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Moore’s Law:
Exponential
Scaling of
Computer
Technology

« Exponential increase in the
number of transistors per
chip.

» Led to improvements in
speed and miniaturization.

« Drove widespread adoption
and novel applications of
computer technology.
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Kryder’s Law and
S-curves underlying
exponential growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer speed
has been, the ability to
store large amounts of
information on computers is
even more crucial

« Exponential increase
seen in Kryder's law is
a superposition of
S-curves for different
technologies
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Sequencing Data Explosion:
Faster than Moore’s Law for a Time (or a S-curve)

* DNA sequencing has Cost per Raw Megabase of DNA Sequence
gone through

technological S-curves

- In the early 2000’s,
improvements in Sanger
sequencing produced a
scaling pattern similar to

Moore's Law

Moore’s law.
- The advent Of NGS Was a National Human Genome
shift to a new technology m)ﬁesearch institute
W|th dramatlc decrease |n genome.gov/sequencingcosts
X0
cost). ———
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Sequencing cost
reductions have
resulted in an
explosion of data

» The type of sequence
data deposited has
changed as well.

Protected data
represents an increasing
fraction of all submitted
sequences.

Data from techniques
utilizing NGS machines
has replaced that
generated via
microarray.
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Sequence Universe - - - -

. . SRA ~1 petabyte a

TCGA endpoint: ~2.5 Petabytes
~1.5 PB exome *

~1 PB whole genome

1000 Genomes " .f, *
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Increasing diversity in
sequence data sources

16000 OP€ecies Sequenced by Year
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The changing costs of a sequencing pipeline

= = Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection
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(VCF, Peaks, RPKM)

Downstream analyses

(differential expression, 0%~
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from
the actual seq. to sample

collection & analysis

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

= Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

i !

100% _

s
TQ)

management

— '
High-level summaries
(VCF, Peaks, RPKM)

Downstream analyses \

(differential expression, 0%
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010) | (Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
Il Reagents and supplies

3 Indirect costs

[Sboner et al. ( “11), Muir et al. (‘15) Genome Biology]
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The changing costs of a sequencing pipeline

Human

O Index time

o Align time
- BLAST o Dynamic programming
= |nitial indexing
m Next-gen indexing

= Sample collection and Data reduction Downstream

[ Sequencing

Experimental experimental design W Data management analyses
SEmpL design
collection 9
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High-level summaries
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collection & analysis

Alignment algorithms scaling to keep
pace with data generation

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline
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(Approximately 2020)

From ‘00 to ~’ 20,
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collection & analysis

[Sboner et al. ( "11), Muir et al. (“15) Genome Biology]

. O Index time

o Align time

o Dynamic programming
= |nitial indexing

m Next-gen indexing

Novoalign
T S STAR
1 /8 .
£ FASTA ‘ <
N % * /Bowtie
c» o \'%
S Vo S
1970 1980 1990 2000 2010

Published Year

Alignment algorithms scaling to keep
pace with data generation

11 = Lectures.GersteinLab.org



The changing costs of a sequencing pipeline

= Sample collection and Data reduction Downstream

Experimental experimental design @ Sequencing W Data management 0 analyses 20 Number Of BiOinformatiCS CS Faculty POSitionS
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Personal Genomics:
Managing Rapid Data Scaling through Prioritizing High-impact Variants

* Introduction « Putting it together in
- The exponential scaling of data generation Workflows
& processing - Using LARVA to do burden
— The landscape of variants in personal testing on non-coding
genomes suggests finding a few key ones annotation
« Characterizing Rare Variants in Coding * Need to correct for over-
: dispersion mutation counts
Regions . .
e _ « Parameterized according to
- Ident.lfylng W|th_ STRESS replication timing
cryptic aIIOSter_'C_S't?S - Using FunSeq to integrate
. Or.l surface & in interior bottlenecks | evidence on variants
 Evaluating the Impact of Non-coding . Systematically weighting all
Variants with Annotation the features
- Annotating non-coding regions on different * suggesting non-coding
scales with MUSIC drivers

 Prioritzing rare germline

— Prioritizing rare variants with “sensitive .
variants

sites” (human-conserved)
— Perioritizing in terms of
network connectivity (eg hubs)
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Human Genetic Variation

Population of
2,504 peoples

A Cancer Genome A Typical Genome
[ [ |
1 )
Origin of Variants Class of Variants
3.5-4.3M
550 — 625K
2.1-25K
(20Mb)
Somatic | ~50 5K RN
4.1 -5M

Prevalence of Variants

Driver (~0.1%) Rare* (1-4%)

84.7M

3.6M
60K

88.3M

“Common

Rare (~75%)

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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CAN YOU FIND THE PANDA’?

Finding Key
Variants

Germline

Common variants
« Can be associated with phenotype (ie disease) via a Genome-wide Association Study

(GWAS), which tests whether the frequency of alleles differs between cases & controls.

» Usually their functional effect is weaker.
* Many are non-coding
» Issue of LD in identifying the actual causal variant.

Rare variants
» Associations are usually underpowered due to low frequencies.
« They often have larger functional impact
« Can be collapsed in the same element to gain statistical power (burden tests).
* In some cases, causal variants can be identified through tracing inheritance of
Mendelian subtypes of diseases in large families.

McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476
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CAN YOU FIND THE PANDA’?

g7,y e .

Finding Key
Variants

Somatic

* Overall
« Often these can be conceptualized as very rare variants
* A challenge to identify somatic mutations contributing to cancer is to find driver
mutations & distinguish them from passengers.

* Drivers
» Driver mutation is a mutation that directly or indirectly confers a selective growth

advantage to the cell in which it occurs.
A typical tumor contains 2-8 drivers; the remaining mutations are passengers.

 Passengers

« Conceptually, a passenger mutation has no direct or indirect effect on the
selective growth advantage of the cell in which it occurred.
Vogelstein B. Science 2013. 339(6127):1546-1558
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Association of Variants with Diseases
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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[Sethi et al. COSB ("15)]



Models of Protein Conformational Change

Motion Vectors from Normal Modes (ANMs)
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PDBID: 3REU : Characterizing uncharacterized variants

Adapted from Fuglebakk et al, 2014 <= Finding Allosteric sites
<= Modeling motion
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Predicting Allosterically-Important Residues at the Surface

1. MC simulations generate a large number of candidate sites
2. Score each candidate site by the degree to which it perturbs large-scale motions
3. Prioritize & threshold the list to identify the set of high confidence-sites

pdb 1J3H

" o .
“ “ ‘¢ 0‘ “--..
* . R4 * * -
. \‘l \‘l * . e
) <

Lo (g

" Bt A Y
. . _ 2 Surface region with high
blndlng leverage o Z](ZZ Adi]'(m)) density of candidate sites
m= I
Surface region with low
density of candidate sites

22 -

Adapted from Clarke*, Sethi*, et al (in press)



Predicting Allosterically-Important Residues at the Surface

PDB: 3PFK

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

weight edges using
motion vectors

AYA /3 \7, @ —
identify

critical residues

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

weight edges using .
% g g gii ovect;::;i;::‘ COVZ] — (rl ® I‘J)
Sy LT ¢y = Covy 1N
Dj; = —log(1Cyl)

Adapted from Clarke*, Sethi*, et al (in press)
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Predicting Allosterically-Important Residues within the Interior

:r'

_a.»
e &

4
¥

NS
- ,‘.. )

PDB: IXTT

Adapted from Clarke*, Sethi*, et al (in press)
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STRESS Server Architecture: Highlights

stress.molmovdb.org

Thin front end

EC2

o |

[ |

Home Documen tation Examples

Submit a new job:

Enter PDB ID (ex: 3D3D): Or upload PDB File:

oose File | No file chosen

Select which modules to run:

o Surface-critical

# Interior-critical

STRESS A computationally-efficient framework for identifying potential allosteric residues a

in surface and within the interior

Retrieve job results:

Job id: Retrieve

EC2

EC2

=<

Auto-scalable
back-end

EC2

X
=

RESTful
storage

* Alight front-end server handles incoming requests, and powerful back-end
servers perform calculations.

e Auto Scaling adjusts the number of back-end servers as needed.

* Atypical structure takes ~30 minutes on a E5-2660 v3 (2.60GHz) core.

* Input & output (i.e., predicted allosteric residues) are stored in S3 buckets.

Adapted from Clarke*, Sethi*, et al (in press)

27 -



Intra-species conservation of predicted allosteric residues

1000 Genomes

X
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() ] o
- (= o
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& L I 2 L |
p=0.309 p=1.80e-05

Adapted from Clarke*, Sethi*, et al (in press)
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Intra-species conservation of predicted allosteric residues

Surface
O
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Adapted from Clarke*, Sethi*, et al (in press)
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Unlike common SNVs, the statistical power with which we can
evaluate rare SNVs in case-control studies is severely limited

Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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[Sethi et al. COSB ("15)]



Protein structures may provide the needed alternative for evaluating
rare SNVs, many of which may be disease-associated

Rationalizing disease variants in the context of allosteric behavior
with allostery as an added annotation

® @ Predicted allosteric (surface | interior)
® 0 1000G & EXAC SNVs (common | rare)
® Hinge residues
® Buried residues
® Protein-protein interaction site
® Post-translational modifications
HGMD site (w/o0 annotation overlap)
HGMD site (w/annotation overlap)

Fibroblast growth factor receptor 2 (pdb: 11IL)
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Personal Genomics:
Managing Rapid Data Scaling through Prioritizing High-impact Variants

* Introduction » Putting it together in
- The exponential scaling of data generation Workflows
& processing - Using LARVA to do burden
— The landscape of variants in personal testing on non-coding
genomes suggests finding a few key ones annotation
« Characterizing Rare Variants in Coding * Need to correct for over-
: dispersion mutation counts
Regions . .
e _ « Parameterized according to
- Identllfylng W|th_ STRESS replication timing
cryptic aIIOSter_'C_S't?S - Using FunSeq to integrate
. Or.1 surface & in interior bottlenecks | evidence on variants
Variants with Annotation the features
- Annotating non-coding regions on different * suggesting non-coding
scales with MUSIC drivers

 Prioritzing rare germline

— Prioritizing rare variants with “sensitive .
variants

sites” (human-conserved)
— Perioritizing in terms of
network connectivity (eg hubs)



Sequence features, incl. Conservation

Non-coding Annotations:

Overview

Functional Genomics

k4 }

» Removing artefacts
Identify large blocks of » Normalization
| repeated and deleted » Window smoothing
| sequence: *
» Within the human
reference genome Segmentation of processed
B the human data into active regions:
population » Binding sites
+ Between closely related ] Trarlscrlptlonally actis
mammalian genomes g 6.0NS

Large-scale sequence
similarity comparison

Signal processing of raw
experimental data:

v

v

v

dentify smaller-scale
repeated blocks using

statistical models

larger annotation blocks

Group active regions into

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

. L. 1N

\@J\/\/\/V\,

OEE = DEE

—

[Alexander et al., Nat. Rev. Genet. ('10)]
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

ChlIP

Generate & threshold the signal
profile to identify candidate
target regions

- Simulation (PeakSeq), i
— Local window based Poisson (MACS), Th reshold

— Fold change statistics (SPP) -

Potential Targets (LI ETEN LI N | THn el

Normalized Control

Score against the control

Significantly Enriched targets

Now an update: "PeakSeq 2" => MUSIC

teinLab.org
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Multiscale Analysis, Minima/Maxima based

Coarse Segmentation

wp36.31 p3613 p353 p342  p323  p3l.3  p3ld p223  p2l3 pi33  pl2 qll  qi2 q2ld  q22 q241  q25.2 q3L.1

Q321 q323 q4211  qd423 qda

.

27,140 kb

204 kb

27,160 kb 27,180 kb 27,200 kb 27,220 kb 27,240 kb 27,260 kb 27,280 kb

27,300 kb 27,320 kb

Harmanci et al, Genome Biology 2014, MUSIC.gersteinlab.org
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Multiscale Decomposition

20kb
|

0-64

Increasing Scale
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Multiscale Decomposition
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Personal Genomics:
Managing Rapid Data Scaling through Prioritizing High-impact Variants
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Finding "Conserved” Sites in the Human Population:

Negative selection in nhon-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
Coding H

Genomic Avg

Enhancer

« Broad categories
of regulatory
regions under

(Non-coding RNA) ncRNA

- ceeoaeas - cemweeeae
T

(DNase | . .
hypersensitive DHS negatlve SeleCt|On
sites) _ ]
{ TFss N e « Related to:
(Transcription
factor binding 1FBS < JEEIEEL ENCODE, Nature, 2012
sites) Ward & Kellis, Science, 2012
: Mu et al, NAR, 2011
\ '
Pseudogene |—|

\ I \ w \ \
056 058 060 062 064 066 0.68

Fraction of rare SNPs
Depletion of Common Variants g
in the Human Population [Khurana et al., Science (‘13)] %



A Broad Categories B

Specific Categories

GenomicAvg 27M SNPs |
Coding  0.27M

>
Missense | 0.15M
Synonymous | 0.12M
UTR| 0.4M

Enhancer 1Y

DHS | 4.8M b

TFSS

TFBS

General

Chromatin

TF Families (motifs)
Coding \ H
HMG
bz/P°
sTAT [N

e
H MADs-boxe
NR
Homeodomain®
€ .
e .

050 055 060 065 0.70

0.56 0.6 0.64 0.68 0.72
Fraction of rare SNPs

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot

Differential
selective
constraints
among
specific sub-
categories

[Khurana et al., Science (‘13)]
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scales with MUSIC drivers
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Relating Non-coding Annotation
to Protein-coding Genes via Networks

Regulatory elements

— — — ®
v

Assigning proximal sites (< 1Kb) to target genes

(¥, (Y,

Proximal A RV 000 W\ g )
Edge
~500K Prox. Edges

o—o—2 9
v

Assigning distal sites (10Kb-1Mb) to targets

~26K
Distal st

oo 0 — o— = T
~700K Edges ] SR
Distal signals Expression levels KR
Methylation H3K27ac Gene 1 Gene2 Gene3 Scal Rl 5
——————————— = e SCAlE ¥
awreers| T TN | stong
|
@ H1-hESC | : : | I
C 1 |
— | . .
— HelaSs -- | ] ] l Connecting Distal Elements
8 HepG2 ] ! via Activity Correlations.
| | |
K562 | I |
I I . .
W : l : weak | Other strategies to create linkage

incl. eQTL and Hi-C. Much in
recent Epigenomics Roadmap.




Power-law distribution Hubs Under Constraint:

log P(k) k N —_ A Finding from the
Network Biology
— Community
%) Hub
c »
5 9&
o High likelihood of Not under positive
L?% ¢ positive selection e selection
0 Lower likelihood of No data about
o ® positive selection O positive selection
—
log(Degree) log X

* More Connectivity, More Constraint: Genes & proteins that
have a more central position in the network tend to evolve
more slowly and are more likely to be essential.

 This phenomenon is observed in i3]
many organisms & different kinds of networks e

- yeast PPI - Fraser et al ('02) Science, e
('03) BMC Evo. Bio.

— Ecoli PPI - Butland et al ('04) Nature .
- Worm/fly PPI - Hahn et al ("05) MBE
- miRNA net - Cheng et al ('09) BMC Genomics 2
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Unified network
degree (log scale)

Regulatory Hubs
are more Essential

o
0 o
7] ° o
o
o |
N
© ] 1
|
1
o | |
~ I
v _|
o 1
I
1
o |
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LoF- e tial
tolerant ssentia

Proximal Regulatory Network

N — LoF-tolerant genes  Essential genes
I Z Gumus -
: ‘ ‘ iCAVE movie Size of nodes scaled by
ot [Khurana et al., PLOS Comp. Bio. '13] total degree
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Cancer Somatic Mutation Modeling

3 models to evaluate
the significance of
mutation burden

« Suppose there are k
genome elements. For
element /, define:

— n;: total number of
nucleotides

— x;: the number of
mutations within the
element

— p: the mutation rate

— R: the replication timing
bin of the element

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

X; : Binomial(n;, p)

Model 2: Varying Mutation Rate
x;|p; : Binomial(n;, p;)

pi : Beta(u, o)

Model 3: Varying Mutation Rate
with Replication Timing
Correction

Xi|p; : Binomial(n;, p;)
p;: : Beta(u|R, 0|R)
1|R,o|R : constant within the same R bin

[Lochovsky et al. (’15)]
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LARVA Model Comparison

« Comparison of mutation count frequency implied by the binomial
model (model 1) and the beta-binomial model (model 2) relative to
the empirical distribution

« The beta-binomial distribution is significantly better, especially for
accurately modeling the over-dispersion of the empirical distribution

—6— empirical
Q. —&— beta-binomial
o /o'°°\ —6— binomial
o
[\
o
© o
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o S \
= / o
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c o \
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[Lochovsky et al. (15)]

mutation counts
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LARVA Implementation

http://larva.gersteinlab.org/
Freely downloadable C++ program

- Verified compilation and correct execution on Linux
A Docker image is also available to download

- Runs on any operating system supported by Docker

Running time on transcription factor binding sites (a worst case input size) is ~80

min

- Running time scales linearly with the number of annotations in the input

o o [im} larva.gersteinlab.org @]

LARVA

Large-scale Analysis of Variants in noncoding Annotations

LARVA is a computational framework designed to facilitate the study of noncoding variants. It addresses issues
that have made it difficult to derive an accurate model of the background mutation rates of noncoding elements in
cancer genomes. These issues include limited noncoding functional annotation, great mutation heterogeneity, and
potential mutation correlations between neighboring sites. As a result, there is substantial overdispersion in the
mutation count of noncoding elements.

LARVA integrates a comprehensive set of noncoding functional elements, modeling their mutation count with a
beta-binomial distribution to handle overdispersion. Moreover, LARVA uses regional genomic features such as
replication timing to better estimate local mutation rates and mutational enrichments.

This zip archive contains LARVA's source code. This software counts variant intersections with
LARVA annotations, and estimates the significance of highly mutated annotations with a beta-binomial
source code distribution model of variant counts. The data context files below must be downloaded in order to use
LARVA. See this README for details.
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LARVA Results
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Identification of non-coding candidate drivers amongst

somatic variants: Scheme
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Flowchart for 1 Prostate Cancer Genome
(from Berger et al' '11) |1829 somatic SNVs |

Prostate - K
cancer ( Found in 1000 Genomes ?)

enomes " Uﬂ|l]‘(€|y to
Screen nlikely to H 12\3 .
N 123 _|\nikely o N be driver
A4
g
Annotated ?
N — e e e = = = = = = = = =
1. —>| 1306
Functional v Annotated ?
annotation :

n
ultra-sensitive region ?

e == AN

" In
( Breaks TF motif ? ) ultra-sensitive region ?
AR IVAN =
b.Dispve ~ / \ | / N L e e e e— = = e — — — — —

N/ \y ( Target gene known ? )
N/ \Y
(Targelgeneknown ) ( Target gene known ? )

~ N ~Ien

(Target gene isja hub ?) (Target gene \sahub?) (Target gene is a hub ,))
N Y

a. Sensitive

Gene under
strong selection ?

<
N
o
g
=G
g\
g
g
~

N
B oEmm 09090909090 - F -

N

Candidate drivers

[Khurana et al., Science (*13)]
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| @ FunSeq2 - A flexible framework to prioritize regulatory mutations from cancer genome sequencing

Site integrates
| Resuts  Downloads  Documentation FAQ | user variants

e with large-scale

< Note: In addition to on-site calculation, we also provide

This tool is specialized to prioritize somatic variants from cancer scores for all possiblg noncoding SNVS of GRCh37/hg19 con t eXt
whole genome sequencing. It contains two components : 1) building under 'Downloads' (without annotation and recurrence

data context from various resources; 2) variants prioritization. We analysis).

provided downloadable scripts for users to customize the data Input File: (only for hg19 SNVs)

context (found under 'Downloads'). The variants prioritization step is

) ) | Choose File | No file chosen
downloadable, and also implemented as web server (Right Panel), —

with pre-processed data context. BED or VCF files as input. Sample input file FP= == = = = = = = — — = - = = L}
Output Format: 1 I
Instructions bed 4 1 1
< Input File - BED or VCF formatted. Click "green" button to add MAF: : :
multiple files. With multiple files, the tool will do recurrent analysis. 0 | Data Context |
(Note: for BED format, user can put variants from multiple genomes . ) ,
in one file, see Sample input file .) l:/lu(rgr allele frequency threshold to filter polymorphisms from | !
(value 0~1) 1 I
< Recurrence DB - User can choose particular cancer type from the ) | |
database. The DB will continue be updated with newly available Cancer Type from Recurrence DB: Summary table Lo e e e e e o —— — a
WGS data. All Cancer Types s
< Gene List - Option to analyze variants associated with particular Add a gene list (Optional)

set of genes. Note: Please use Gene Symbols, one row per gene.

<+ Differential Gene Expression Analysis - Option to detect
differentially expressed genes in RNA-Seq data. Two files needed:

expression file & class label file. Please refer to Expression input files
for instructions to prepare those files.

Add differential gene expression analysis (Optional)

User Weighted scoring scheme
Variants

F un Se q .gersteinlab.org Highlighting variants

[Fu et al., GenomeBiology ('14)]




= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

Genome SN W O A I Y I N |
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

Genome | N N T s | I [ W

P
Feature weight: Wq = 1 + Pad logzpd + (1 — pd)logz(l — pd)
1% T W, l p = probability of the feature overlapping natural polymorphisms

For a variant: Score = E w, Oof observed features

[Fu et al., GenomeBiology ('14)]
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Germline pathogenic variants show
higher core scores than controls

Score
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regulatory (1,527) (4,258) (13,861) (144,086)
False Positive Rate

3 controls with natural polymorphisms (allele frequency >= 1% )
1. Matched region: 1kb around HGMD variants

2.Matched TSS: matched for distance to TSS

3.Unmatched: randomly selected

Ritchie et al., Nature Methods, 2014 _ _ o
[Fu et al., GenomeBiology ('14, in revision)]
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2016.

- Please read permissions statement at

www.gersteinlab.org/misc/permissions.html .

- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).

- Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and

clipped images in this presentation see http://streams.gerstein.info .

- In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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