Genomics:

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

> Mark Gerstein Yale

Slides freely downloadable from Lectures.GersteinLab.org & "tweetable" (via @markgerstein).

See last slide for more info.

How might annotate a text?

The Semicolon Wars

Brian Hayes

Color is

Function

Lines are Similarity

[B Hayes, Am. Sci. (Jul.- Aug. '06)] F YOU WANT TO BE a thoroughgoing world traveler, you need to learn 6,912 ways to say "Where is the toilet, please?" That's the number of languages known to be spoken by the peoples of planet Earth, according to Ethnologue.com.

If you want to be the complete polyglot programmer, you also have quite a challenge ahead of you, learning all the ways to say:

printf("hello, world\n");

(This one is in C.) A catalog maintained by Bill Kinnersley of the University of Kansas lists about 2,500 programming languages. Another survey, compiled by Diarmuid Piggott, puts the total even higher, at more than 8,500. And keep in mind that whereas human languages have had millennia to evolve and diversify, all the computer languages have sprung up in just 50 years. Even by the more-conservative standards of the Kinnersley count, that means we've been inventing one language a week, on average, ever since Fortran.

For ethnologists, linguistic diversity is a cultural resource to be nurtured and preserved, much like biodiversity. Every programmer knows there is one true programming language. A new one every week

a good-enough notation—for expressing an algorithm or defining a data structure.

There are programmers of my acquaintance who will dispute that last statement. I expect to hear from them. They will argue—zealously, ardently, vehemently—that we have indeed found the right programming language, and for me to claim otherwise is willful ignorance. The one true language may not yet be perfect, they'll concede, but it's built on a sound foundation and solves the main problems, and now we should all work together to refine and improve it. The catch, of course, is that each of these friends will cide which end of a boiled egg to crack. This famous tempest in an egg cup was replayed 250 years later by designers of computer hardware and communications protocols. When a block of data is stored or transmitted, either the leastsignificant bit or the most-significant bit can go first. Which way is better? It hardly matters, although life would be easier if everyone made the same choice. But that's *not* what has happened, and so quite a lot of hardware and software is needed just to swap ends at boundaries between systems.

This modern echo of Swift's Endian wars was first pointed out by Danny Cohen of the University of Southern California in a brilliant 1980 memo, "On holy wars and a plea for peace." The memo, subsequently published in *Computer*, was widely read and admired; the plea for peace was ignored.

Another feud—largely forgotten, I think, but never settled by truce or treaty—focused on the semicolon. In Algol and Pascal, program statements have to be separated by semicolons. For example, in x := 0; y := x+1; z := 2 the semicolons tell the compiler where one statement ends and the next begins. C

Non-coding Annotations: Overview

There are several collections of information "tracks" related to non-coding features

Sequence features, incl. Conservation

<u>Functional Genomics</u> ChIP-seq (Epigenome & seq. specific TF) and ncRNA & un-annotated transcription

Comparative ENCODE Functional Genomics Resource

(EncodeProject.org/comparative)

- Broad sampling of conditions across transcriptomes & regulomes for human, worm & fly
 - embryo & ES cells
 - developmental time course (worm-fly)
- In total: ~3000 datasets (~130B reads)

Time-course gene expression data of worm & fly development

Organism	Major developmental stages		
worm (<i>C. elegans</i>)	33 stages: 0, 0.5, 1,, 12 hours, L1, L2, L3, L4,, Young Adults, Adults		
fly (D. mel.)	30 stages: 0, 2, 4, 6, 8,, 20, 22 hours, L1- L4, Pupaes, Adults		

[Nature 512:445 ('14); doi: 10.1038/nature13424]

Comparative ENCODE

Comparative ENCODE

Comparative ENCODE

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of **publication patterns generated by the consortium**
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of publication patterns generated by the consortium
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Expression clustering: revisiting an ancient problem

Expression clustering: revisiting an ancient problem

Network modularity

Network modularity

A toy example [orthoclust]

A toy example [orthoclust]

Use Potts model (generalized Ising model) to simultaneously cluster co-expressed genes within an organism as well as orthologs shared between organisms. Here, the ground state configuration correspond to three modules: 1, 2, 4.

Cross-species clusters for worm and fly

More conserved modules

O H

0.5

Separation of modules in terms of GO

Yan KK et al. Genome Biology. 2014

Application for more than 2

ncRNAs associated with modules

Non-canonical transcription (TARs):

• Identify TARs that are significantly correlated and anti-correlated with genes in the 16 modules.

Conserved modules exhibit canonical hourglass behavior

Illustrations courtesy Naoki Irie

Canonical Inter-organism Behavior

- "Hourglass hypothesis": all organisms go through a particular stage in embryonic development ("phylotypic" stage) where inter-organism expression differences of orthologous genes are smallest.
- We identify modules (12 out of 16) which have this behavior at the phylotypic stage.

Expression divergence across species is minimized during phylotypic stage (Kalinka et al. Nature 2010)

Hourglass Behavior

phylotypic stage

<u>Intra-organism Behavior also</u> <u>Present</u>

- We observe that the expression of genes across 12 modules are the most tightly coordinated at the phylotypic stage (fly).
- Strongly correlated correlation at phylotypic stage (worm).

Alignment of Developmental Time-Course

For worm & fly find stage-specific genes

We can align developmental stages using fraction of shared orthologs between worm and fly amongst these

Reuse of genes from LE in worm in fly pupa

[Nature 512:445 ('14); doi: 10.1038/nature13424]

Alignment of Developmental Time-Course

Using only orthologs in 12 "hourglass" modules show stronger alignment except for absence of genes at the phylotypic stage

 By definition genes in hourglass modules are not phylotypic stage specific, hence the gap

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of publication patterns generated by the consortium
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Internal & external gene regulatory networks

Internal Group

How to identify gene expression dynamics driven by internal/external regulation?

Interested system	Internal regulatory network	External regulatory network	
Cross-species conserved	Conserved	Non-conserved TFs	
genes	transcriptional factors		
	(TFs)		
Protein-coding genes	TFs	micro-RNAs	
Individual's protein	Wild-type TFs	Somatic mutated TFs	
coding genes			
Protein-coding genes in	Commonly expressed	Brain-specific expressed	
brain	TFs	TFs	
Protein-coding genes in	House-keeping TFs	Developmental TFs	
development			

State-space model for internal and external gene regulatory networks

State: Gene expression vector of Group *X* at time *t*+1 A_{ij} captures temporal casual influence from Gene *i* to Gene *j* in internal group

State: Gene expression vector of internal group at time *t*

R

Control: Gene expression vector of external factors t at time t

 B_{kl} captures temporal casual influence from external factor k to Gene l in internal group

Effective state space model for meta-genes

Not enough data to estimate state space model for genes (e.g., 25 time points per gene to estimate 4 million elements of A or B for 2000 genes)

$$X_{t+1} = AX_t + BU_t$$

Dimensionality reduction from genes to meta-genes (e.g., SVD)

Effective state space model for meta-genes (e.g., 250 time points to estimate 50 matrix elements if 5 meta-genes)

$$\tilde{X}_{t+1} = \tilde{A}\tilde{X}_t + \tilde{B}\tilde{U}_t$$

[Wang et al. PLOS CB, '16]

Decomposition of internal and external-related dynamic components

$$X_{t} = AX_{t-1} + BU_{t-1}$$

$$= A(AX_{t-2} + BU_{t-2}) + BU_{t-1}$$

$$= A^{2}X_{t-2} + ABU_{t-2} + BU_{t-1}$$

$$= A^{3}X_{t-3} + A^{2}BU_{t-3} + ABU_{t-2} + BU_{t-1}$$

$$= \cdots$$

$$= A^{t-1}X_{1} + A^{t-2}BU_{1} + A^{t-3}BU_{2} + \cdots + ABU_{t-2} + BU_{t-1}$$

$$= A^{t-1}X_{1} + \sum_{k=1}^{t-2} A^{k}BU_{t-1-k} + BU_{t-1} + X_{t}^{EXT} + X_{t}^{EXT}$$

$$= A^{t-1}X_{1} + \sum_{k=1}^{t-2} A^{k}BU_{t-1-k} + X_{t}^{EXT} + X_{t}^{EXT}$$

$$= X_{t}^{INT}$$
Internally driven dynamic components driven by interactions between internal and external terms dynamic component

* Subdivision of the rest of the terms $\sum_{k=1}^{t-2} A^k B U_{t-1-k} + B U_{t-1}$ is completely arbitrary

Canonical temporal expression trajectories from effective state space model

Are gene regulations among orthologs conserved across species?

To what degree can't ortholog expression levels be predicted due to species-specific regulation

Are there any conserved regulatory networks between worm and fly during embryonic development?

• Not enough time samples!

Dataset	Internal Group	External Group	Developmental stages	# of unknown parameters in A and B	# of available time samples				
worm (<i>C. elegans</i>)	N ₁ =3147 worm-fly orthologs	N ₂ =509 worm-specific transcription factors	T=25 time points: 0, 0.5, 1,, 12 hours	3147*3147+3147*50 9=11.5M	3147*25+509 *25=91400				
fly (D. mel.)	(incl. ortholog TFs)	N_2 =442 fly-specific transcription factors	T=12 time points: 0, 2, 4, 6, 8,, 20, 22 hours	3147*3147+3147*44 2=11.3M	3147*25+442 *25=89725				
$= A_w + B_w$ $= A_f + B_f$ $= A_f + B_f$ fy If A_w and A_f have similarities, cross- species conserved regulatory networks in embryonic development $= A_f + B_f$									

Flowchart

Orthologs have similar internal but different external dynamic patterns during embryonic development

Orthologs have correlated iPDP coefficients

Evolutionarily conserved and younger genes exhibit the opposite internal and external PDP coefficients

Ribosomal genes have significantly larger coefficients for the internal than external PDPs, but signaling genes exhibit the opposite trend

Breast cancer cell cycle under hormonal stimulation

39

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of publication patterns generated by the consortium
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Protein-coding gene counts in worm, fly & human have stabilized & have remained fairly constant

[Nature 512:445 ('14);

Discovering Transcriptionally Active Regions (novel RNA contigs)

- Cluster reads setting minimum-run and maximum gap parameters for newly identified transcribed regions (TARs)
- Assess exon discovery rates for known genes and noncoding RNAs

ENCODE RNA-Seq Data

Uniform Annotation of non-coding Elements

 Uniformly processed the RNA-seq expression compendium and for identification of pervasively transcribed regions

[Nature 512:445 ('14); doi: 10.1038/nature13424]

Annotated ncRNAs

			Human			Worm			Fly		
			Flements	Genome	Coverage	Flements	Genome	Coverage	Flements	Genome	Coverage
				Kb	%		Kb	%	Licificitits	Kb	%
mRNAs (exons)		20,007	86,560	3.0	21,192	34,437	34.3	13,940	35,970	28.0	
	Pseu	dogenes	11,216	27,089	0.95	881	1,343	1.3	145	155	0.12
	\$	pri-miRNA	58	1,158	0.04	44	16	0.02	43	300	0.23
VAs	cRNA	pre-miRNAs	1,756	162	0.006	221	20	0.02	236	22	0.02
ncRl	ble n	tRNAs	624	47	0.002	609	45	0.04	314	22	0.02
ated	paral	snoRNAs	1,521	168	0.006	141	16	0.02	287	34	0.03
Jnot	Com	snRNAs	1,944	210	0.007	114	14	0.01	47	7	0.006
A		IncRNAs	10,840	10,581	0.37	233	184	0.18	852	868	0.68
	Ot	her ncRNAs	5,411	3,268	0.11	40,104	2,329	2.3	376	2,103	1.6
		nc-piRNA loci	88	1,272	0.04	35,329	449	0.45	27	1,473	1.1
_	То	otal	22,154	17,770	0.62	41,466	2,611	2.6	2,155	3,279	2.6

Identify non-canonical transcription in regions of the genome excluding mRNA exons,

pseudogenes or annotated ncRNAs.

& Non-Canonical Transcription

			Human		Worm			Fly		
		Elements	Genome Co	verage	Elements	Genome	Coverage	Elements	Genome	Coverage
1			Kb	%		Kb	%		Kb	%
\hookrightarrow	Total ncRNAs	22,154	17,770	0.62	41,466	2,611	2.6	2,155	3,279	2.6
Re Ps Ani	gions Excluding mRNAs, seudogenes or notated ncRNAs	283,816	2,731,811	95.5	143,372	63,520	63.3	60,108	89,445	69.6
	Transcription Detected (TARs)	708,253	916,401	32.0	232,150	37,029	36.9	83,618	44,256	34.5
	Supervised Predictions	104,016	13,835	0.48	2,525	392	0.39	599	164	0.13

- Similar fraction of non-canonical transcription of noncanonical transcription in human, worm and fly
 - 32-37% of each genome

Gold-standard Set

IncRNA: Machine-learning Identification of many candidate ncRNAs through evidence integration

- No single feature (e.g. expr. expts., conservation, or sec. struc.) finds all known ncRNAs => combine features in stat. model
- 90% PPV, 13 of 15 tested validate

Known ncRNAs CDSs UTRs Intergenic Regions

[Lu et al. Genome Res. 2011;21:276-285]

TAR Characterization

Non-canonical transcription (TARs):

 Mostly transcribed at lower levels than protein-coding genes.

 Enrichment for overlap of TARs with ENCODE enhancers and distal HOT regions -> potential enhancer RNAs (eRNAs).

HOT Regions = High TF Co-occupancy

Human, Worm & Fly

[ENCODE-modencode Transcriptome paper, Nature (in press), doi: 10.1038/nature13424]

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of publication patterns generated by the consortium
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Pseudogenes are among the most interesting intergenic elements

- Formal Properties of Pseudogenes (Ψ G)
 - Inheritable
 - Homologous to a functioning element ergo a repeat!
 - Non-functional
 - No selection pressure so free to accumulate mutations
 - Frameshifts & stops
 - Small Indels
 - Inserted repeats (LINE/Alu)
 - What does this mean? no transcription, no translation?...

Identifiable Features of a Pseudogene (ψRPL21)

[Gerstein & Zheng. Sci Am 295: 48 (2006).]

Two Major Genomic Remodeling Processes Give Rise to Distinct Types of Pseudogenes

[Gerstein & Zheng. Sci Am 295: 48 (2006).]

Genome-wide Annotation of Pseudogenes

[Pei et al., GenomeBiology (2012, 13:R51)]

EX: Number of pseudogenes for each glycolytic enzyme

[Liu et al. BMC Genomics ('09)]

Large numbers of processed **GAPDH** pseudogenes in mammals comprise one of the biggest families but numbers not obviously correlated with mRNA abundance.

Processed/Duplicated

Lectures.GersteinLab.org

н.

3 5

EX: Number of pseudogenes for each glycolytic enzyme

[Liu et al. BMC Genomics ('09)]

Large numbers of processed GAPDH pseudogenes in mammals comprise one of the biggest families but numbers not obviously correlated with mRNA abundance.

Lectures.GersteinLab.org

н.

54

Distribution of human GAPDH pseudogenes

Annotation of Human Pseudogenes in Comparison to those in other Model Organisms

Organism	Total Pseudogenes	Biotype Distrbut Processed Duplic	tion ENCODE Function ated Genomics Da	onal ta Completed Manual Annotation
Human	12,358	8908	2266	~
Worm	911	159 566	✓	\checkmark
Fly	145	16 109	✓	~
Zebrafish	229	21 177	V	V
Macaque	11,136	6570	1725 X	X
Mouse	13,169	7811	1827	X

[Sisu et al. PNAS ('14); doi: 10.1073/pnas.1407293111]

0	Defect / Pseudogene x MB					
Organism	Insertion	Deletion	Stop			
Human	4.4	4.9	2.4			
Worm	25.8	7.45	2.5			
Fly	7.9	12.7	1.1			

Great divergence in pseudogenes in terms of Orthologs & Paralogs

Parent Genes amongst 1935 1-1-1 orthologs

Divergence but

More interpretable Patterns in terms of Families

Hun	nan
7tm	414
RRM	235
IG	180
ZnF	176
IG	171
Ribo	144
ZnF	132
Ribo	132
Struct	123
ZnF	117
Kin	93
Ploop	93
Ribo	86
Ubq	84
ZnF	83
SPRY	82
Ribo	82
Struct	69
Ribo	68 •
GAPDH	66
Ribo	64
GAPDH	61
Ribo	52
Kin	58
Kin	58

	Maca	aque	
	ZnF	495	
	IG	405	
	IG	404	
	7tm	358	
	RRM	270	
	Kin	151	
	Ribo	133	
	Stuct	129	
	1		
	Ribo	119	
	IG	113	
$\left(\right)$	Struct	103	$\mathbf{\mathbf{\mathcal{D}}}$
	ZnF	101	
	RAS	97	
	Ubq	92	
	Ribo	85	
	SPRY	81	
	Ribo	76	
	His	75	
	Kin	73	
	Ubq	73	
	Ribo	66	
	IG	65	
$\left(\right)$	GAPDH	64)

	Μοι	lse	
	7tm	449	
	DUF	311	1
	ZnF	306	
	RRM	280	1
	HGM	275	1
	Ribo	251	
	Krupel	249	1
	IG	242	1
$\left(\right)$	Kin	218	$\overline{}$
\langle	7tm	197	$\overline{)}$
	Ribo	167	
	Struct	151	Γ
	Ribo	142	
	VNO	130	
$\left(\right)$	EFG	124	\mathbf{b}
	7tm	124	T
	Struct	118]
	Ubq	112]
	7tm	109	
	IG	95	
	Struct	87	
	His	86	
	ZnF	81	
	Ribo	54	•)

Zebrafish				
ZnF	24			
7tm	22			
SPRY	20			
Struct	18			
Kin	12			
Kin	11			
ZnF	8			
Kin	7			
7tm	7			
tRNAsyn	5			
tRNAsyn	4			
7tm	4			
Lectin	3			
ZnF	3			
7tm	2			
ZnF	2			
Struct	2			
Kin	2			
7tm	2			
IG	2			
Inhibitor	2			
Struct	1			

Worm				
7tm	74			
7tm	46			
7tm	24			
7tm	26			
Ubq	23			
7tm	20			
7tm	17			
7tm	13			
7tm	11			
Kin	10			
Ploop	3			
Kin	2			
Kin	2			
His	1			
ZnF	1			
IG	1			

Fly				
SAP	30			
Motor	10			
Kin	9			
His	7			
ZnF	5			
Kin	3			
RRM	3			
Kin	3			
Ploop	2			
IG	2			
IG	2			

Families
2
3-4
8+

Examples & speculation on the function of pseudogene ncRNAs:

Regulating their parents

- via acting as endo-siRNAs [ex. in fly & mouse, '08 refs.]
- via acting as miRNA decoys [PTEN]
- via inhibiting degradation of parent's mRNA [makorin]

[Sasidharan & Gerstein, Nature ('08)]

Alternatively,

- Functional candidates:
 - SLIT-ROBO Rho GTPase activating protein 2B pseudogene
 - PRKY-004, Y-linked protein kinase pseudogene
 - Fer-1-like 4 (C. elegans), pseudogene

Czech et al. Nature 453: 798 ('08). Ghildiyal et al. Science 320: 1077 ('08). just last gasps Kawamur et al. Nature 453: 793 ('08). Okamura et al. Nature 453: 803 ('08). of a dying gene

Tam et al. Nature 453: 534 ('08). Watanabe et al. Nature 453: 539 ('08).

Pseudogene Transcription: interesting but tricky to ascertain

- Difficulty in ascertainment because of mis-mapping v parent
- One approach to this confound is look across mult. samples

Pseudogene Activity

62

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of publication patterns generated by the consortium
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Worm Genome

Worm Genome

modENCODE

modENCODE

Worm Genome

modENCODE

1000 Genomes Pilot 1000 Genomes Production

Worm Genome

modENCODE

1000 Genomes Pilot

1000 Genomes Production

GTEx

With help of M Pazin at NHGRI, identified: 702 community papers that used ENCODE data but were not supported by ENCODE funding & 558 consortium papers supported by ENCODE funding (https://www.encodeproject.org/search/?type=Publication for up-to-date query) Then identified 1,786 ENCODE members & 8,263 non-members .

Co-authorship Network of ENCODE members & Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker
 - co-authorship

Co-authorship Network of ENCODE members & Data Users

- ENCODE member
- non-member
- ENCODE member broker
- non-member broker
 - co-authorship

Dynamics of coauthorship network

[Wang et al., TIG ('16)]

200

8

Similar findings in terms of slow growth trends & broker scientists in the modENCODE consortium as for ENCODE

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of publication patterns generated by the consortium
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Comparing Diverse Transcriptomes to Determine Deeply Conserved Aspects of Gene Expression

- Intro to Comparative ENCODE
 - Lots of Matched Data for Comparative Analysis
- Expression Clustering, Cross-species
 - Potts-model optimization gives 16 conserved co-expression modules (which can potentially annotate ncRNAs/TARs)
 - Developmental 'hourglass' genes in 12 of these. They also exhibit intraorganism hourglass behavior.
 - Stage alignment of worm & fly development, strongest with hourglass genes
- State Space Models of Gene Expression
 - Using dimensionality reduction to help determine internal & external drivers
 - Decoupling expression changes into those driven by worm-fly conserved genes vs species-specific ones. Also, Conserved genes have similar canonical patterns (iPDPs) in contrast to species specific ones (Ex of ribosomal v signaling genes)

- Characterizing ncRNAs & TARs
 - Not much news in canonical gene models
 - Simple contig search (TARs) finds uniform density of non-canonical transcription
 - ML model shows few TARs similar to existing ones, but some enrichment for eRNAs
- Pseudogenes
 - Fundamentally repetitive elements
 - Collaborative assignment in results in ~14K
 - Impact of lineage-specific retro-transpositional burst – ie human v other metazoans is dominated (~80%) by retro-duplication ~40 MYA (Ribo. Proteins).
 - Many Pseudogenes with Low Levels of Biochemical Activity
 - ~15% transcribed & 80% w/ some activity
- Value of **publication patterns generated by the consortium**
 - Co-authorship network statistics relate to publication rollouts & show gradual adoption by a diverse community
 - Key role of brokers in data dissemination

Acknowledgements

Joel Rozowsky, Koon-Kiu Yan, Daifeng Wang,

Chao Cheng, James B. Brown, Carrie A. Davis, LaDeana Hillier, Cristina Sisu,

Jingyi Jessica Li, Baikang Pei, Arif O. Harmanci, Michael O. Duff, Sarah Djebali, Roger P. Alexander, Burak H. Alver, Raymond K. Auerbach, Kimberly Bell, Peter J. Bickel, Max E. Boeck, Nathan P. Boley, Benjamin W. Booth, Lucy Cherbas, Peter Cherbas, Chao Di, Alex Dobin, Jorg Drenkow, Brent Ewing, Gang Fang, Megan Fastuca, Elise A. Feingold, Adam Frankish, Guanjun Gao, Peter J. Good, Phil Green, Roderic Guigó, Ann Hammonds, Jen Harrow, Roger A. Hoskins, Cédric Howald, Long Hu, Haiyan Huang, Tim J. P. Hubbard, Chau Huynh, Sonali Jha, Dionna Kasper, Masaomi Kato, Thomas C. Kaufman, Rob Kitchen, Erik

Ladewig, Julien Lagarde, Eric Lai, Jing Leng, Zhi Lu, Michael MacCoss, Gemma May, Rebecca McWhirter, Gennifer Merrihew, David M. Miller, Ali Mortazavi, Rabi Murad, Brian Oliver, Sara Olson, Peter Park, Michael J. Pazin, Norbert Perrimon, Dmitri Pervouchine, Valerie Reinke, Alexandre Reymond, Garrett Robinson, Anastasia Samsonova, Gary I. Saunders, Felix Schlesinger, Anurag Sethi, Frank J. Slack, William C. Spencer, Marcus H. Stoiber, Pnina Strasbourger, Andrea Tanzer, Owen A. Thompson, Kenneth H. Wan, Guilin Wang, Huaien Wang, Kathie L. Watkins, Jiayu Wen, Kejia Wen, Chenghai Xue, Li Yang, Kevin Yip, Chris Zaleski, Yan Zhang, Henry Zheng, **Steven E. Brenner, Brenton R. Graveley**,

Susan E. Celniker, Thomas R Gingeras, Robert Waterston

EncodeProject.org/comparative/transcriptome

DREISS.gersteinlab.org

Pseudogene.org/psicube

C **Sisu**, B Pei, Jing Leng, A Frankish, Yan Zhang, Suganthi Balasubramanian, Rachel Harte, Daifeng Wang, Michael Rutenberg-Schoenberg, Wyatt Clark, Mark Diekhans, Joel Rozowsky, Tim Hubbard, J Harrow

Publication patterns ["encode authors"] D **Wang** KK Yan, J Rozowsky, E Pan

github.com/gersteinlab/OrthoClust

KK **Yan**, D Wang, J Rozowsky, H Zheng, C Cheng

Hiring Postdocs. See gersteinlab.org/jobs !

Info about content in this slide pack

- General PERMISSIONS
 - This Presentation is copyright Mark Gerstein, Yale University, 2016.
 - Please read permissions statement at www.gersteinlab.org/misc/permissions.html.
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 - Paper references in the talk were mostly from Papers.GersteinLab.org.
- PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info .
 - In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt