w/ current social & tech approaches: inconsistencies & burdensome security
 - Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks & Closely Coupled priv.-public datasets)
 - Details on Relevant Hacks: Genomic, Computer Security, & Netflix

• **RNA-seq: How to Publicly Share Some of it**
 - Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it’s tagged with individual information
 - Removing SNVs in reads w/ MRF
 - Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
 - Instantiating a practical linking attack using extreme expression levels
 - Quantifying accuracy of prediction, via gap between best & 2nd best match
Large-scale Transcriptome Mining:
Building Integrative Regulatory Models, while Protecting Individual Privacy

- **Transcriptome analysis data**
 - Comparative ENCODE – Lots of Matched Data
 - 1000G+Geuvadis for privacy

- **Expression Clustering, Cross-species**
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)

- **State Space Models of Gene Expression**
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones.
 - Also, conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- **The General Dilemma of Genomic Privacy**
 - Fundamental, inherited info that’s very private v need for large-scale mining for med. research
 - Issues w/ current social & tech approaches: inconsistencies & burdensome security
 - Strawman Hybrid Soc-Tech Proposal (Cloud Enclaves. Quantifying Leaks & Closely Coupled priv.-public datasets)
 - Details on Relevant Hacks: Genomic, Computer Security, & Netflix

- **RNA-seq: How to Publicly Share Some of it**
 - Presents a tricky privacy issue since much of the sequencing is for general, non-individual specific results yet it’s tagged with individual information
 - Removing SNVs in reads w/ MRF
 - Quantifying & removing variant info from expression levels + eQTLs using ICI & predictability
 - Instantiating a practical linking attack using extreme expression levels
 - Quantifying accuracy of prediction, via gap between best & 2nd best match
Acknowledgements

Hiring Postdocs. See gersteinlab.org/jobs!

DREISS.gersteinlab.org - D Wang, F He, S Maslov

papers.gersteinlab.org/subject/privacy - D Greenbaum

PrivaSeq.gersteinlab.org - A Harmanci

github.com/gersteinlab/OrthoClust - K Yan, D Wang, J Rozowsky, H Zheng, C Cheng
Extra
Info about content in this slide pack

• General PERMISSIONS
 – This Presentation is copyright Mark Gerstein, Yale University, 2016.
 – Please read permissions statement at www.gersteinlab.org/misc/permissions.html.
 – Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 – Paper references in the talk were mostly from Papers.GersteinLab.org.

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info.
 – In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt