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Moore’s Law:
Exponential
Scaling of
Computer
Technology

« Exponential increase in the
number of transistors per
chip.

* Led to improvements in
speed and miniaturization.

» Drove widespread adoption
and novel applications of
computer technology.

101
108 -

108 - e

o
10%- o
®
Transistors per chip .”
102- PS

Bl L J
. L]

®
Clock speeds (MHz)
10-2 T T T T 1
1960 1974 1988 2002 2016

Size (mm?)

01

1950 1960 1970 1980 1990 2000 2010 2020

2 ™ Lectures.GersteinLab.org



Kryder’s Law and
S-curves underlying
exponential growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer speed
has been, the ability to
store large amounts of
information on computers is
even more crucial

« Exponential increase
seen in Kryder'’s law
is a superposition of
S-curves for different
technologies
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Sequencing Data Explosion:
Faster than Moore’s Law for a Time (or a S-curve)

 DNA sequencing has
gone through
technological S-curves

- In the early 2000’s,
improvements in Sanger
sequencing produced a
scaling pattern similar to
Moore’s law.

- The advent of NGS was a
shift to a new technology
with dramatic decrease in
cost).

Cost per Raw Megabase of DNA Sequence

National Human Genome
Research Institute

genome.gov/sequencingcosts
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Sequencing cost
reductions have
resulted in an
explosion of data

» The type of sequence
data deposited has
changed as well.

Protected data
represents an
increasing fraction of all
submitted sequences.

Data from techniques
utilizing NGS machines
has replaced that
generated via
microarray.
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The changing costs of a sequencing pipeline

m Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design M Data management analyses
Sample design
collection

l-

100% _

Mappe:
(BAM CRAM MRF)

management

«Data reduction,
— v ——

ngh—level summanes

Downstream analyses

(differential expression, 0% ~
novel TARs, vegul)aiory Pre-NGS Now Future

ook (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample

collection & analysis

[Sboner et al. (“11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

m Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design M Data management analyses
Sample design
collection

i !

100% _

(BAM CRAM . MRF),
S —

ngh—level summanes

management

Downstream analyses
(differential expression, 0% ~
novel TARSs, regulatory Pre-NGS Now Future
oo (Approximately 2000) ~ (Approximately 2010) \ (Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from

the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
@ Reagents and supplies

3 Indirect costs

[Sboner et al. (“11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

5] Sample collection and [ Sequencing " Data reduction Downstream
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The changing costs of a sequencing pipeline

Sample collection and " 1 Data reduction Downstream
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cost of DNA sequencing expt. shifts from
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collection & analysis

[Sboner et al. ( ‘11), Muir et al. (‘15) Genome Biology]

Alignment algorithms scaling to keep
pace with data generation

9 - Lectures.GersteinLab.org



The changing costs of a sequencing pipeline
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Human Genetic Variation

Population of

A Cancer Genome A Typical Genome 2,504 peoples

Origin of Variants Class of Variants

3.5-4.3M 84.7M

550 — 625K 3.6M

2.1 -25K 60K
(20Mb)

Somatic 88.3M
4.1 — 5M

Prevalence of Variants

~ Common -

Driver (~0.1%) Rare” (1-4%) Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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Association of Variants with Diseases
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Personal Genomics:
Identifying High-impact Variants in Coding & Non-coding Regions

* Introduction « Evaluating the Impact of Non-coding
- The exponential scaling of data Variants with Annotation
generation & processing — Annotating non-coding regions on
— The landscape of variants in different scales with MUSIC
personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient “sensitive sites” (human-conserved)
interpretation strategy | « Putting it together in Workflows
) Cha.racter|2|.ng Rare Variants in - Using LARVA to do burden testing on
Coding Regions non-coding annotation
- ldentifying with STRESS « Need to correct for co-variates & over-
cryptic allosteric sites dispersion mutation counts
« On surface & in interior bottlenecks « Parameterized according to replication
- Using changes in localized timing
Frustration to find further sites - Using FunSeq to integrate evidence
sensitive to mutations on variants
« Difference betw. TSGs & oncogenes » Systematically weighting all the
— Using structural motifs (eg TPR) for features
intensification of weak pogen signals « suggesting non-coding drivers
« For both negative and positive « Prioritzing rare germline variants

selection
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Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & ExAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
5 HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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[Sethi et al. COSB ('15)]



Models of Protein Conformational Change

Motion Vectors from Normal Modes (ANMs)
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PDB ID: 3RFU
Adapted from Fuglebakk et al, 2014

Characterizing uncharacterized variants
<= Finding Allosteric sites
<= Modeling motion
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Predicting Allosterically-Important Residues at the Surface

1. MC simulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites

pdb 1J3H
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10 MG
A X 2 A
blndlng leverage — Z(ZZ Adij(m)) Surface region with high
m=1 i

density of candidate sites

Surface region with low
density of candidate sites
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Predicting Allosterically-Important Residues at the Surface

PDB: 3PFK

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

weight edges using
motion vectors

AVA /3 \7, @ —
\VA ¥ N )
identify

critical residues

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

W W“;:,go:.:‘szit‘:,i‘s“; Cov; = (rj°r;)
Clj = COVij / \/(<ri2><rj2>)

iz

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior
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Adapted from Clarke*, Sethi*, et al (in press)
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STRESS Server Architecture: Highlights

stress.molmovdb.org

Thin front end

EC2 | |

OO
o0 |

STRESS A computationally-efficient framework for identifying potential allosteric residues at

Home Documentation Examples

Submit a new job:

Enter PDB ID (ex: 3D3D): Or upload PDB File:

e File | No file chosen

Select which modules to run:

¥ Surface-critical

¥ Interior-critical

rotein surface and within the interior

Retrieve job results:

Job id:

Citi

ng

Retrieve

=<

Auto-scalable

EC2

EC2

EC2

back-end

\/

RESTful
storage

e A light front-end server handles incoming requests, and powerful back-end
servers perform calculations.

e Auto Scaling adjusts the number of back-end servers as needed.

e A typical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.

e Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.

Adapted from Clarke*, Sethi*, et al (in press)
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Intra-species conservation of predicted allosteric residues
1000 Genomes

Surface Interior
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Adapted from Clarke*, Sethi*, et al (in press)
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Intra-species conservation of predicted allosteric residues
ExAC
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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[Sethi et al. COSB ("15)]



Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior
with allostery as an added annotation

® @ Predicted allosteric (surface | interior)
® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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Identifying High-impact Variants in Coding & Non-coding Regions

* Introduction  Evaluating the Impact of Non-coding
- The exponential scaling of data Variants with Annotation
generation & processing - Annotating non-coding regions on
- The landscape of variants in different scales with MUSIC
personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient ‘sensitive sites” (human-conserved)
'nterpref[aj“on strategy | | - Putting it together in Workflows
) Cha.racter|Z|.ng Rare Variants in - Using LARVA to do burden testing on
Coding Regions non-coding annotation
- Identifying with STRESS  Need to correct for co-variates & over-
cryptic allosteric sites dispersion mutation counts
 On surface & in interior bottlenecks » Parameterized according to replication
- Using changes in localized timing
Frustration (o find turther sites - Using FunSeq to integrate evidence
sensitive to mutations on variants
+ Difference betw. TSGs & oncogenes « Systematically weighting all the
- Using structural motifs (eg TPR) for features
intensification o7 weak pogen signals * suggesting non-coding drivers
* For both negative and positive « Prioritzing rare germline variants

selection



Schematic illustration of localized frustration

ASN

more negative more positive
CETTBOODI @D ..'O.QOO...
favorable interaction unfavorable interaction

[Ferreiro et al., PNAS ('07)]

28 = Lectures.GersteinLab.org



[£202S0 A1xJ01q {(ssaid ul) YN ‘[e 30 Jewny]  Biodeueisiensanal o 62

Workflow
for

5
c
.m.wo
g3V
rﬂrmF
5T g
TR | |
O
g.m W
(e
me
1
a2 3
g
2
(e
gg vV
WMNF
} -
VAN ||
o
oz &
£ 2 W
> 1
wn C
© = m
]
= > u

n

localized

evaluating
frustratio
changes
(AF)

2JN15NJ3S Pa1eINW 3Y3 JO [9pow dY3 buisn parejndjed saibiauy

9 BEEE @EE: B EEE  ES OF EJ
e ————————————(—(—(

5

m A

5| uf

| 7 Il

3 = B

4 il
ol | _ W £
Ll > W< LU
g T ]

nmmmum E B
o
g B : A

24N10NIIS mHo_B-_o__\s 9Y3 buisn palejndjed saibiau]



SUIT T,

Complexity of the second order frustration calculation

First order frustration calculation (F)

EMUT

nni({E)

Ewr

Second order frustration calculation (AF)

EMUT

nn@n(g)

Ewr

MD-assisted free energy calculation (AG)

Landscape

Accuracy

v
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[Kumar et al. NAR (in press); biorxiv 052027]

Comparing AF values across different
SNV categories: disease v normal
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1KG ExAC HGMD 1KG EXAC HGMD

Core residues Surface residues

Normal mutations (1000G) tend to unfavorably frustrate
(less frustrated) surface more than core,

but for disease mutations (HGMD)
no trend & greater changes
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[Kumar et al. NAR (in press); biorxiv 052027]

AF distributions
among rare V.
common SNVs

Rare mutations
cause more
unfavorable
frustration
change than
common ones
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Comparison between AF
distributions: TSGs v. oncogenes

A TSG Drivers B Oncogene Drivers

@
| <]‘.“:< % > ‘ “o , ‘
® . |

core surface core surface

g N

‘l
‘l¢‘

SNVs in TSGs change frustration more in core than the surface, whereas those associated with
oncogenes manifest the opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[Kumar et al. NAR (in press); biorxiv 052027]
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Intensification amplifies signals

from motif-based MSAs

(b ® R
. Nl TPR-_TPR TPR
“ TPR | TPR TPR

species-MSA NN [
" s Fes
g A ==

[Chen et al., JMB (17, in revision)]

35 = Lectures.GersteinLab.org



Intensification amplifies signals . protein1 . TERTTPRTTERT CTERT—-

from motif-based MSAs

1.

=

=

=

Find motifs

Generate motif-MSA

Map SNVs to
motif-MSA

Evaluate SNV profiles

Store in database
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ber of variants
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Motif-MSA and SNV profiles for:
a) amino acid freq

b) SIFT scores

c)RIC

d) NS/S

e) ADAF (pop)

[Chen et al., JMB (17, in revision)]
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Species MSAs

sEeATEL YT agyke Kl crab DETs

100

Motif-MSA uncovers important
positions missed by species-MSA

[Chen et al., JMB (‘17, in revision)]
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Motif-MSA uncovers important
positions missed by species-MSA
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How to check possible significance:

Burial within structure

[Chen et al., JMB (‘17, in revision)]
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[Chen et al., JMB (‘17, in revision)]

-> burial within structure

-> more SNVs implicated in diseases
in ClinVar and HGMD

-> sites with increased human pop.
differentiation might indicate
important position
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Personal Genomics:
Identifying High-impact Variants in Coding & Non-coding Regions

* Introduction  Evaluating the Impact of Non-coding
- The exponential scaling of data Variants with Annotation
generation & processing - Annotating non-coding regions on
- The landscape of variants in different scales with MUSIC
personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient ‘sensitive sites” (human-conserved)
'nterpref[aj“on strategy | | - Putting it together in Workflows
) Cha.racter|Z|.ng Rare Variants in - Using LARVA to do burden testing on
Coding Regions non-coding annotation
- Identifying with STRESS  Need to correct for co-variates & over-
cryptic allosteric sites dispersion mutation counts
 On surface & in interior bottlenecks » Parameterized according to replication
- Using changes in localized timing
Frustration (o find turther sites - Using FunSeq to integrate evidence
sensitive to mutations on variants
+ Difference betw. TSGs & oncogenes « Systematically weighting all the
- Using structural motifs (eg TPR) for features
intensification o7 weak pogen signals * suggesting non-coding drivers
* For both negative and positive « Prioritzing rare germline variants

selection



Sequence features, incl. Conservation

Non-coding Annotations:

Large-scale sequence
similarity comparison

Overview

Functional Genomics

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

v

Identify large blocks of
repeated and deleted

| sequence:

Signal processing of raw
experimental data:
» Removing artefacts

» Normalization
» Window smoothing

» Within the human
reference genome

Y

» Within the human
population

1 Between closely related

mammalian genomes

Segmentation of processed
data into active regions:

» Binding sites

» Transcriptionally active

v

regions
Y

dentify smaller-scale
repeated blocks using

statistical models

Group active regions into
larger annotation blocks

[Alexander et al., Nat. Rev. Genet. ('10)]
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

ChiP
e Generate & threshold the signal
profile to identify candidate
target regions

- Simulation (PeakSeq), i
- Local window based Poisson (MACS), Threshold

- Fold change statistics (SPP) — - . sygsassdasfldbassadas -

Potential Targets (ELIrme o T | T I

Normalized Control

e Score against the control

Significantly Enriched targets Wl I

Now an update: "PeakSeq 2" => MUSIC

teinLab.org
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Multiscale Analysis, Minima/Maxima based

Coarse Segmentation

I
p3631  p36.13 p353

I O O N N B [ e
p34.2 p32.3 p31.3 p3l.1 p223 p213 p133 pl2 qll ql2 q2l1.1 q22 q24.1 q25.2 q31.1

q321 q323 q4211 q423 q44

Harmanci et al, Genome Biology 2014, MUSIC.gersteinlab.org
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Multiscale Decomposition

Increasing Scale

o<
%

o
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Multiscale Decomposition

Increasing Scale

Very
>0kb Broader Punctate Punctate Broad
| ER ER ER ER
— T L] I I
= |
e I

- o Em Em O Em EE E Em o = .
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Personal Genomics:
Identifying High-impact Variants in Coding & Non-coding Regions

* Introduction  Evaluating the Impact of Non-coding
- The exponential scaling of data Variants with Annotation
generation & processing - Annotating non-coding regions on
- The landscape of variants in different scales with MUSIC
personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient ‘sensitive sites” (human-conserved)
'nterpref[aj“on strategy | | - Putting it together in Workflows
) Cha.racter|Z|.ng Rare Variants in - Using LARVA to do burden testing on
Coding Regions non-coding annotation
- Identifying with STRESS  Need to correct for co-variates & over-
cryptic allosteric sites dispersion mutation counts
 On surface & in interior bottlenecks » Parameterized according to replication
- Using changes in localized timing
Frustration (o find turther sites - Using FunSeq to integrate evidence
sensitive to mutations on variants
+ Difference betw. TSGs & oncogenes « Systematically weighting all the
- Using structural motifs (eg TPR) for features
intensification o7 weak pogen signals * suggesting non-coding drivers
* For both negative and positive « Prioritzing rare germline variants

selection



Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
Coding H

Genomic Avg

Enhancer

*Broad categories of
regulatory regions
under negative

(Non-coding RNA) ncRNA

- ceoees - cegeeea
T

I | { | |
056 058 060 0.62 064 066 0.68

(DNase | I s
hypersensitive DHS Se eCtlon
sites) ) .
{ Trss (TFSS: Sequence- ‘Related to:
_ specific TFs)
{Transcription TFBS G I ENCODE, Nat 2012
f i di 4 Genera , Nature,
actc;:tlzgr;dlng Ward & Kellis, Science, 2012
: Mu et al, NAR, 2011
\ '
Pseudogene |—|
\

Fraction of rare SNPs
Depletion of Common Variants .
in the Human Population [Khurana et al., Science (‘13)] -



A Broad Categories B

Genomic Avg 27M SNPs |
Coding  0.27M

>
Missense | 0.15M
Synonymous | 0.12M
UTR| 0.4M

Enhancer [0

DHS | 4.8M b

TFSS

TFBS

General

Chromatin

0.56 06 0.64 0.68 072
Fraction of rare SNPs

Sub-categorization possible

Specific Categories

TF Families (motifs)

Coding o H

HMG
bzIP° |
SN0
MADs-box"
NR®
Homeodomain®
ps3” I
PTTIc I
zne [
eTs’ I
L+ .-
Ar2 IS — .
wHTH: - .
cernry’ IE—

050 055 060 065 0.70

(]

[

[

because of better statistics from

1000G phase 1 v pilot

Differential
selective
constraints
among
specific sub-
categories

[Khurana et al., Science (‘13)]

51



“Sonsival KL
s A

~0.4% genomic coverage (~ top 25)

~0.02% genomic coverage (top 5)

0.56 06 0.64 0.68 072
Fraction of rare SNPs
A Broad Categories B

Specific Categories

Genomic Avg 27M SNPs |
TF Families (motifs)

]
. ]
Coding  0.27M : H Coding ‘ 1
>
Missense | 0.15M . H Forkﬁied =
' bzIP° |
Synonymous | 0.12M , H sTaT -
UTR| 0.4M : i MADs—box:E
' NR
Homeodomain®
Enhancer LY p53 ‘
. iprr7ic’ - -
DHS | 4.8M o zne’ -
! eTs’ I
TFSS HLH® .-
) ar2 S —
B! General wHTH - .
= ) car-NFY’ I
Chromatin T T t T ]
050 055 0.60 0.65 0.70
r T T T 1
0.56 0.6 0.64 0.68 0.72

Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

Defining
Sensitive
non-
coding
Regions

Start 677 high-

resolution non-coding
categories; Rank & find
those under strongest
selection

[Khurana et al., Science (‘13)]
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Personal Genomics:
Identifying High-impact Variants in Coding & Non-coding Regions

* Introduction  Evaluating the Impact of Non-coding
- The exponential scaling of data Variants with Annotation
generation & processing - Annotating non-coding regions on
- The landscape of variants in different scales with MUSIC
personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient ‘sensitive sites” (human-conserved)
'nterpref[aj“on strategy | | - Putting it together in Workflows
) Cha.racter|Z|.ng Rare Variants in - Using LARVA to do burden testing on
Coding Regions non-coding annotation
- Identifying with STRESS  Need to correct for co-variates & over-
cryptic allosteric sites dispersion mutation counts
 On surface & in interior bottlenecks » Parameterized according to replication
- Using changes in localized timing
Frustration (o find turther sites - Using FunSeq to integrate evidence
sensitive to mutations on variants
+ Difference betw. TSGs & oncogenes « Systematically weighting all the
- Using structural motifs (eg TPR) for features
intensification o7 weak pogen signals * suggesting non-coding drivers
* For both negative and positive « Prioritzing rare germline variants

selection



Cancer Type 1

Cancer Type 2

Cancer Type 3

Mutation recurrence
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Cancer Type 1

Mutation recurrence
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Cancer Type 2
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Cancer Type 3
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Early replicated regions Late replicated regions
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Cancer Somatic Mutation Modeling

3 models to evaluate the
significance of mutation
burden

« Suppose there are k genome
elements. For element |,
define:

— n;: total number of
nucleotides

— x;. the number of
mutations within the
element

— p: the mutation rate
— R: the replication timing
bin of the element

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

x; : Binomial(n;, p)

Model 2: Varying Mutation Rate
x;|p; : Binomial(n;, p;)

p: : Beta(p, o)

Model 3: Varying Mutation Rate
with Replication Timing Correction

xi|p; : Binomial(ny, p;)
p: : Beta(u|R, o|R)

1|R, o|R : constant within the same R bin

[Lochovsky et al. NAR (’15)]
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LARVA Model Comparison

« Comparison of mutation count frequency implied by the binomial
model (model 1) and the beta-binomial model (model 2) relative to
the empirical distribution

* The beta-binomial distribution is significantly better, especially for
accurately modeling the over-dispersion of the empirical distribution

—6— empirical
® |, —&— Dbeta-binomial
o /o'°°\ —o— binomial

°
[
o
© o
S / \o
o o \
2 / o
‘»
c ? \
o o
T 9 A \
O °°°o
o°8‘e/E°°oo % o\
0% o %0, 09
° 4 ° 0,9 9
Ql 3 / / 0%0
o o o o3
) S fs
S J o/ o 888e
0 0 / 0\ eeeee
o o o o 8ge
o ; S ooo' 0'0, ‘OO °°°°°°°°°°
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0 10 20 30 40 50 60

mutation counts
[Lochovsky et al. NAR (’15)]
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probablity
00 +0.2 +0.4 +0.6

(C)

Adding DNA replication : :
timing correction 5 ! E
further improves the . | | »
beta-binomial model : {M 1 | o

(I) 1I0 2IO 3I0 4IO 5I0 6IO 7IO

+0.2

Bin Index
observed-repTiming bottom 10%
beta—binomial-repTiming bottom 10%
binomial-repTiming bottom 10%
observed—-repTiming top 10%
beta—binomial-repTiming top 10%
binomial-repTiming top 10%

Bottom 10% of rep. timing bins
. requires large correction
. e = — - -

il pep == —— " —
Iﬁ[ﬂmlﬂ[ﬂm i Top 10% of rep. timing bins
O 2 4 6

O0EEE N

requires little correction

8 10 12 14
somatic mutation count

[Lochovsky et al. NAR ('15)]
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LARVA Implementation

http://larva.gersteinlab.org/
Freely downloadable C++ program
- Verified compilation and correct execution on Linux
A Docker image is also available to download
- Runs on any operating system supported by Docker
Run8nci)ng_time on transcription factor binding sites (a worst case input size)
is ~80 min
- Running time scales linearly with the number of annotations in the input

® @ il larva.gersteinlab.org ¢ ] a

LARVA

Large-scale Analysis of Variants in noncoding Annotations

LARVA is a computational framework designed to facilitate the study of noncoding variants. It addresses issues
that have made it difficult to derive an accurate model of the background mutation rates of noncoding elements in
cancer genomes. These issues include limited noncoding functional annotation, great mutation heterogeneity, and
potential mutation correlations between neighboring sites. As a result, there is substantial overdispersion in the
mutation count of noncoding elements.

LARVA integrates a comprehensive set of noncoding functional elements, modeling their mutation count with a
beta-binomial distribution to handle overdispersion. Moreover, LARVA uses regional genomic features such as
replication timing to better estimate local mutation rates and mutational enrichments.

This zip archive contains LARVA's source code. This software counts variant intersections with
LARVA annotations, and estimates the significance of highly mutated annotations with a beta-binomial
source code distribution model of variant counts. The data context files below must be downloaded in order to use
LARVA. See this README for details.
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LARVA Results

TSS LARVA results
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o LMO3 cancer associations
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-log10(Pvalues)

noncoding annotation
p-values in sorted order

[Lochovsky et al. NAR (’15)]
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Personal Genomics:
Identifying High-impact Variants in Coding & Non-coding Regions

* Introduction  Evaluating the Impact of Non-coding
- The exponential scaling of data Variants with Annotation
generation & processing - Annotating non-coding regions on
- The landscape of variants in different scales with MUSIC
personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient ‘sensitive sites” (human-conserved)
'nterpref[aj“on strategy | | - Putting it together in Workflows
) Cha.racter|Z|.ng Rare Variants in - Using LARVA to do burden testing on
Coding Regions non-coding annotation
- Identifying with STRESS  Need to correct for co-variates & over-
cryptic allosteric sites dispersion mutation counts
 On surface & in interior bottlenecks » Parameterized according to replication
- Using changes in localized timing
Frustration (o find turther sites - Using FunSeq to integrate evidence
sensitive to mutations on variants
+ Difference betw. TSGs & oncogenes « Systematically weighting all the
- Using structural motifs (eg TPR) for features
intensification o7 weak pogen signals * suggesting non-coding drivers
* For both negative and positive « Prioritzing rare germline variants

selection



Identification of non-coding candidate drivers amongst
somatic variants: Scheme

Cancer genome ® SNV W Indel

variants

1000

Genomes - == == 1000 Genomes variants

screen

Non-coding annotation
Functional (
annotation
Degree of negative selection
Sensitive - - _

Motif disruptive score

Motif
breaking

Enhancer/

Promoter

l ;

/’ %
\ -7 Cancersample %3
|,

\ Occurrence in multiple samples

[

® [Khurana et al., Science (‘“13)]

Candidate driver
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Flowchart for 1 Prostate Cancer Genome

(from Berger et al. '11) [ 1629 somatic Shvs |
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[Khurana et al., Science (‘13)]
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FunSeq2 - A flexible framework to prioritize regulatory mutations from cancer genome sequencing

Site integrates
| Resuts  Downloads Documentaon  FAQ | user variants

Overview with large-scale

< Note: In addition to on-site calculation, we also provide

This tool is specialized to prioritize somatic variants from cancer scores for all possible. noncoding SNVS of GRCh37/hg19 con t eXt
whole genome sequencing. It contains two components : 1) building under 'Downloads' (without annotation and recurrence

data context from various resources; 2) variants prioritization. We analysis).

provided downloadable scripts for users to customize the data Input File: (only for hg19 SNVs)

context (found under 'Downloads'). The variants prioritization step is

) ) Choose File | No file chosen
downloadable, and also implemented as web server (Right Panel), —

with pre-processed data context. BED or VCF files as input. Sample input file F= === = — — —————— - -

r— Output Format: | !

bed 3 ! !

< Input File - BED or VCF formatted. Click "green" button to add MAF: : :

multiple files. With multiple files, the tool will do recurrent analysis. 0 | Data Context |
(Note: for BED format, user can put variants from multiple genomes

A i . i Minor allele frequency threshold to filter polymorphisms from | !

in one file, see Sample input file .) 1KG (value 0~1) | |

| 1

< Recurrence DB - User can choose particular cancer type from the

database. The DB will continue be updated with newly available Cancer Type from Recurrence DB: Summary table

WGS data. All Cancer Types s

< Gene List - Option to analyze variants associated with particular Add a gene list (Optional)

set of genes. Note: Please use Gene Symbols, one row per gene.

+ Differential Gene Expression Analysis - Option to detect Add differential gene expression analysis (Optional)
differentially expressed genes in RNA-Seq data. Two files needed:

expression file & class label file. Please refer to Expression input files

for instructions to prepare those files.

User Weighted scoring scheme
Variants

F un Se q .gersteinlab.org Highlighting variants

[Fu et al., GenomeBiology ('14)]




= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)
- entropy based method  imtmmmmmmomooooooooo
HOT region mm

E Sensitive region
E Polymorphisms

_____________________

Genorne  J N W N S I I O | N |

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)
- entropy based method  imtmmmmmmomooooooooo
HOT region mm

Polymorphisms

1

1

1

1

I . . .

I Sensitive region I
|

1

1

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)
- entropy based method  imtmmmmmmomooooooooo
HOT region mm

Polymorphisms

1

1

1

1

I . . .

I Sensitive region I
|

1

1

Genorne [N N O I I O | |

P=%

Feature weight: Wg = 1 + pglog,pa + (1- pd)logz(l — pd)
p T w, l p = probability of the feature overlapping natural polymorphisms

For a variant: Score = E w,; Oof observed features

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show

higher core scores than controls

Score

RN VAR IS RYA

1.0

unmatched: 0.86

0.6 0.8

True Positive Rate

0.2

HGMD Matched region  Matched TSS Unmatched
regulatory (1,527) (4,258) (13,861) (144,086)

| | | | |
0.0 0.2 0.4 0.6 0.8

False Positive Rate

3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region: 1kb around HGMD variants
2. Matched TSS: matched for distance to TSS

3. Unmatched: randomly selected

Ritchie et al., Nature Methods, 2014

[Fu et al., GenomeBiology ('14, in revision)]

1.0
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personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient ‘sensitive sites” (human-conserved)
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+ Difference betw. TSGs & oncogenes « Systematically weighting all the
- Using structural motifs (eg TPR) for features
intensification o7 weak pogen signals * suggesting non-coding drivers
* For both negative and positive « Prioritzing rare germline variants

selection



Personal Genomics:
Identifying High-impact Variants in Coding & Non-coding Regions

* Introduction « Evaluating the Impact of Non-coding
- The exponential scaling of data Variants with Annotation
generation & processing — Annotating non-coding regions on
— The landscape of variants in different scales with MUSIC
personal genomes suggests — Prioritizing rare variants with
prioritizing a few is an efficient “sensitive sites” (human-conserved)
interpretation strategy | « Putting it together in Workflows
) Cha.racter|2|.ng Rare Variants in - Using LARVA to do burden testing on
Coding Regions non-coding annotation
- ldentifying with STRESS « Need to correct for co-variates & over-
cryptic allosteric sites dispersion mutation counts
« On surface & in interior bottlenecks « Parameterized according to replication
- Using changes in localized timing
Frustration to find further sites - Using FunSeq to integrate evidence
sensitive to mutations on variants
« Difference betw. TSGs & oncogenes » Systematically weighting all the
— Using structural motifs (eg TPR) for features
intensification of weak pogen signals « suggesting non-coding drivers
« For both negative and positive « Prioritzing rare germline variants

selection



github.com/gersteinlab/F rustration
s Kumar, p Clarke

MUS'C.gersteinIab.org
A Harmanci, J Rozowsky

|ntenSificatiOn.gersteinlab.org
JChen,s Wang, L Regan
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2016.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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