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• Exponential increase in the 
number of transistors per 
chip.

• Led to improvements in 
speed and miniaturization.

• Drove widespread adoption 
and novel applications of 
computer technology.

Moore’s Law:
Exponential 
Scaling of 
Computer 

Technology

[Waldrop	(‘15)	Nature]
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• Moore’s & Kryder’s 
Laws
- As important as the 

increase in computer speed 
has been, the ability to 
store large amounts of 
information on computers is 
even more crucial

• Exponential increase 
seen in Kryder’s law 
is a superposition of 
S-curves for different 
technologies

Kryder’s Law and   
S-curves underlying 
exponential growth
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[Muir	et	al.	(‘15)	GenomeBiol.]
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Sequencing Data Explosion: 
Faster than Moore’s Law for a Time (or a S-curve)

• DNA sequencing has 
gone through 
technological S-curves
- In the early 2000’s, 

improvements in Sanger 
sequencing produced a 
scaling pattern similar to 
Moore’s law.

- The advent of NGS was a 
shift to a new technology 
with dramatic decrease in 
cost). 
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Sequencing cost 
reductions have 

resulted in an 
explosion of data

• The type of sequence 
data deposited has 
changed as well.
- Protected data 

represents an 
increasing fraction of all 
submitted sequences.

- Data from techniques 
utilizing NGS machines 
has replaced that 
generated via 
microarray.

[Muir	et	al.	(‘15)	GenomeBiol.]
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Sequence Universe
TCGA	endpoint:	~2.5	Petabytes
~1.5	PB	exome
~1	PB	whole	genome

SRA	~1	petabyte

Star	formation
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GTeX

Heidi Sofia, 7-16-15
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Increasing diversity in 
sequence data sources

[Muir	et	al.	(‘15)	GenomeBiol.]
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts from 
the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts from 
the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]
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The changing costs of a sequencing pipeline

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts from 
the actual seq. to sample 
collection & analysis

Alignment algorithms scaling to keep 
pace with data generation
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The changing costs of a sequencing pipeline

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts from 
the actual seq. to sample 
collection & analysis

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

Alignment algorithms scaling to keep 
pace with data generation
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The changing costs of a sequencing pipeline

[Sboner	et	al.	(‘11),	Muir	et	al.	(‘15)	Genome	Biology]

From ‘00 to ~’20, 
cost of DNA sequencing expt. shifts from 
the actual seq. to sample 
collection & analysis



Personal Genomics:
Managing Rapid Data Scaling through Prioritizing High-impact Variants

• Introduction 
- The exponential scaling of 

data generation & processing
- The landscape of variants in 

personal genomes suggests 
prioritizing a few is an 
efficient interpretation 
strategy

• Characterizing Rare Variants 
in Coding Regions
- Identifying with STRESS

cryptic allosteric sites 
• On surface & in interior 

bottlenecks 

- Using changes in localized 
Frustration to find further sites 
sensitive to mutations

• Difference betw. TSGs & 
oncogenes

• Evaluating the Impact of Non-coding 
Variants with Annotation
- Annotating non-coding regions on different 

scales with MUSIC
- Prioritizing rare variants with 

“sensitive sites” (human-conserved) 
• Putting it together in Workflows
- Using LARVA to do burden testing on 

non-coding annotation
• Need to correct for co-variates & over-

dispersion mutation counts
• Parameterized according to replication 

timing 
- Using FunSeq to integrate evidence on 

variants 
• Systematically weighting all the features
• suggesting non-coding drivers
• Prioritzing rare germline variants
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Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation
A Typical Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Codin
g

Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger
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Finding Key 
Variants

Germline

• Common variants
• Can be associated with phenotype (ie disease) via a Genome-wide Association Study 

(GWAS), which tests whether the frequency of alleles differs between cases & controls. 
• Usually their functional effect is weaker. 
• Many are non-coding
• Issue of LD in identifying the actual causal variant.

• Rare variants
• Associations are usually underpowered due to low frequencies. 
• They often have larger functional impact
• Can be collapsed in the same element to gain statistical power (burden tests).
• In some cases, causal variants can be identified through tracing inheritance of 

Mendelian subtypes of diseases in large families.

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476

CAN YOU FIND THE PANDA?
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Finding Key 
Variants

Somatic

• Overall
• Often these can be conceptualized as very rare variants 
• A challenge to identify somatic mutations contributing to cancer is to find driver 

mutations & distinguish them from passengers.
• Drivers

• Driver mutation is a mutation that directly or indirectly confers a selective growth 
advantage to the cell in which it occurs.

• A typical tumor contains 2-8 drivers; the remaining mutations are passengers.
• Passengers

• Conceptually, a passenger mutation has no direct or indirect effect on the 
selective growth advantage of the cell in which it occurred.

CAN YOU FIND THE PANDA?

Vogelstein B. Science 2013. 339(6127):1546-1558
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[Sethi	et	al.	COSB	(’15)]	
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Models	of	Protein	Conformational	Change
Motion	Vectors	from	Normal	Modes	(ANMs)

inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922

PDB	ID:	3RFU
Adapted	from	Fuglebakk	et	al,	2014

Characterizing	uncharacterized	variants
<=	Finding	Allosteric	sites
<=	Modeling	motion
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Surface	region	with	high	
density	of	candidate	sites

Surface	region	with	low	
density	of	candidate	sites

Predicting	Allosterically-Important	Residues	at	the	Surface	

pdb	1J3H

1. MC	simulations	generate	a	large	number	of	candidate	sites
2. Score	each	candidate	site	by	the	degree	to	which	it	perturbs	large-scale	motions
3. Prioritize	&	threshold	the	list	to	identify	the	set	of	high	confidence-sites

! !

deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j

¨dbinding leverage  =  2

m=1
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Predicting	Allosterically-Important	Residues	at	the	Surface	

Adapted	from	Clarke*,	Sethi*,	et	al	(in	press)

PDB:	3PFK
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Predicting	Allosterically-Important	Residues	within	the	Interior	

Adapted	from	Clarke*,	Sethi*,	et	al	(in	press)
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where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 

! 24!

 
 

Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 
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PDB:	1XTT

Predicting	Allosterically-Important	Residues	within	the	Interior	
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Auto-scalable
back-end

EC2Thin front end
EC2

RESTful
storage

EC2

EC2

S3

S3
Queue

Adapted	from	Clarke*,	Sethi*,	et	al	(in	press)

STRESS	Server	Architecture:	Highlights
stress.molmovdb.org

• A	light	front-end	server	handles	incoming	requests,	and	powerful	back-end	
servers	perform	calculations.	

• Auto	Scaling	adjusts	the	number	of	back-end	servers	as	needed.	

• A	typical	structure	takes	~30	minutes	on	a	E5-2660	v3	(2.60GHz)	core.

• Input	&	output	(i.e.,	predicted	allosteric	residues)	are	stored	in	S3	buckets.
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30
[Sethi	et	al.	COSB	(’15)]	
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Managing Rapid Data Scaling through Prioritizing High-impact Variants 

• Introduction 
- The exponential scaling of 

data generation & processing
- The landscape of variants in 

personal genomes suggests 
prioritizing a few is an 
efficient interpretation 
strategy

• Characterizing Rare Variants 
in Coding Regions
- Identifying with STRESS

cryptic allosteric sites 
• On surface & in interior 

bottlenecks 

- Using changes in localized 
Frustration to find further sites 
sensitive to mutations

• Difference betw. TSGs & 
oncogenes

• Evaluating the Impact of Non-coding 
Variants with Annotation
- Annotating non-coding regions on different 

scales with MUSIC
- Prioritizing rare variants with 

“sensitive sites” (human-conserved) 
• Putting it together in Workflows
- Using LARVA to do burden testing on 

non-coding annotation
• Need to correct for co-variates & over-

dispersion mutation counts
• Parameterized according to replication 

timing 
- Using FunSeq to integrate evidence on 

variants 
• Systematically weighting all the features
• suggesting non-coding drivers
• Prioritzing rare germline variants
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Schematic illustration of localized frustration

[Ferreiro	et	al.,	PNAS	(’07)]
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Workflow for evaluating localized 
frustration changes (∆F)
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Striking a balance: 
the complexity of the second order frustration 

calculation

Tim
e

Accuracy

Second order frustration calculation (∆F)

MD-assisted free energy calculation (∆G)

First order frustration calculation (F)



3
6

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

∆ 
F

   
   

   
   

   
-6

   
   

  -
4 

   
   

  -
2 

   
    

  0
   

   
   

 2

Core                          Surface Core                          Surface Core                          Surface

A B C1000 Genomes ExAC HGMD
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[Kumar	et	al.	NAR (in	press);	biorxiv 052027]

Normal	mutations	(1000G)	tend	to	unfavorably	frustrate	
(less	frustrated)	surface	more	than	core,	
but	for	disease	mutations	(HGMD)	
no	trend	&	greater	changes
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Comparison between ∆F 
distributions: TSGs v. oncogenes
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SNVs	in	TSGs	change	frustration	more	in	core	than	the	surface,	whereas	those	associated	with	
oncogenes	manifest	the	opposite	pattern.	This	is	consistent	with	differences	in	LOF	v	GOF	mechanisms.
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Non-coding Annotations: 
Overview

Sequence features, incl. Conservation
Functional Genomics
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription

[Alexander	et	al.,	Nat.	Rev.	Genet.	(’10)]
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Summarizing	the	Signal:	
"Traditional"	ChipSeq	Peak	Calling

• Generate	&	threshold	the	signal	
profile	to	identify	candidate	
target	regions
- Simulation	(PeakSeq),	
- Local	window	based	Poisson	(MACS),	
- Fold	change	statistics	(SPP)

Threshold

• Score	against	the	control

Potential	Targets

Significantly	Enriched	targets

Normalized	Control

ChIP

Now	an	update:	"PeakSeq	2"	=>	MUSIC
[Rozowsky	et	al.	('09)	Nat	Biotech]
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Multiscale	Analysis,	Minima/Maxima	based	
Coarse	Segmentation

• Multiscale	analysis	is	a	natural	way	to	analyze	the	ChIP-Seq	
data
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[Harmanci et	al,	Genome	Biol.	('14)]
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on 

Production ENCODE & 1000G Phase 1
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•Broad categories of 
regulatory regions 

under negative 
selection

•Related to:
ENCODE, Nature, 2012

Ward & Kellis, Science, 2012
Mu et al, NAR, 2011

(Non-coding	RNA)

(DNase	I	
hypersensitive	

sites)

(Transcription	
factor	binding	

sites)

(TFSS:	Sequence-
specific	TFs)

[Khurana et al., Science (‘13)]

Depletion	of	Common	Variants	
in	the	Human	Population
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[Khurana et al., Science (‘13)]

Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

Differential 
selective 

constraints 
among 

specific sub-
categories
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[Khurana et al., Science (‘13)]

Sub-categorization	possible	
because	of	better	statistics	from	
1000G	phase	1	v	pilot

Start 677high-
resolution	non-coding	
categories;	Rank	&	find	
those	under	strongest	
selection

~0.4%	genomic	coverage		(~	top	25)
~0.02%	genomic	coverage	(top	5)

Defining 
Sensitive 

non-
coding 

Regions
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SNPs which break TF motifs are under 
stronger selection

[Khurana et al., Science (‘13)]
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Cancer Somatic Mutation Modeling

• 3 models to evaluate the 
significance of mutation 
burden

• Suppose there are k genome 
elements. For element i, 
define:
– ni: total number of 

nucleotides
– xi: the number of 

mutations within the 
element

– p: the mutation rate
– R: the replication timing 

bin of the element

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

Model 2: Varying Mutation Rate

Model 3: Varying Mutation Rate 
with Replication Timing Correction

[Lochovsky et al. NAR (’15)]
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LARVA Model Comparison
• Comparison of mutation count frequency implied by the binomial 

model (model 1) and the beta-binomial model (model 2) relative to 
the empirical distribution

• The beta-binomial distribution is significantly better, especially for 
accurately modeling the over-dispersion of the empirical distribution
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Bottom	10%	of	rep.	timing	bins	
requires	large	correction

Top	10%	of	rep.	timing	bins	
requires	little	correction
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LARVA Implementation
• http://larva.gersteinlab.org/
• Freely downloadable C++ program

- Verified compilation and correct execution on Linux
• A Docker image is also available to download

- Runs on any operating system supported by Docker
• Running time on transcription factor binding sites (a worst case input size) 

is ~80 min
- Running time scales linearly with the number of annotations in the input



6
0

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

LARVA Results
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noncoding annotation
p-values in sorted order

TSS	LARVA	results

These	have
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cancer	associations
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Personal Genomics:
Managing Rapid Data Scaling through Prioritizing High-impact Variants 

• Introduction 
- The exponential scaling of 

data generation & processing
- The landscape of variants in 

personal genomes suggests 
prioritizing a few is an 
efficient interpretation 
strategy

• Characterizing Rare Variants 
in Coding Regions
- Identifying with STRESS

cryptic allosteric sites 
• On surface & in interior 

bottlenecks 

- Using changes in localized 
Frustration to find further sites 
sensitive to mutations

• Difference betw. TSGs & 
oncogenes

• Evaluating the Impact of Non-coding 
Variants with Annotation
- Annotating non-coding regions on different 

scales with MUSIC
- Prioritizing rare variants with 

“sensitive sites” (human-conserved) 
• Putting it together in Workflows
- Using LARVA to do burden testing on 

non-coding annotation
• Need to correct for co-variates & over-

dispersion mutation counts
• Parameterized according to replication 

timing 
- Using FunSeq to integrate evidence on 

variants 
• Systematically weighting all the features
• suggesting non-coding drivers
• Prioritzing rare germline variants
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Identification of non-coding candidate drivers amongst 
somatic variants: Scheme

62[Khurana et al., Science (‘13)]
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Flowchart	for	1	Prostate	Cancer	Genome	

(from	Berger	et	al.	'11)

[K
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FunSeq.gersteinlab.org

[Fu	et	al.,	GenomeBiology	('14)]

Site	integrates	
user	variants	
with	large-scale	
context	

User	
Variants
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§ Feature	weight		
- Weighted	with	mutation	patterns	in	natural	polymorphisms

(features	frequently	observed	weight	less)
- entropy	based	method

HOT	region

Sensitive	region

Polymorphisms

Genome

[Fu	et	al.,	GenomeBiology	('14)]
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§ Feature	weight		
- Weighted	with	mutation	patterns	in	natural	polymorphisms

(features	frequently	observed	weight	less)
- entropy	based	method

HOT	region

Sensitive	region

Polymorphisms

Genome

p = 3
20

[Fu	et	al.,	GenomeBiology	('14)]
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§ Feature	weight		
- Weighted	with	mutation	patterns	in	natural	polymorphisms

(features	frequently	observed	weight	less)
- entropy	based	method

HOT	region

Sensitive	region

Polymorphisms

!! = 1+ !!!"#!!! + 1− !! !"#! 1− !! !
!
!

!
!"#$%! = ! !!!!!!!"!!"#$%&$'!!"#$%&"'!

p	=	probability	of	the	feature	overlapping	natural	polymorphisms

Feature	weight:	

For	a	variant:	

wdp

Genome

[Fu	et	al.,	GenomeBiology	('14)]

p = 3
20
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Germline pathogenic variants show 
higher core scores than controls

3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region:  1kb around HGMD variants
2. Matched TSS:  matched for distance to TSS
3. Unmatched: randomly selected
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Ritchie	et	al.,	Nature	Methods,	2014
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Info about content in this slide pack
• General PERMISSIONS
-This Presentation is copyright Mark Gerstein, 

Yale University, 2016. 
-Please read permissions statement at 

www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement 

(via citation to relevant papers or link to gersteinlab.org). 
- Paper references in the talk were mostly from Papers.GersteinLab.org. 

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 
clipped images in this presentation see http://streams.gerstein.info . 
- In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt 


