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Prioritizing High-impact Rare & Somatic Variants  
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Slides freely downloadable from Lectures.GersteinLab.org 
& “tweetable” (via @markgerstein). See last slide for more info. 
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The Rise of the Personal Genome 
to ‘10 

Adapted	  from	  Nature	  2010	  
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tumor 

normal 

Personal	  genomes	  soon	  will	  become	  a	  commonplace	  part	  of	  medical	  research	  &	  eventually	  treatment	  
(esp.	  for	  cancer).	  They	  will	  provide	  a	  primary	  connecIon	  for	  biological	  science	  to	  the	  general	  public.	  

Personal Genomics  
as a Gateway into Biology 
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation 
A Typical Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger



9
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

Finding Key 
Variants 

 
Germline 

•  Common variants  
•  Can be associated with phenotype (ie disease) via a Genome-wide Association Study 

(GWAS), which tests whether the frequency of alleles differs between cases & controls.  
•  Usually their functional effect is weaker.  
•  Many are non-coding 
•  Issue of LD in identifying the actual causal variant. 

•  Rare variants 
•  Associations are usually underpowered due to low frequencies.  
•  They often have larger functional impact 
•  Can be collapsed in the same element to gain statistical power (burden tests). 
•  In some cases, causal variants can be identified through tracing inheritance of 

Mendelian subtypes of diseases in large families. 
 McCarthy, M. et al. Nat. Rev. Genet. 2008. 9, 356-369, Zuk, O. et al. PNSA. 2014. Vol. 11, no. 4, MacArthur DG et al. Nature 2014. 508:469-476

CAN YOU FIND THE PANDA?
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Finding Key 
Variants 

 
Somatic 

•  Overall 
•  Often these can be conceptualized as very rare variants  
•  A challenge to identify somatic mutations contributing to cancer is to find driver 

mutations & distinguish them from passengers. 
•  Drivers 

•  Driver mutation is a mutation that directly or indirectly confers a selective growth 
advantage to the cell in which it occurs. 

•  A typical tumor contains 2-8 drivers; the remaining mutations are passengers. 
•  Passengers 

•  Conceptually, a passenger mutation has no direct or indirect effect on the 
selective growth advantage of the cell in which it occurred. 

CAN YOU FIND THE PANDA?

Vogelstein B. Science 2013. 339(6127):1546-1558
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Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites”  
(human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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[Sethi	  et	  al.	  COSB	  (’15)]	  	  
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Models	  of	  Protein	  Conforma1onal	  Change	  
Mo1on	  Vectors	  from	  Normal	  Modes	  (ANMs)	  

inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922

PDB	  ID:	  3RFU	  
Adapted	  from	  Fuglebakk	  et	  al,	  2014	  

Characterizing	  uncharacterized	  variants	  
<=	  Finding	  Allosteric	  sites	  
<=	  Modeling	  moIon	  



1
6
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

Surface	  region	  with	  high	  	  
density	  of	  candidate	  sites	  

Surface	  region	  with	  low	  
density	  of	  candidate	  sites	  

Predic1ng	  Allosterically-‐Important	  Residues	  at	  the	  Surface	  	  

pdb	  1J3H	  

1.  MC	  simulaIons	  generate	  a	  large	  number	  of	  candidate	  sites	  
2.  Score	  each	  candidate	  site	  by	  the	  degree	  to	  which	  it	  perturbs	  large-‐scale	  moIons	  
3.  PrioriIze	  &	  threshold	  the	  list	  to	  idenIfy	  the	  set	  of	  high	  confidence-‐sites	  

! !

deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j

¨dbinding leverage  =  2

m=1
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Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  
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Predic1ng	  Allosterically-‐Important	  Residues	  at	  the	  Surface	  	  

Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  

PDB:	  3PFK	  
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Predic1ng	  Allosterically-‐Important	  Residues	  within	  the	  Interior	  	  

Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  
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! 25!

where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 

! 24!

 
 

Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 

1J3H3PFK 4AKE

1XTT 2HNP

1CD5

3JU53D7S

1BKS 1E5X 1EFK 1NR7
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residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 

1J3H3PFK 4AKE

1XTT 2HNP

1CD5

3JU53D7S

1BKS 1E5X 1EFK 1NR7

Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  

Predic1ng	  Allosterically-‐Important	  Residues	  within	  the	  Interior	  	  
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Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  

PDB:	  1XTT	  

Predic1ng	  Allosterically-‐Important	  Residues	  within	  the	  Interior	  	  
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A

7

Auto-scalable
back-end

EC2Thin front end
EC2

RESTful
storage

EC2

EC2

S3

S3
Queue

Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  

STRESS	  Server	  Architecture:	  Highlights	  
stress.molmovdb.org	  

•  A	  light	  front-‐end	  server	  handles	  incoming	  requests,	  and	  powerful	  back-‐end	  
servers	  perform	  calculaIons.	  	  

•  Auto	  Scaling	  adjusts	  the	  number	  of	  back-‐end	  servers	  as	  needed.	  	  

•  A	  typical	  structure	  takes	  ~30	  minutes	  on	  a	  E5-‐2660	  v3	  (2.60GHz)	  core.	  

•  Input	  &	  output	  (i.e.,	  predicted	  allosteric	  residues)	  are	  stored	  in	  S3	  buckets.	  
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1000	  Genomes	  

p=0.309	   p=1.80e-‐05	  

Intra-‐species	  conserva1on	  of	  predicted	  allosteric	  residues	  
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Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  
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ExAC	  

p=1.49e-‐3	   p=7.98e-‐09	  

Intra-‐species	  conserva1on	  of	  predicted	  allosteric	  residues	  
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Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  
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24	  
[Sethi	  et	  al.	  COSB	  (’15)]	  	  
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25	  
Adapted	  from	  Clarke*,	  Sethi*,	  et	  al	  (in	  press)	  

25	  
[Sethi	  et	  al.	  COSB	  (’15)]	  	  
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Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites” 
 (human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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Non-coding Annotations:  
Overview   

 
 
 
 
 
Sequence features, incl. Conservation 
 

Functional Genomics 
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription 
 

[Alexander	  et	  al.,	  Nat.	  Rev.	  Genet.	  (’10)]	  
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Summarizing	  the	  Signal:	  	  
"Tradi1onal"	  ChipSeq	  Peak	  Calling	  

•  Generate	  &	  threshold	  the	  signal	  
profile	  to	  idenIfy	  candidate	  
target	  regions	  
-  SimulaIon	  (PeakSeq),	  	  
-  Local	  window	  based	  Poisson	  (MACS),	  	  
-  Fold	  change	  staIsIcs	  (SPP)	  

Threshold	  

•  Score	  against	  the	  control	  

PotenIal	  Targets	  

Significantly	  Enriched	  targets	  

Normalized	  Control	  

ChIP	  

Now	  an	  update:	  "PeakSeq	  2"	  =>	  MUSIC	  
[Rozowsky	  et	  al.	  ('09)	  Nat	  Biotech]	  	  
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Finding "Conserved” Sites in the Human Population: 
 Negative selection in non-coding elements based on  

Production ENCODE & 1000G Phase 1 
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•  Broad categories 
of regulatory 

regions under 
negative selection 
•  Related to: 

         
ENCODE, Nature, 2012 

Ward & Kellis, Science, 2012 
Mu et al, NAR, 2011 

 

(Non-‐coding	  RNA)	  

(DNase	  I	  
hypersensiIve	  

sites)	  

(TranscripIon	  
factor	  binding	  

sites)	  

(TFSS:	  Sequence-‐
specific	  TFs)	  

[Khurana et al., Science (‘13)] 

Deple1on	  of	  Common	  Variants	  	  
in	  the	  Human	  Popula1on	  
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[Khurana et al., Science (‘13)] 

Sub-‐categorizaIon	  possible	  
because	  of	  bejer	  staIsIcs	  from	  
1000G	  phase	  1	  v	  pilot	  

Differential 
selective 

constraints  
among 

specific sub-
categories 
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[Khurana et al., Science (‘13)] 

Sub-‐categorizaIon	  possible	  
because	  of	  bejer	  staIsIcs	  from	  
1000G	  phase	  1	  v	  pilot	  

Start	  677	  high-‐
resoluIon	  non-‐coding	  
categories;	  Rank	  &	  find	  
those	  under	  strongest	  
selecIon	  

~0.4%	  genomic	  coverage	  	  (~	  top	  25)	  
~0.02%	  genomic	  coverage	  (top	  5)	  

Defining 
Sensitive  

non-
coding 

Regions 
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SNPs which break TF motifs are under 
stronger selection 

[Khurana et al., Science (‘13)] 
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Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites” 
 (human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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Allele-specific binding and expression 

variants 



Inferring Allele Specific Binding/Expression  
using Sequence Reads 

RNA/ChIP-Seq Reads
ACTTTGATAGCGTCAATG
 CTTTGATAGCGTCAATGC
 CTTTGATAGCGTCAACGC
   TTGACAGCGTCAATGCAC
    TGATAGCGTCAATGCACG
      ATAGCGTCAATGCACGTC
       TAGCGTCAATGCACGTCG
          CGTCAACGCACGTCGGGA
           GTCAATGCACGTCGAGAG
             CAATGCACGTCGGGAGTT
              AATGCACGTCGGGAGTTG
                TGCACGTTGGGAGTTGGC

           10 x T 
            2 x C

…AATGC…

…AACGC…

Haplotypes	  with	  a	  	  
Heterozygous	  Polymorphism	  	  

TF	  

Interplay of the annotation and individual sequence variants 

	  	  	  	  	  Does	  not	  format	  to	  std.	  
theme	  	  
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AlleleDB: Building 382 personal genomes to detect 
allele-specific variants on a large-scale 

1.  Build personal genomes 

2.  Align ChIP-seq & RNA-seq reads  
 

3.  Detect allele-specific variants  
via a series of filters and tests 

Chen J. et al. (Nature Commun, in press) 
alleledb.gersteinlab.org 

Many	  Technical	  Issues:	  
Reference	  bias,	  Ambiguous	  
mapping	  bias,	  Over-‐dispersed	  
(non	  binomial	  null)	  	  
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Chen J. et al. (Nature Commun, in press) 

AlleleDB: Annotating rare & common allele-specific 
variants over a population 

•  Interfaces with 
UCSC genome 
browser 

•  Showing 
ZNF331 gene 
structure 

Allele
DB 

output 

UCSC 
track 

alleledb.gersteinlab.org 
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Chen J. et al. (Nature Commun, in press) 

•  Interfaces with 
UCSC genome 
browser 

•  Showing 
ZNF331 gene 
structure 

Allele
DB 

output 

UCSC 
track 

AlleleDB: Annotating rare & common allele-specific 
variants over a population 

Allele-
specific 
binding 
variants 

Allele-
specific 
expression 
variants 



Chen J. et al. (Nature Commun, in press) 

Collecting ASE/ASB variants  
into allele-specific genomic regions 

Does a particular genomic element have a higher tendency to be allele-specific? 
Fisher’s exact test, for the enrichment of allele-specific variants in the element (with 
respect to non-allele-specific variants that could potentially be called as allelic) 

Human	  reference	  
genome	  

allele-‐specific

non-‐allele-‐specific

alleledb.gersteinlab.org 

	  	  	  	  	  Does	  not	  format	  to	  std.	  
theme	  	  
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Chen J. et al. (Nature Commun, in press) 

Groups of elements that are enriched or 
depleted in allelic activity 
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Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites” 
 (human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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How to build a personal genome 

Rozowsky et al. Mol Syst Biol (2011) 

(fasta;	  reference)	  

(vcf,	  variants	  
phased	  or	  unphased)	  

(fasta;	  for	  each	  	  
haplotype)	  

alleleseq.gersteinlab.org 
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Why the personal genome (PG) should be the 
platform for functional genomics 

1.  Diploid 
--Ability to incorporate private variants of any size 
--exhibit phase information 

2.  Scale easily with more samples (v graph 
genome) and improving sequencing 
technologies: longer reads and more accurate 
phase information 

3.  Very useful in functional genomic assay 
analyses 
a) read alignment 
b) RNA-seq quantification 
c) allele-specific analyses 
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Some construction considerations 

1. Choice of call set(s)  
-- e.g. different versions of 1000GP call sets 
2. Choice of variants  
-- e.g. SVs or indels or SNVs only 
3. Choice of reference  
-- choose the reference genome in which the call set is 
derived from 
4. Assessment of call set quality 
-- e.g. analysis of Mendelian inconsistency in family 
data 



4
5
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

NA12878 family of PGs we already have 

Source Refgen Depth Variants 

1 1000 Genomes Project (1000GP) 
pilot 

hg18 60x SNVs, indels, 
deletions 
(including 33 
from fosmid 
sequencing) 

2 GATK Best Practices v3 
(UnifiedGenotype)  

hg19 64x SNVs, indels 

3 GATK Best Practices v4 
(HaplotypeCaller, PCR-free) 

hg19 64x SNVs, indels 

4 1000GP Phase 3 SNVs-only hg19 7.4x SNVs 
5 1000GP Phase 3 SNVs-indels hg19 7.4x SNVs, indels 
6 1000GP Phase 3 SNVs-indels-SVs hg19 7.4x SNVs, indels, 

SVs 



Alignment  gets  be3er  as  variant  sets  get  
more  complete:  NA12878  Pol2  ChIP-‐seq  
(ENCODE)

Ref	  genome	   Pgenome:	  SNVs	  
only	  

Pgenome:	  SNVs	  
+	  indels	  only	  

Pgenome:	  SNVs	  
+	  indels	  +	  SVs	  

Reads	  processed	   208,051,087	  
#	  reads	  uniquely	  
aligned	  

171,944,588	  
(82.65%)	  

172,591,380	  
(82.96%)	  

172,738,321	  
(83.03%)	  

172,743,175	  	  
(83.03%)	  

#	  reads	  that	  
mulImap	  

17,826,675	  	  
(8.57%)	  

17,795,258	  	  
(8.55%)	  

17,782,167	  	  
(8.55%)	  

17,779,800	  	  
(8.55%)	  

	  	  	  	  	  Does	  not	  format	  to	  std.	  
theme	  	  



Alignment  gets  be3er  as  variant  sets  get  
more  complete:  NA12878  RNA-‐seq  (Kilpinen  et  
al.  2013)

Ref	  genome	   Pgenome:	  snvs	  
only	  

Pgenome:	  snvs	  
+	  indels	  only	  

Pgenome:	  snvs	  
+	  indels	  +	  SVs	  

Reads	  processed	   37,558,398	  
#	  reads	  uniquely	  
aligned	  

25,303,498	  	  
(67.37%)	  

25,486,837	  	  
(67.86%)	  

25,538,449	  	  
(68.00%)	  

25,568,042	  	  
(68.08%)	  

#	  reads	  that	  
mulImap	  

4,041,495	  	  
(10.76%)	  

4,010,417	  	  
(10.68%)	  

4,012,297	  	  
(10.68%)	  

3,972,990	  	  
(10.58%)	  

	  	  	  	  	  Does	  not	  format	  to	  std.	  
theme	  	  
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PG alleviates reference bias in alignment 
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PG alleviates reference bias in alignment 
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Ambiguous mapping bias due to 
sequence similarity 

•  For AS analyses, discard reads that multi-map 
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Account for ambiguous mapping bias 

•  Using the reference genome, new simulated reads are created where 
alleles of the original reads are flipped (at het SNV positions) 

Lappalainen	  et	  al.	  (2013)	  
Panousis	  et	  al.	  (2014)	  

Van	  de	  Geijn	  et	  al.	  (2015)	  
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PG facilitates the resolution of 
ambiguous mapping bias 

•  Using the personal genome, we do not need to simulate reads. 
•  We can directly test affected sites using multi-mapping read pile 
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Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites” 
 (human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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Identification of non-coding candidate drivers amongst 
somatic variants: Scheme 

54	  [Khurana et al., Science (‘13)] 
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Flowchart	  for	  1	  Prostate	  Cancer	  Genome	  
(from	  Berger	  et	  al.	  '11)	  

[K
hu

ra
na

 e
t a

l.,
 S

ci
en

ce
 (‘

13
)] 
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FunSeq.gersteinlab.org	  

[Fu	  et	  al.,	  GenomeBiology	  ('14)]	  

Site	  integrates	  
user	  variants	  
with	  large-‐scale	  
context	  	  

User	  	  
Variants	  
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§  Feature	  weight	  	  	  
	  	  	  	  -‐	  Weighted	  with	  mutaIon	  pajerns	  in	  natural	  polymorphisms	  

	  (features	  frequently	  observed	  weight	  less)	  
	  	  	  	  -‐	  entropy	  based	  method	  
	  
	  

HOT	  region	  

SensiIve	  region	  

Polymorphisms	  

Genome	  

[Fu	  et	  al.,	  GenomeBiology	  ('14)]	  
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§  Feature	  weight	  	  	  
	  	  	  	  -‐	  Weighted	  with	  mutaIon	  pajerns	  in	  natural	  polymorphisms	  

	  (features	  frequently	  observed	  weight	  less)	  
	  	  	  	  -‐	  entropy	  based	  method	  
	  
	  

HOT	  region	  

SensiIve	  region	  

Polymorphisms	  

Genome	  

p = 3
20

[Fu	  et	  al.,	  GenomeBiology	  ('14)]	  
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§  Feature	  weight	  	  	  
	  	  	  	  -‐	  Weighted	  with	  mutaIon	  pajerns	  in	  natural	  polymorphisms	  

	  (features	  frequently	  observed	  weight	  less)	  
	  	  	  	  -‐	  entropy	  based	  method	  
	  
	  

HOT	  region	  

SensiIve	  region	  

Polymorphisms	  

!! = 1+ !!!"#!!! + 1− !! !"#! 1− !! !
!
!

!
!"#$%! = ! !!!!!!!"!!"#$%&$'!!"#$%&"'!

	  p	  =	  probability	  of	  the	  feature	  overlapping	  natural	  polymorphisms	  

Feature	  weight:	  	  

For	  a	  variant:	  	  

wdp

Genome	  

[Fu	  et	  al.,	  GenomeBiology	  ('14)]	  

p = 3
20
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Germline pathogenic variants show 
higher core scores than controls 

3 controls with natural polymorphisms (allele frequency >= 1% ) 
1.     Matched region:  1kb around HGMD variants 
2.  Matched TSS:  matched for distance to TSS 
3.  Unmatched: randomly selected 

S
c
o
re

Matched region

(4,258)

Matched TSS

(13,861)

0
1

2
3

4
5

Unmatched

(144,086)

HGMD 

regulatory (1,527)

Ritchie	  et	  al.,	  Nature	  Methods,	  2014	  

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

matched_TSS: 0.74

matched_region: 0.62

unmatched: 0.86

[Fu	  et	  al.,	  GenomeBiology	  ('14,	  in	  revision)]	  
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Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites” 
 (human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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Cancer Somatic Mutation Modeling 

•  3 models to evaluate 
the significance of 
mutation burden 

•  Suppose there are k 
genome elements. For 
element i, define: 
–  ni: total number of 

nucleotides 
–  xi: the number of 

mutations within the 
element 

–  p: the mutation rate 
–  R: the replication timing 

bin of the element 

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work) 
 
 
Model 2: Varying Mutation Rate 
 
 
 
Model 3: Varying Mutation Rate 
with Replication Timing 
Correction 
 
 

67	  

[Lochovsky et al. NAR (’15)]	  
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LARVA Model Comparison 

•  Comparison of mutation count frequency implied by the binomial 
model (model 1) and the beta-binomial model (model 2) relative to 
the empirical distribution 

•  The beta-binomial distribution is significantly better, especially for 
accurately modeling the over-dispersion of the empirical distribution 
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[Lochovsky et al. NAR (’15)]	  
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LARVA Implementation 
•  http://larva.gersteinlab.org/ 
•  Freely downloadable C++ program 

-  Verified compilation and correct execution on Linux 
•  A Docker image is also available to download 

-  Runs on any operating system supported by Docker 
•  Running time on transcription factor binding sites (a worst case input size) is ~80 

min 
-  Running time scales linearly with the number of annotations in the input 
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LARVA Results 

71	  
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noncoding annotation 
p-values in sorted order 

TSS	  LARVA	  results	  

These	  have	  
literature-‐verified	  
cancer	  associaIons	  

β-‐binomial	  

binomial	  

	  	  	  	  	  Does	  not	  format	  to	  std.	  theme	  	  



7
2
 - 

Le
ct

ur
es

.G
er

st
ei

nL
ab

.o
rg

 

Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites” 
 (human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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Personal Genomics: 
Prioritizing High-impact Rare & Somatic Variants  

•  Introduction: the 
landscape of variants in 
personal genomes   

•  Characterizing Rare 
Variants in Coding 
Regions 
-  Identifying with STRESS 

cryptic allosteric sites  
•  On surface & in interior 

bottlenecks  

•  Non-coding Variants #1: 
Prioritizing rare variants 
with “sensitive sites”  
(human-conserved)  

•  Non-coding Variants #2:  
Prioritizing using AlleleDB  
in terms of allelic elements  
-  Having observed difference in molecular 

activity in many contexts 
-  Key technical Issue:  

Need to build personal genomes 
•  Assessing their quality via read mapping 

•  Putting it together in workflows 
-  Integrating evidence on non-coding 

variants with FunSeq 
•  Systematically weighting all the features 
•  suggesting non-coding drivers 
•  Prioritzing rare germline variants 

-  Using Larva to do burden testing on 
non-coding annotation 

•  Need to correct for over-dispersion in bionomial  
•  Parameterized according to replication timing  
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AlleleDB.gersteinlab.org 

J Chen, J Rozowsky,  

TR Galeev, A Harmanci,  
R Kitchen, J Bedford,  
A Abyzov, Y Kong, L Regan 
 
CostSeq2 
P Muir, S Li, S Lou,  
D Wang, DJ Spakowicz,  
L Salichos, J Zhang, F Isaacs,  
J Rozowsky 
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     - & - 

FunSeq2.gersteinlab.org 

Y Fu, E Khurana, Z Liu, 
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