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Sequencing Data Explosion:
Faster than Moore’s Law for a Time (or a S-curve)

 DNA sequencing has
gone through
technological S-curves

- In the early 2000’s,
improvements in Sanger
sequencing produced a
scaling pattern similar to
Moore’s law.

- The advent of NGS was a
shift to a new technology
with dramatic decrease in
cost).

Cost per Raw Megabase of DNA Sequence

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007

Moore's Law

2008 2009 2010 2011 2012 2013 2014 2015
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Sequencing cost
reductions have
resulted in an
explosion of data

» The type of sequence
data deposited has
changed as well.

Protected data
represents an
increasing fraction of all
submitted sequences.

Data from techniques
utilizing NGS machines
has replaced that
generated via
microarray.
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Human Genetic Variation

Population of

A Cancer Genome A Typical Genome 2,504 peoples
Origin of Variants Class of Variants
3.5-4.3M 84.7M
550 — 625K 3.6M
2.1-25K 60K
(20Mb)
Somatic 88.3M
4.1 — 5M

Prevalence of Variants

 Common -

Driver (~0.1%) Rare” (1-4%) Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Germline

Common variants
« Can be associated with phenotype (ie disease) via a Genome-wide Association Study

(GWAS), which tests whether the frequency of alleles differs between cases & controls.

» Usually their functional effect is weaker.

* Many are non-coding
» Issue of LD in identifying the actual causal variant.

Rare variants

» Associations are usually underpowered due to low frequencies.

« They often have larger functional impact
« Can be collapsed in the same element to gain statistical power (burden tests).
* In some cases, causal variants can be identified through tracing inheritance of

Mendelian subtypes of diseases in large families.

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Somatic

 Overall

« Often these can be conceptualized as_very rare variants
« A challenge to identify somatic mutations contributing to cancer is to find driver
mutations & distinguish them from passengers.

 Drivers

« Driver mutation is a mutation that directly or indirectly confers a selective growth
advantage to the cell in which it occurs.
A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

- Passengers

« Conceptually, a passenger mutation has no direct or indirect effect on the
selective growth advantage of the cell in which it occurred.
Vogelstein B. Science 2013. 339(6127):1546-1558
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Association of Variants with Diseases
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Rare variant
analyS iS Home ~ GSP CCDG GSPAC GSPCC  NHGRI
parti cu Ia rly Centers for Mendelian Genomics Data Release and

The Centers for Mendelian Genomics (CMG) use genome- Sharing
I - b I t th wide sequencing and other genomic approaches to
a p p I ca e a e discover the genetic basis underlying as many Mendelian
traits as possible, and accelerate discoveries by
disseminating the obtained knowledge and effective
m o m e nt to Exo m es approaches, reaching out to individual investigators, and

coordinating with other rare disease programs worldwide.

Mechanisms of Data Release
and Sharing

Latest Publications

« Reads meet rotamers:

The currently funded CMG are: the Baylor-Hopkins CMG, structural biology in the age
the Broad Institute CMG, the University of Washington of deep sequencing.
CMG, and the Yale University CMG. Please direct inquiries « Pathogenetics of alveolar
H about collaborations directly to the centers. capillary dysplasia with
 CMG rare disease m———
. . The CMGs contribute to the overall field of Mendelian veins.
Va rl a ntS & TC GA SO m atl C genetics which has been responsible for many disease « Recessive Inactivating
gene discoveries. See the detailed Mendelian Traits by Mutations in TBCK
Ll AL L o £ H 7 L1 = " H DL —~Tn

variants
- Main NIH disease
genomic project  Exomes have the current
— Both of these focus on potential for great scale with
“rare” variant for which the better impact interpretability
GWAS is not meaningful of coding variants, often in a

— Larger numbers of region of known protein
individual exomes more structure

important than WGS — Scale of EXAC, >60K exomes
[Lek et al. “16]
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Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & ExAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
5 HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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[Sethi et al. COSB ('15)]



Developing Tools for evaluating the impact of rare
variants in coding regions

* New tools to wring everything out of protein structure
- Stress for finding cryptic sites
- Frustration for rapidly evaluating packing changes

- (MotifVar) Intensification for using the amplifying
power of protein structural motifs (eg TPR)

« Another approach — looking for allelic variants

10 =



Analysis of Personal Genomes:
Evaluating the impact of variants in exomes
using protein structure & allelic activity

* Introduction * Using structural motifs (eg
TPR) for intensification of
weak population genetic
signals

- For both negative and
positive selection

— Rare v common variants

- The importance of
interpreting rare coding
variants in the context of
disease genomics

(CMG,TCGA) * Prioritizing allelic genes
- |dentifying cryptic allosteric using AlleleDB
sites with STRESS - Having observed
— On surface & in interior difference in molecular

bottlenecks activity in many contexts

« Using changes in localized
frustration to find further sites
sensitive to mutations

— Difference betw. TSGs &
oncogenes
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Models of Protein Conformational Change

Motion Vectors from Normal Modes (ANMs)
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PDB ID: 3RFU
Adapted from Fuglebakk et al, 2014

Characterizing uncharacterized variants
<= Finding Allosteric sites
<= Modeling motion
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Predicting Allosterically-Important Residues at the Surface

1. MC simulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites

pdb 1J3H
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blndlng leverage — Z(ZZ Adij(m)) Surface region with high
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density of candidate sites

Surface region with low
density of candidate sites
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Predicting Allosterically-Important Residues at the Surface

PDB: 3PFK

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

weight edges using
motion vectors

AVA /3 \7, @ —
\VA ¥ N )
identify

critical residues

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

W W“;:,go:.:‘szit‘:,i‘s“; Cov; = (rj®r;)
Clj = COVij / \/(<ri2><rj2>)

iz

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior
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Adapted from Clarke*, Sethi*, et al (in press)
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STRESS Server Architecture: Highlights

stress.molmovdb.org

Thin front end

EC2 | |

OO
o0 |

STRESS A computationally-efficient framework for identifying potential allosteric residues at

Home Documentation Examples

Submit a new job:

Enter PDB ID (ex: 3D3D): Or upload PDB File:

e File | No file chosen

Select which modules to run:

¥ Surface-critical

¥ Interior-critical

rotein surface and within the interior

Retrieve job results:

Job id:

Citi

ng

Retrieve

=<

Auto-scalable

EC2

EC2

EC2

back-end

\/

RESTful
storage

e A light front-end server handles incoming requests, and powerful back-end
servers perform calculations.

e Auto Scaling adjusts the number of back-end servers as needed.

e A typical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.

e Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.

Adapted from Clarke*, Sethi*, et al (in press)
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Intra-species conservation of predicted allosteric residues
1000 Genomes
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Adapted from Clarke*, Sethi*, et al (in press)
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Intra-species conservation of predicted allosteric residues
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior
with allostery as an added annotation

® @ Predicted allosteric (surface | interior)
® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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Analysis of Personal Genomes:
Evaluating the impact of variants in exomes
using protein structure & allelic activity

* Introduction  Using structural motifs (eg
PR for intensification of
weak population genetic
signals

- For both negative and
positive selection

— Rare v common variants

- The importance of
interpreting rare coding
variants in the context of
disease genomics

(CMG,TCGA) * Prioritizing allelic genes
- |dentifying cryptic allosteric using AlleleDB
sites with STRESS - Having observed

difference in molecular
activity in many contexts

— On surface & in interior
bottlenecks

« Using changes in localized
frustration o find further sites
sensitive to mutations

— Difference betw. TSGs &
oncogenes



Schematic illustration of localized frustration

ASN

more negative more positive
CETTBOODI @D ..'O.QOO...
favorable interaction unfavorable interaction

[Ferreiro et al., PNAS ('07)]
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awil]

Striking a balance:
the complexity of the second order frustration
calculation

MD-assisted free energy calculation (AG)

Second order frustration calculation (AF)

First order frustration calculation (F)

Accuracy
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Comparing AF values across different
SNV categories: Normal v disease

S O
frustration 1000 Genomes B ExAC C HGMD

[ [ [ | [ [
Core Surface Core Surface Core Surface

Normal mutations (1000G) tend to unfavorably frustrate
(less frustrated) surface more than core,

but for disease mutations (HGMD)

no trend & greater changes
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[Kumar et al. NAR (in press); biorxiv 052027]

AF distributions
among rare V.
common SNVs

Rare mutations
cause more
unfavorable
frustration
change than
common ones
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Comparison between AF
distributions: TSGs v. oncogenes

A TSG Drivers B Oncogene Drivers
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SNVs in TSGs change frustration more in core than the surface, whereas those associated with
oncogenes manifest the opposite pattern. This is consistent with differences in LOF v GOF mechanisms.

[Kumar et al. NAR (in press); biorxiv 052027]
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Analysis of Personal Genomes:
Evaluating the impact of variants in exomes
using protein structure & allelic activity

* Introduction  Using structural motifs (eg
PR for intensification of
weak population genetic
signals

- For both negative and
positive selection

— Rare v common variants

- The importance of
interpreting rare coding
variants in the context of
disease genomics

(CMG,TCGA) * Prioritizing allelic genes
- |dentifying cryptic allosteric using AlleleDB
sites with STRESS - Having observed

difference in molecular
activity in many contexts

— On surface & in interior
bottlenecks

« Using changes in localized
frustration o find further sites
sensitive to mutations

— Difference betw. TSGs &
oncogenes



Intensification amplifies signals

from motif-based MSAs

(b ® R
. Nl TPR-_TPR TPR
“ TPR | TPR TPR

species-MSA NN [

" s Fes
g A ==

[Chen et al., JMB (17, in revision)]
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Intensification amplifies signals . protein1 TR TTPRTTERT CTERT—-

from motif-based MSAs
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=

=

=

Find motifs

Generate motif-MSA

Map SNVs to
motif-MSA

Evaluate SNV profiles

Store in database
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Motif-MSA and SNV profiles for:
a) amino acid freq

b) SIFT scores

c)RIC

d) NS/S

e) ADAF (pop)

[Chen et al., JMB (17, in revision)]
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Species MSAs

sEeATEL YT agyke Kl crab DETs

100

Motif-MSA uncovers important
positions missed by species-MSA

[Chen et al., JMB (‘17, in revision)]
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Motif-MSA uncovers important
positions missed by species-MSA

Signal-to-noise is the best in EXAC

[Chen et al., JMB (‘17, in revision)]
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How to check possible significance:

[Chen et al., JMB (‘17, in revision)]
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[Chen et al., JMB (‘17, in revision)]

-> burial within structure

-> more SNVs implicated in diseases
in ClinVar and HGMD

-> sites with increased human pop.
differentiation might indicate
important position
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Analysis of Personal Genomes:
Evaluating the impact of variants in exomes
using protein structure & allelic activity

* Introduction  Using structural motifs (eg
PR for intensification of
weak population genetic
signals

- For both negative and
positive selection

— Rare v common variants

- The importance of
interpreting rare coding
variants in the context of
disease genomics

(CMG,TCGA) * Prioritizing allelic genes
- |dentifying cryptic allosteric using AlleleDB
sites with STRESS - Having observed

difference in molecular
activity in many contexts

— On surface & in interior
bottlenecks

« Using changes in localized
frustration o find further sites
sensitive to mutations

— Difference betw. TSGs &
oncogenes



Allele-specific binding and expression

Paternal N9
DNA gene
t iption fact
N/“(;;:f;:;z;:; ftor

Maternal
DNA gene

— MY

— T\ _MMA
Paternal |-> — N\ M
DNA C gene
Maternal @ IIIIII
DNA + o

Genomic variants

affecting allele-specific behavior
e.g. allele-specific binding
(ASB)

e.g. allele-specific expression
(ASE)
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Inferring Allele Specific Binding/Expression
using Sequence Reads

RNA/ChIP-Seq Reads

ACTTTGATAGCGTCAATG :><:
CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC ~-AACGC...
TTGACAGCGTCAATGCAC TF
TGATAGCGTCAATGCACG
ATAGCGTCAATGCACGTC
TAGCGTCAATGCACGTCG \V//
CGTCAACGCACGTCGGGA
GTCAATGCACGTCGAGAG _AATGC...
CAATGCACGTCGGGAGTT
AATGCACGTCGGGAGTTG
TGCACGTTGGGAGTTGGC Haplotypes with a

Heterozygous Polymorphism
10 x T

2 x C



AlleleDB: Building 382 personal genomes to detect
allele-specific variants on a large-scale

® ‘
N—

1. Build personal genomes ‘ I ‘ Variants

(1000 Genomes
Project)

_ N——
2. Align ChlP-seq & RNA-seq reads RNA-seq:
(EUVADIS)
ChlIP-seq:
(ENCODE)

1. Detect allele-specific variants
via a series of filters and tests

Many Technical Issues:
Reference bias, Ambiguous
mapping bias, Over-dispersed S ——

(non binomial null) —F
allele-specific SNV

alleledb.gersteinlab.org
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AlleleDB: Annotating rare & common allele-specific
variants over a population

e s T e e | ¢ |Interfaces with
o8 || | | ucsc genome
output i browser

UCSC [ ° Showing
track 1 &= = — ZNF331 gene
Position structure

[Chen et al. (‘16) Nat. Comm.]
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AlleleDB:

Annotating rare & common allele-specific
variants over a population
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Collecting ASE/ASB variants
into allele-specific genomic regions

Does a particular genomic element have a higher tendency to be allele-specific?
Fisher’s exact test, for the enrichment of allele-specific variants in the element (with
respect to non-allele-specific variants that could potentially be called as allelic)
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Groups of elements that are enriched or
depleted in allelic activity
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Groups of elements that are enriched or
depleted in allelic activity
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Analysis of Personal Genomes:
Evaluating the impact of variants in exomes
using protein structure & allelic activity

* Introduction  Using structural motifs (eg
PR for intensification of
weak population genetic
signals

- For both negative and
positive selection

— Rare v common variants

- The importance of
interpreting rare coding
variants in the context of
disease genomics

(CMG,TCGA) * Prioritizing allelic genes
- |dentifying cryptic allosteric using AlleleDB
sites with STRESS - Having observed

difference in molecular
activity in many contexts

— On surface & in interior
bottlenecks

« Using changes in localized
frustration o find further sites
sensitive to mutations

— Difference betw. TSGs &
oncogenes
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2016.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.htmi .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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