Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

> Mark Gerstein, Yale Slides freely downloadable from Lectures.GersteinLab.org & "tweetable" (via @markgerstein). See last slide for more info.

Sequencing Data Explosion: Faster than Moore's Law for a Time (or a S-curve)

- DNA sequencing has gone through technological S-curves
 - In the early 2000's, improvements in Sanger sequencing produced a scaling pattern similar to Moore's law.
 - The advent of NGS was a shift to a new technology with dramatic decrease in cost).

Sequencing cost reductions have resulted in an explosion of data

- The type of sequence data deposited has changed as well.
 - Protected data represents an increasing fraction of all submitted sequences.
 - Data from techniques utilizing NGS machines has replaced that generated via microarray.

Human Genetic Variation

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

Finding Key Variants

Germline

Common variants

- Can be associated with phenotype (ie disease) via a Genome-wide Association Study (GWAS), which tests whether the frequency of alleles differs between cases & controls.
- Usually their functional effect is weaker.
- Many are non-coding
- Issue of LD in identifying the actual causal variant.

Rare variants

- Associations are usually underpowered due to low frequencies.
- They often have larger functional impact
- Can be collapsed in the same element to gain statistical power (burden tests).
- In some cases, causal variants can be identified through tracing inheritance of Mendelian subtypes of diseases in large families.

Finding Key Variants

Somatic

Overall

- Often these can be conceptualized as very rare variants
- A challenge to identify somatic mutations contributing to cancer is to find driver mutations & distinguish them from passengers.

Drivers

- Driver mutation is a mutation that directly or indirectly confers a selective growth advantage to the cell in which it occurs.
- A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

Passengers

 Conceptually, a passenger mutation has no direct or indirect effect on the selective growth advantage of the cell in which it occurred.

Association of Variants with Diseases

Rare variant analysis particularly applicable at the moment to Exomes

- CMG rare disease variants & TCGA somatic variants
 - Main NIH disease genomic project
 - Both of these focus on "rare" variant for which GWAS is not meaningful
 - Larger numbers of individual exomes more important than WGS

- Exomes have the current potential for great scale with the better impact interpretability of coding variants, often in a region of known protein structure
 - Scale of EXAC, >60K exomes
 [Lek et al. '16]

Protein structures may provide the needed alternative for evaluating rare SNVs, many of which may be disease-associated

Fibroblast growth factor receptor 2 (pdb: 1IIL)

- 0 1000G & ExAC SNVs (common | rare)
 - Hinge residues
 - Buried residues
 - Protein-protein interaction site
 - Post-translational modifications
 - HGMD site (w/o annotation overlap)
 - HGMD site (w/annotation overlap)

Developing Tools for evaluating the impact of rare variants in coding regions

- New tools to wring everything out of protein structure
 - Stress for finding cryptic sites
 - Frustration for rapidly evaluating packing changes
 - (MotifVar) Intensification for using the amplifying power of protein structural motifs (eg TPR)
- Another approach looking for allelic variants

Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

- Introduction
 - Rare v common variants
 - The importance of interpreting rare coding variants in the context of disease genomics (CMG,TCGA)
- Identifying cryptic allosteric sites with STRESS
 - On surface & in interior bottlenecks
- Using changes in localized frustration to find further sites sensitive to mutations
 - Difference betw. TSGs & oncogenes

- Using structural motifs (eg TPR) for intensification of weak population genetic signals
 - For both negative and positive selection
- Prioritizing allelic genes using AlleleDB
 - Having observed difference in molecular activity in many contexts

Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

- Introduction
 - Rare v common variants
 - The importance of interpreting rare coding variants in the context of disease genomics (CMG,TCGA)
- Identifying cryptic allosteric sites with STRESS
 - On surface & in interior bottlenecks
- Using changes in localized frustration to find further sites sensitive to mutations
 - Difference betw. TSGs & oncogenes

- Using structural motifs (eg TPR) for intensification of weak population genetic signals
 - For both negative and positive selection
- Prioritizing allelic genes using AlleleDB
 - Having observed difference in molecular activity in many contexts

Models of Protein Conformational Change

Motion Vectors from Normal Modes (ANMs)

Characterizing uncharacterized variants <= Finding Allosteric sites <= Modeling motion

Predicting Allosterically-Important Residues at the Surface

- MC simulations generate a large number of candidate sites 1.
- 2. Score each candidate site by the degree to which it perturbs large-scale motions
- 3. Prioritize & threshold the list to identify the set of high confidence-sites

Predicting Allosterically-Important Residues at the Surface

Adapted from Clarke*, Sethi*, et al (in press)

Predicting Allosterically-Important Residues within the Interior

Adapted from Clarke*, Sethi*, et al (in press)

Predicting Allosterically-Important Residues within the Interior

 $Cov_{ij} = \langle \mathbf{r}_i \bullet \mathbf{r}_j \rangle$ $C_{ij} = Cov_{ij} / \sqrt{\langle \langle \mathbf{r}_i^2 \rangle \langle \mathbf{r}_i^2 \rangle}$ $D_{ii} = -\log(|C_{ii}|)$

Adapted from Clarke*, Sethi*, et al (in press)

Predicting Allosterically-Important Residues within the Interior

STRESS Server Architecture: Highlights stress.molmovdb.org

- A light front-end server handles incoming requests, and powerful back-end servers perform calculations.
- Auto Scaling adjusts the number of back-end servers as needed.
- A typical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.
- Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.

Intra-species conservation of predicted allosteric residues 1000 Genomes

Intra-species conservation of predicted allosteric residues ExAC

21 – Lectures.GersteinLab.org

Unlike common SNVs, the statistical power with which we can evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating rare SNVs, many of which may be disease-associated

Fibroblast growth factor receptor 2 (pdb: 1IIL)

- • 1000G & ExAC SNVs (common | rare)
 - Hinge residues
 - Buried residues
 - Protein-protein interaction site
 - Post-translational modifications
 - HGMD site (w/o annotation overlap)
 - HGMD site (w/annotation overlap)

Protein structures may provide the needed alternative for evaluating rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior with allostery as an added annotation

Fibroblast growth factor receptor 2 (pdb: 1IIL)

- • Predicted allosteric (surface | interior)
- • 1000G & ExAC SNVs (common | rare)
 - Hinge residues
 - Buried residues
 - Protein-protein interaction site
 - Post-translational modifications
 - HGMD site (w/o annotation overlap)
 - HGMD site (w/annotation overlap)

Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

- Introduction
 - Rare v common variants
 - The importance of interpreting rare coding variants in the context of disease genomics (CMG,TCGA)
- Identifying cryptic allosteric sites with STRESS
 - On surface & in interior bottlenecks
- Using changes in localized frustration to find further sites sensitive to mutations
 - Difference betw. TSGs & oncogenes

- Using structural motifs (eg TPR) for intensification of weak population genetic signals
 - For both negative and positive selection
- Prioritizing allelic genes using AlleleDB
 - Having observed difference in molecular activity in many contexts

Schematic illustration of localized frustration

[Ferreiro et al., PNAS ('07)]

Workflow for evaluating localized frustration changes (**∆F**)

Striking a balance: the complexity of the second order frustration calculation

MD-assisted free energy calculation (ΔG)

Time

Accuracy

27 T Lectures.GersteinLab.org

Comparing Δ F values across different SNV categories: Normal v disease

Normal mutations (1000G) tend to unfavorably frustrate (less frustrated) surface more than core, but for disease mutations (HGMD) no trend & greater changes

[Kumar et al. NAR (in press); biorxiv 052027]

∆F distributions among rare v. common SNVs

Rare mutations cause more unfavorable frustration change than common ones

29

Lectures.GersteinLab.org

Comparison between ∆F distributions: TSGs v. oncogenes

SNVs in TSGs change frustration more in core than the surface, whereas those associated with oncogenes manifest the opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

- Introduction
 - Rare v common variants
 - The importance of interpreting rare coding variants in the context of disease genomics (CMG,TCGA)
- Identifying cryptic allosteric sites with STRESS
 - On surface & in interior bottlenecks
- Using changes in localized frustration to find further sites sensitive to mutations
 - Difference betw. TSGs & oncogenes

- Using structural motifs (eg TPR) for intensification of weak population genetic signals
 - For both negative and positive selection
- Prioritizing allelic genes using AlleleDB
 - Having observed difference in molecular activity in many contexts

Intensification amplifies signals

from motif-based MSAs

Intensification amplifies signals Human Protein 1 Human Protein 2 TPR from motif-based MSAs TPR : SNV Human TTC21B **Find motifs** 1. b TPR 大 TPR TPR TPR TPR TPR TPR Generate motif-MSA 1. TPR motif-MSA species-MSA Map SNVs to 1. motif-MSA C/S C/NS R/S **Evaluate SNV profiles** 1. R/NS equence motif-MSA 5 20 residue number Motif-MSA and SNV profiles for: a) amino acid freq Store in database 1. b) SIFT scores c) R/C "☆LĿ/

d) NS/Se) ∆DAF (pop)

Lectures.GersteinLab.org

39

Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

- Introduction
 - Rare v common variants
 - The importance of interpreting rare coding variants in the context of disease genomics (CMG,TCGA)
- Identifying cryptic allosteric sites with STRESS
 - On surface & in interior bottlenecks
- Using changes in localized frustration to find further sites sensitive to mutations
 - Difference betw. TSGs & oncogenes

- Using structural motifs (eg TPR) for intensification of weak population genetic signals
 - For both negative and positive selection
- Prioritizing allelic genes using AlleleDB
 - Having observed difference in molecular activity in many contexts

Allele-specific binding and expression

Genomic variants affecting allele-specific behavior e.g. allele-specific binding (ASB)

e.g. allele-specific expression (ASE)

Inferring Allele Specific Binding/Expression using Sequence Reads

RNA/ChIP-Seq Reads

ACTTTGATAGCGTCAATG CTTTGATAGCGTCAATGC CTTTGATAGCGTCAACGC TTGACAGCGTCAATGCACG TGATAGCGTCAATGCACG ATAGCGTCAATGCACGTC TAGCGTCAATGCACGTCG CGTCAACGCACGTCGGGA GTCAATGCACGTCGGGAGTT AATGCACGTCGGGAGTTG TGCACGTTGGGAGTTGGC

Haplotypes with a Heterozygous Polymorphism

- 10 x T
- 2 x C

AlleleDB: Building 382 personal genomes to detect allele-specific variants on a large-scale

[Chen et al. ('16) Nat. Comm.]

AlleleDB: Annotating rare & common allele-specific variants over a population

- Interfaces with UCSC genome browser
- Showing ZNF331 gene structure

AlleleDB: Annotating rare & common allele-specific variants over a population

Collecting ASE/ASB variants into allele-specific genomic regions

Does a particular genomic element have a higher tendency to be allele-specific? Fisher's exact test, for the **<u>enrichment</u>** of allele-specific variants in the element (with respect to non-allele-specific variants that could potentially be called as allelic)

Groups of elements that are enriched or depleted in allelic activity

Groups of elements that are enriched or depleted in allelic activity

[Chen et al. ('16) Nat. Comm.]

Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

- Introduction
 - Rare v common variants
 - The importance of interpreting rare coding variants in the context of disease genomics (CMG,TCGA)
- Identifying cryptic allosteric sites with STRESS
 - On surface & in interior bottlenecks
- Using changes in localized frustration to find further sites sensitive to mutations
 - Difference betw. TSGs & oncogenes

- Using structural motifs (eg TPR) for intensification of weak population genetic signals
 - For both negative and positive selection
- Prioritizing allelic genes using AlleleDB
 - Having observed difference in molecular activity in many contexts

Analysis of Personal Genomes: Evaluating the impact of variants in exomes using protein structure & allelic activity

- Introduction
 - Rare v common variants
 - The importance of interpreting rare coding variants in the context of disease genomics (CMG,TCGA)
- Identifying cryptic allosteric sites with STRESS
 - On surface & in interior bottlenecks
- Using changes in localized frustration to find further sites sensitive to mutations
 - Difference betw. TSGs & oncogenes

- Using structural motifs (eg TPR) for intensification of weak population genetic signals
 - For both negative and positive selection
- Prioritizing allelic genes using AlleleDB
 - Having observed difference in molecular activity in many contexts

Acknowledgments

github.com/gersteinlab/ **Frustration SKumar,** D Clarke

(Intensification) **MotifVar**.gersteinlab.org **JChen**, B Wang, L Regan AllelebB.gersteinlab.org J Chen, J Chen, J Rozowsky, TR Galeev, A Harmanci, R Kitchen, J Bedford, AAbyzov, Y Kong, L Regan

STRESS.molmovdb.org DClarke, A Sethi, S Li, S Kumar, R Chang, J Chen

Hiring Postdocs. See gersteinlab.org/jobs

Info about content in this slide pack

- General PERMISSIONS
 - This Presentation is copyright Mark Gerstein, Yale University, 2016.
 - Please read permissions statement at www.gersteinlab.org/misc/permissions.html.
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 - Paper references in the talk were mostly from Papers.GersteinLab.org.
- PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info .
 - In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt