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•  Exponential increase in the 
number of transistors per 
chip. 

•  Led to improvements in 
speed and miniaturization. 

•  Drove widespread adoption 
and novel applications of 
computer technology. 

Moore’s Law: 
Exponential 
Scaling of 
Computer 

Technology 

[Waldrop	
  (‘15)	
  Nature]	
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•  Moore’s & Kryder’s 
Laws  
-  As important as the 

increase in computer speed 
has been, the ability to 
store large amounts of 
information on computers is 
even more crucial 

•  Exponential increase 
seen in Kryder’s law is 
a superposition of  
S-curves for different 
technologies 

 

Kryder’s Law and   
S-curves underlying 
exponential growth 
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[Muir	
  et	
  al.	
  (‘15)	
  GenomeBiol.]	
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Sequencing Data Explosion:  
Faster than Moore’s Law for a Time (or a S-curve) 

•  DNA sequencing has 
gone through 
technological S-curves 
-  In the early 2000’s, 

improvements in Sanger 
sequencing produced a 
scaling pattern similar to 
Moore’s law. 

-  The advent of NGS was a 
shift to a new technology 
with dramatic decrease in 
cost).  
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Sequencing cost 
reductions have 

resulted in an 
explosion of data 

•  The type of sequence 
data deposited has 
changed as well. 
-   Protected data 

represents an increasing 
fraction of all submitted 
sequences. 

-  Data from techniques 
utilizing NGS machines 
has replaced that 
generated via 
microarray. 

[Muir	
  et	
  al.	
  (‘15)	
  GenomeBiol.]	
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Sequence Universe 
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Increasing diversity in 
sequence data sources 

[Muir	
  et	
  al.	
  (‘15)	
  GenomeBiol.]	
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The changing costs of a sequencing pipeline 

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 

[Sboner	
  et	
  al.	
  (‘11),	
  Muir	
  et	
  al.	
  (‘15)	
  Genome	
  Biology]	
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The changing costs of a sequencing pipeline 

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 

[Sboner	
  et	
  al.	
  (‘11),	
  Muir	
  et	
  al.	
  (‘15)	
  Genome	
  Biology]	
  



1
0
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

The changing costs of a sequencing pipeline 

[Sboner	
  et	
  al.	
  (‘11),	
  Muir	
  et	
  al.	
  (‘15)	
  Genome	
  Biology]	
  

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 

Alignment algorithms scaling to keep 
pace with data generation 
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The changing costs of a sequencing pipeline 

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 
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  (‘11),	
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  et	
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  Genome	
  Biology]	
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The changing costs of a sequencing pipeline 

[Sboner	
  et	
  al.	
  (‘11),	
  Muir	
  et	
  al.	
  (‘15)	
  Genome	
  Biology]	
  

From ‘00 to ~’20,  
cost of DNA sequencing expt. shifts from 
the actual seq. to sample  
collection & analysis 



Personal Genomics: 
Managing Rapid Data Scaling through Prioritizing High-impact Variants  

•  Introduction  
-  The exponential scaling of data generation 

& processing 
-  The landscape of variants in personal 

genomes suggests finding a few key ones 
•  Characterizing Rare Variants in Coding 

Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior bottlenecks  

•  Evaluating the Impact of Non-coding 
Variants with Annotation 
-  Annotating non-coding regions on different 

scales with MUSIC 
-  Prioritizing rare variants with “sensitive 

sites” (human-conserved)  
-  Prioritizing in terms of  

network connectivity (eg hubs) 

•  Putting it together in 
Workflows 
-  Using LARVA to do burden 

testing on non-coding 
annotation 

•  Need to correct for over-
dispersion mutation counts 

•  Parameterized according to 
replication timing  

-  Using FunSeq to integrate 
evidence on variants  

•  Systematically weighting all 
the features 

•  suggesting non-coding 
drivers 

•  Prioritzing rare germline 
variants 
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation 
A Typical Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger
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Finding Key 
Variants 

 
Germline 

•  Common variants  
•  Can be associated with phenotype (ie disease) via a Genome-wide Association Study 

(GWAS), which tests whether the frequency of alleles differs between cases & controls.  
•  Usually their functional effect is weaker.  
•  Many are non-coding 
•  Issue of LD in identifying the actual causal variant. 

•  Rare variants 
•  Associations are usually underpowered due to low frequencies.  
•  They often have larger functional impact 
•  Can be collapsed in the same element to gain statistical power (burden tests). 
•  In some cases, causal variants can be identified through tracing inheritance of 

Mendelian subtypes of diseases in large families. 
 McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476

CAN YOU FIND THE PANDA?
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Finding Key 
Variants 

 
Somatic 

•  Overall 
•  Often these can be conceptualized as very rare variants  
•  A challenge to identify somatic mutations contributing to cancer is to find driver 

mutations & distinguish them from passengers. 
•  Drivers 

•  Driver mutation is a mutation that directly or indirectly confers a selective growth 
advantage to the cell in which it occurs. 

•  A typical tumor contains 2-8 drivers; the remaining mutations are passengers. 
•  Passengers 

•  Conceptually, a passenger mutation has no direct or indirect effect on the 
selective growth advantage of the cell in which it occurred. 

CAN YOU FIND THE PANDA?

Vogelstein B. Science 2013. 339(6127):1546-1558
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20	
  
[Sethi	
  et	
  al.	
  COSB	
  (’15)]	
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Models	
  of	
  Protein	
  ConformaNonal	
  Change	
  
MoNon	
  Vectors	
  from	
  Normal	
  Modes	
  (ANMs)	
  

inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922

PDB	
  ID:	
  3RFU	
  
Adapted	
  from	
  Fuglebakk	
  et	
  al,	
  2014	
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  candidate	
  sites	
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1.  MC	
  simula=ons	
  generate	
  a	
  large	
  number	
  of	
  candidate	
  sites	
  
2.  Score	
  each	
  candidate	
  site	
  by	
  the	
  degree	
  to	
  which	
  it	
  perturbs	
  large-­‐scale	
  mo=ons	
  
3.  Priori=ze	
  &	
  threshold	
  the	
  list	
  to	
  iden=fy	
  the	
  set	
  of	
  high	
  confidence-­‐sites	
  

! !

deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j
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��������������ij(m)
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PDB:	
  3PFK	
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PredicNng	
  Allosterically-­‐Important	
  Residues	
  within	
  the	
  Interior	
  	
  

Adapted	
  from	
  Clarke*,	
  Sethi*,	
  et	
  al	
  (in	
  press)	
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! 25!

where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 

! 24!

 
 

Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
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back-end
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RESTful
storage

EC2
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S3
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Queue
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  from	
  Clarke*,	
  Sethi*,	
  et	
  al	
  (in	
  press)	
  

STRESS	
  Server	
  Architecture:	
  Highlights	
  
stress.molmovdb.org	
  

•  A	
  light	
  front-­‐end	
  server	
  handles	
  incoming	
  requests,	
  and	
  powerful	
  back-­‐end	
  
servers	
  perform	
  calcula=ons.	
  	
  

•  Auto	
  Scaling	
  adjusts	
  the	
  number	
  of	
  back-­‐end	
  servers	
  as	
  needed.	
  	
  

•  A	
  typical	
  structure	
  takes	
  ~30	
  minutes	
  on	
  a	
  E5-­‐2660	
  v3	
  (2.60GHz)	
  core.	
  

•  Input	
  &	
  output	
  (i.e.,	
  predicted	
  allosteric	
  residues)	
  are	
  stored	
  in	
  S3	
  buckets.	
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  et	
  al.	
  COSB	
  (’15)]	
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Personal Genomics: 
Managing Rapid Data Scaling through Prioritizing High-impact Variants  

•  Introduction  
-  The exponential scaling of data generation 

& processing 
-  The landscape of variants in personal 

genomes suggests finding a few key ones 
•  Characterizing Rare Variants in Coding 

Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior bottlenecks  

•  Evaluating the Impact of Non-coding 
Variants with Annotation 
-  Annotating non-coding regions on different 

scales with MUSIC 
-  Prioritizing rare variants with “sensitive 

sites” (human-conserved)  
-  Prioritizing in terms of  

network connectivity (eg hubs) 

•  Putting it together in 
Workflows 
-  Using LARVA to do burden 

testing on non-coding 
annotation 

•  Need to correct for over-
dispersion mutation counts 

•  Parameterized according to 
replication timing  

-  Using FunSeq to integrate 
evidence on variants  

•  Systematically weighting all 
the features 

•  suggesting non-coding 
drivers 

•  Prioritzing rare germline 
variants 
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Non-coding Annotations:  
Overview   

 
 
 
 
 
Sequence features, incl. Conservation 
 

Functional Genomics 
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription 
 

[Alexander	
  et	
  al.,	
  Nat.	
  Rev.	
  Genet.	
  (’10)]	
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Summarizing	
  the	
  Signal:	
  	
  
"TradiNonal"	
  ChipSeq	
  Peak	
  Calling	
  

•  Generate	
  &	
  threshold	
  the	
  signal	
  
profile	
  to	
  iden=fy	
  candidate	
  
target	
  regions	
  
-  Simula=on	
  (PeakSeq),	
  	
  
-  Local	
  window	
  based	
  Poisson	
  (MACS),	
  	
  
-  Fold	
  change	
  sta=s=cs	
  (SPP)	
  

Threshold	
  

•  Score	
  against	
  the	
  control	
  

Poten=al	
  Targets	
  

Significantly	
  Enriched	
  targets	
  

Normalized	
  Control	
  

ChIP	
  

Now	
  an	
  update:	
  "PeakSeq	
  2"	
  =>	
  MUSIC	
  
[Rozowsky	
  et	
  al.	
  ('09)	
  Nat	
  Biotech]	
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MulNscale	
  Analysis,	
  Minima/Maxima	
  based	
  
Coarse	
  SegmentaNon	
  

• Mul=scale	
  analysis	
  is	
  a	
  natural	
  way	
  to	
  analyze	
  the	
  ChIP-­‐Seq	
  
data	
  

35	
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MulNscale	
  DecomposiNon	
  
In
cr
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g	
  
Sc
al
e	
  

20kb	
  

[Harmanci	
  et	
  al,	
  Genome	
  Biol.	
  ('14)]	
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Finding "Conserved” Sites in the Human Population: 
 Negative selection in non-coding elements based on  

Production ENCODE & 1000G Phase 1 
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•  Broad categories 
of regulatory 

regions under 
negative selection 
•  Related to: 

         
ENCODE, Nature, 2012 

Ward & Kellis, Science, 2012 
Mu et al, NAR, 2011 

 

(Non-­‐coding	
  RNA)	
  

(DNase	
  I	
  
hypersensi=ve	
  

sites)	
  

(Transcrip=on	
  
factor	
  binding	
  

sites)	
  

(TFSS:	
  Sequence-­‐
specific	
  TFs)	
  

[Khurana et al., Science (‘13)] 

DepleNon	
  of	
  Common	
  Variants	
  	
  
in	
  the	
  Human	
  PopulaNon	
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[Khurana et al., Science (‘13)] 

Sub-­‐categoriza=on	
  possible	
  
because	
  of	
  beler	
  sta=s=cs	
  from	
  
1000G	
  phase	
  1	
  v	
  pilot	
  

Differential 
selective 

constraints  
among 

specific sub-
categories 



4
1
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

[Khurana et al., Science (‘13)] 

Sub-­‐categoriza=on	
  possible	
  
because	
  of	
  beler	
  sta=s=cs	
  from	
  
1000G	
  phase	
  1	
  v	
  pilot	
  

Start	
  677	
  high-­‐
resolu=on	
  non-­‐coding	
  
categories;	
  Rank	
  &	
  find	
  
those	
  under	
  strongest	
  
selec=on	
  

~0.4%	
  genomic	
  coverage	
  	
  (~	
  top	
  25)	
  
~0.02%	
  genomic	
  coverage	
  (top	
  5)	
  

Defining 
Sensitive  

non-
coding 

Regions 
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SNPs which break TF motifs are under 
stronger selection 

[Khurana et al., Science (‘13)] 
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Variants with Annotation 
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Workflows 
-  Using LARVA to do burden 

testing on non-coding 
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Relating Non-coding Annotation  
to Protein-coding Genes via Networks
Regulatory elements 
 

[ Cheng et al., Bioinfo. ('11),  
  Gerstein et al., Nature ('12) ,  
  Yip et al., GenomeBiology ('12), 
  Fu et al., GenomeBiology('14)  ] 

Assigning proximal sites (< 1Kb) to target genes 

Assigning distal sites (10Kb-1Mb) to targets 

C
el

l l
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es
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H1-hESC
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Hep-G2


K562


...


Distal signals

Methylation
H3K27ac
 ...


Expression levels

Gene 1
 Gene 2
 Gene 3
 ...


Scale


Strong


Weak


Connecting Distal Elements  
via Activity Correlations. 

Other strategies to create linkage 
incl. eQTL and Hi-C. Much in 
recent Epigenomics Roadmap.

~700K Edges 

Distal  
Edge 

TF 

Proximal 
Edge 

TF 

~26K 

~500K Prox. Edges 
Filtering 
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  to	
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Hubs Under Constraint:  
A Finding from the 
Network Biology 

Community 

•  More Connectivity, More Constraint: Genes & proteins that 
have a more central position in the network tend to evolve 
more slowly and are more likely to be essential.  

•  This phenomenon is observed in  
many organisms & different kinds of networks 
-  yeast PPI - Fraser et al ('02) Science,  

('03) BMC Evo. Bio. 
-  Ecoli PPI - Butland et al ('04) Nature  
-  Worm/fly PPI - Hahn et al ('05) MBE  
-  miRNA net - Cheng et al ('09) BMC Genomics 

[Nielsen et al. PLoS Biol. 
(2005), HPRD, Kim et al. 
PNAS (2007)] 

High likelihood of 
positive selection 
Lower likelihood of 
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[Khurana et al., PLOS Comp. Bio. ’13] 
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Personal Genomics: 
Managing Rapid Data Scaling through Prioritizing High-impact Variants  

•  Introduction  
-  The exponential scaling of data generation 

& processing 
-  The landscape of variants in personal 

genomes suggests finding a few key ones 
•  Characterizing Rare Variants in Coding 

Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior bottlenecks  

•  Evaluating the Impact of Non-coding 
Variants with Annotation 
-  Annotating non-coding regions on different 

scales with MUSIC 
-  Prioritizing rare variants with “sensitive 

sites” (human-conserved)  
-  Prioritizing in terms of  

network connectivity (eg hubs) 

•  Putting it together in 
Workflows 
-  Using LARVA to do burden 

testing on non-coding 
annotation 

•  Need to correct for over-
dispersion mutation counts 

•  Parameterized according to 
replication timing  

-  Using FunSeq to integrate 
evidence on variants  

•  Systematically weighting all 
the features 

•  suggesting non-coding 
drivers 

•  Prioritzing rare germline 
variants 
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Cancer Somatic Mutation Modeling 

•  3 models to evaluate 
the significance of 
mutation burden 

•  Suppose there are k 
genome elements. For 
element i, define: 
–  ni: total number of 

nucleotides 
–  xi: the number of 

mutations within the 
element 

–  p: the mutation rate 
–  R: the replication timing 

bin of the element 

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work) 
 
 
Model 2: Varying Mutation Rate 
 
 
 
Model 3: Varying Mutation Rate 
with Replication Timing 
Correction 
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LARVA Model Comparison 

•  Comparison of mutation count frequency implied by the binomial 
model (model 1) and the beta-binomial model (model 2) relative to 
the empirical distribution 

•  The beta-binomial distribution is significantly better, especially for 
accurately modeling the over-dispersion of the empirical distribution 
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LARVA Implementation 
•  http://larva.gersteinlab.org/ 
•  Freely downloadable C++ program 

-  Verified compilation and correct execution on Linux 
•  A Docker image is also available to download 

-  Runs on any operating system supported by Docker 
•  Running time on transcription factor binding sites (a worst case input size) is ~80 

min 
-  Running time scales linearly with the number of annotations in the input 
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LARVA Results 
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Personal Genomics: 
Managing Rapid Data Scaling through Prioritizing High-impact Variants  

•  Introduction  
-  The exponential scaling of data generation 

& processing 
-  The landscape of variants in personal 

genomes suggests finding a few key ones 
•  Characterizing Rare Variants in Coding 

Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior bottlenecks  

•  Evaluating the Impact of Non-coding 
Variants with Annotation 
-  Annotating non-coding regions on different 

scales with MUSIC 
-  Prioritizing rare variants with “sensitive 

sites” (human-conserved)  
-  Prioritizing in terms of  

network connectivity (eg hubs) 

•  Putting it together in 
Workflows 
-  Using LARVA to do burden 

testing on non-coding 
annotation 

•  Need to correct for over-
dispersion mutation counts 

•  Parameterized according to 
replication timing  

-  Using FunSeq to integrate 
evidence on variants  

•  Systematically weighting all 
the features 

•  suggesting non-coding 
drivers 

•  Prioritzing rare germline 
variants 
 



5
9
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

Identification of non-coding candidate drivers amongst 
somatic variants: Scheme 

59	
  [Khurana et al., Science (‘13)] 
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Flowchart	
  for	
  1	
  Prostate	
  Cancer	
  Genome	
  
(from	
  Berger	
  et	
  al.	
  '11)	
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FunSeq.gersteinlab.org	
  

[Fu	
  et	
  al.,	
  GenomeBiology	
  ('14)]	
  

Site	
  integrates	
  
user	
  variants	
  
with	
  large-­‐scale	
  
context	
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Germline pathogenic variants show 
higher core scores than controls 

3 controls with natural polymorphisms (allele frequency >= 1% ) 
1.     Matched region:  1kb around HGMD variants 
2. Matched TSS:  matched for distance to TSS 
3. Unmatched: randomly selected 
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Managing Rapid Data Scaling through Prioritizing High-impact Variants  

•  Introduction  
-  The exponential scaling of data generation 

& processing 
-  The landscape of variants in personal 

genomes suggests finding a few key ones 
•  Characterizing Rare Variants in Coding 

Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior bottlenecks  

•  Evaluating the Impact of Non-coding 
Variants with Annotation 
-  Annotating non-coding regions on different 

scales with MUSIC 
-  Prioritizing rare variants with “sensitive 

sites” (human-conserved)  
-  Prioritizing in terms of  

network connectivity (eg hubs) 

•  Putting it together in 
Workflows 
-  Using LARVA to do burden 

testing on non-coding 
annotation 

•  Need to correct for over-
dispersion mutation counts 

•  Parameterized according to 
replication timing  

-  Using FunSeq to integrate 
evidence on variants  

•  Systematically weighting all 
the features 

•  suggesting non-coding 
drivers 

•  Prioritzing rare germline 
variants 
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Info about content in this slide pack 
•  General PERMISSIONS 
- This Presentation is copyright Mark Gerstein,  

Yale University, 2016.  
- Please read permissions statement at  

www.gersteinlab.org/misc/permissions.html . 
-  Feel free to use slides & images in the talk with PROPER acknowledgement  

(via citation to relevant papers or link to gersteinlab.org).  
-  Paper references in the talk were mostly from Papers.GersteinLab.org.  

 
•  PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and 

clipped images in this presentation see http://streams.gerstein.info .  
-  In particular, many of the images have particular EXIF tags, such as  kwpotppt , that can be 

easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt  
 


