Large-scale Transcriptome Mining:
Building Integrative Regulatory Models, while Protecting Individual Privacy
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Personal Genomics & Transcriptomics
as a Gateway into Biology

Personal genomes (& Transcriptomes) soon will become a commonplace part of medical research &

eventually treatment (esp. for cancer).

They will provide a primary connection for biological science to the general public.
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using the
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interpretative
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Modeling for RNA-seq data across many samples & individuals...
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* The Dilemma of Genomic Large-scale Transcriptome Mining:

Privacy Building Interpretative, Regulatory Models,
— Fundamental, inherited info that’s while Protecting Individual Privacy
very private v need for large-scale
mining for med. research  Modeling of RNA-seq in terms

— Issues w/ current social & tech of Logical Gates
approaches: inconsistencies,

) ) - Preponderance of OR gates in cancer v.
burdensome security, various

cell-cycle (esp. for myc)

"hacks”
~ Strawman Hybrid Soc-Tech * Using State Space Models to
Proposal (Cloud Enclaves. Decompose RNA-seq Dynamics

Quantifying Leaks & Closely

: ) — Using dimensionality reduction to
Coupled priv.-public datasets)

determine drivers and internal & external
 RNA-seq: How to Publicly canonical dynamic patterns (iPDPs &

- PDP
Share Some of it ePDPs)
Removing SNVs in reads w/ MRF In cell cycle, only conserved genes have

. _ S iPDP w/ matching periodicity
- Quantifying & removing variant info  _ For worm-fly example, conserved genes
from expression levels + eQTLs

: : . have similar canonical patterns in both
using ICl & predictability

organisms V. species specific ones

- Instantiating a practical linking attack  (eg ribosomal v signaling genes)
using extreme expression levels
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The Conundrum of Genomic Privacy: Is it a Problem?

Yes

Genetic Exceptionalism :
genome is potentially very revealing
about one’s identity & characteristics

 Most discussion of Identification Risk
but what about Characterization Risk?

- Finding you were in study X vs
identifying that you have trait Y from
studying your identified genome

No

Shifting societal foci

No one really cares
about your genes

Y : [Klitzman & Sweeney ('11), J Genet Couns
rou mlght not care 20:98l; Greenbaum & Gerstein ('09), New Sci.

(Sep 23) ]

7 - Lectures.GersteinLab.org



Genomics has
similar "Big Data™
Dilemma in the Rest
of Society

« Sharing & "peer-production” is
central to success of many
new ventures, with the same
risks as in genomics

* We confront privacy risks
every day we access the
internet

* (...or is the genome more
exceptional & fundamental?)

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct)]

u @ flickr
£i2.cC
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Tricky Privacy Considerations in Personal Genomics

 Personal Genomic info.

essentially meaningless  Ownership of the data &
currently but will it be in 20 what consent means (Hela)
yrs? 50 YfS? — Could your genetic data

- Genomic sequence very give rise to a product line?

revealing about one’s
children. Is true consent
possible?

— Once put on the web it can’t
be taken back

e Culture Clash: Genomics
historically has been a
proponent of “open data” but
not clear personal genomics

fits this

 Ethically challenged history
of genetics

[D Greenbaum & M Gerstein ('08). Am J. Bioethics; D Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08;
Greenbaum et al. (“11) ; Greenbaum & Gerstein ('13), The Scientist; Photo from NY Times]



The Other Side of the Coin:
Why we should share

« Sharing helps speed research

— Large-scale mining of this
information is important for
medical research

- Privacy is cumbersome,
particularly for big data

« Sharing is important for reproducible
research

« Sharing is useful for education

Robert Munsch

We Share

EVERYTHING!

ilustrated by Michael Martchenko

[Yale Law Roundtable (‘10). Comp. in Sci. &
Eng. 12:8; D Greenbaum & M Gerstein (‘09).
Am. J. Bioethics; D Greenbaum & M Gerstein
(‘10). SF Chronicle, May 2, Page E-4;
Greenbaum et al. PLOS CB (‘“11)]
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The Dilemma

Dawd Parkins

[Economist, 15 Aug ‘15]

« The individual (harmed?) v the collective (benefits)
— But do sick patients care about their privacy?
 Quantification

- What is acceptable risk? What is acceptable data leakage?
Can we quantify leakage?
» Ex: photos of eye color

- Cost Benefit Analysis: how helpful is identifiable data in
genomic research v. potential harm from a breach?

« Maybe a we need a few "test pilots” (ala PGP)?
- Sports stars & celebrities?

11 - Lectures.GersteinLab.org



Current Social & Technical Solutions

Consents
“Protected” distribution of data (dbGAP)
Local computes on secure computer

Issues

- Non-uniformity of consents & paperwork
 Different international norms, leading to confusion

- Encryption & computer security creates burdensome
requirements on data sharing & large scale analysis

- Many schemes get “hacked”

[Greenbuam et al ('04), Nat. Biotech; Greenbaum & Gerstein ('13), The Scientist]

12 -



Genomic Privacy Hacks,
Mostly Focusing on Identification

« Early genomic studies were based on small cohorts

- Individuals give consent to participate but request anonymity
« HAPMAP, PGP, 1000 Genomes...

- Focus on hiding the participation of individuals

- Attacks aimed at detecting whether an individual with known genotypes
participated a study

» “Detection of genomes in a mixture” (Homer et al 2008, Im et al 2012)

* As more people are genotyped, more individuals are in large private genomic
databases

- Eetection of an individual is irrelevant, as their participation is already
nown

* Current EX: “An individual’s genomic/phenotypic data is most certainly stored in their
hospital”

» Future: >1M people’s health information is part of a NIH/PMI or NHS databases
* Identification attacks now focus on pinpointing individuals by cross-
referencing large seemingly independent datasets

- lllustrates that a leaked/hacker/stolen dataset, even when anonymized,
can leak information

- Sweeney et al 2013, Gymrek et al 2013

Gymrek et al, “Identifying Personal Genomes by Surname Inference” (2013)

Homer et al, “Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping
microarrays.” (2008)

Im et al, “On Sharing Quantitative Trait GWAS Results in an Era of Multiple-omics Data and the Limits of Genomic Privacy” (2012)
Sweeney et al, “Identifying Participants in the Personal Genome Project by Name” (2013)
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Earth’s Biggest Movie Database™

Robust De-anonymization of Large Datasets
(How to Break Anonymity of the Netflix Prize Dataset)

Arvind Narayanan and Vitaly Shmatikov
The University of Texas at Austin

February 5, 2008

Abstract

We present a new class of statistical de-anonymization attacks against high-dimensional micro-data,
such as individual preferences, recommendations, transaction records and so on. Our techniques are
robust to perturbation in the data and tolerate some mistakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the Netflix Prize dataset, which contains anonymous
movie ratings of 500,000 subscribers of Netflix, the world’s largest online movie rental service. We
demonstrate that an adversary who knows only a little bit about an individual subscriber can easily
identify this subscriber’s record in the dataset. Using the Internet Movie Database as the source of
background knowledge, we successfully identified the Netflix records of known users, uncovering their
apparent political preferences and other potentially sensitive information.

NetFlix challenge as an example of a “Linking Attack”,
characterizing already identified individuals in IMDB,
with their (previously hidden) movie viewing habits

Cross correlated small set of identifiable IMDB rating records with large set of “anonymized”
Netflix customer ratings, which were being used for a Machine Learning competition
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Strawman Hybrid Social & Tech Proposed Solution?

 Fundamentally, researchers < Quantifying Leakage &

have to keep genetic allowing a small amounts of it
secrets « Careful separation & coupling
- Genetic Licensure & of private & public data
training for individuals - Lightweight, freely accessible
(similar to medical license, secondary datasets coupled
drivers license) to underlying variants
. Teclhnology to make things — Selection of stub & "test pilot"
easier datasets for benchmarking
— Cloud computing & — Develop programs on public
enclaves (eg solution of stubs on your laptop, then move
Genomics England) the program to the cloud for
« Technological barriers private production run

shouldn't create a social
incentive for “hacking”

[D Greenbaum, M Gerstein (‘11). Am J Bioeth 11:39. Greenbaum & Gerstein, The Scientist ('13)]
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* The Dilemma of Genomic Large-scale Transcriptome Mining:

Privacy Building Interpretative, Regulatory Models,

— Fundamental, inherited info that’s while Protecting Individual Privacy

very private v need for large-scale _ _
mining for med. research  Modeling of RNA-seq in terms

— Issues w/ current social & tech of Logical Gates
approaches: inconsistencies,

) ) - Preponderance of OR gates in cancer v.
burdensome security, various

cell-cycle (esp. for myc)

"hacks”
~ Strawman Hybrid Soc-Tech * Using State Space Models to
Proposal (Cloud Enclaves. Decompose RNA-seq Dynamics

Quantifying Leaks & Closely - Using dimensionality reduction to
Coupled priv.-public datasets) determine drivers and internal & external

 RNA-seq: How to Publicly canonical dynamic patterns (iPDPs &

- PDP
Share Some of it ePDPs)
Removing SNVs in reads w/ MRF - In cell cycle, only conserved genes have
- Re

. _ B iIPDP w/ matching periodicity
- Quantifying & removing variantinfo  _ g, worm-fly example, conserved genes
from expression levels + eQTLs

: : i have similar canonical patterns in both
using ICl & predictability organisms V. species specific ones

- Instantiating a practical linking attack  (eg ribosomal v signaling genes)
using extreme expression levels
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RNA-seq

RNA-seq uses next-generation sequencing technologies to reveal RNA presence
and quantity within a biological sample.

ATACAAGCAAGTATAAGTTCGTATGCCGTCTT ~ -
GGAGGCTGGAGTTGGGGACGTATGCGGCATAG -
TACCGATCGAGTCGACTGTAAACGTAGGCATA I
ATTCTGACTGGTGTCATGCTGATGTACTTAAA - = L
Reads (fasta) - -
— Quality scores (fastq)
— Mapping (BAM)
— Contain variant information in transcribed regions Overlap
identification
weaf &
NI-A - f R s Overlap profile
N2-A SRR ¥ 1 AU (SO OO || 1Y VIO SR S | . W ‘hm
N3-A szl ]Il il l 2t Al rsseevmmnsnamne o | ). ‘ o uu
N2-B I_ TN T At ' A WSS S | _.__.L\ L.m
ucsc | : \ =
Genes : : ‘ / \
NCAM!1 S
Quantitative information from RNA-seq signal: average Reads => Signal '
signals at exon level (RPKMs)

N
[PLOS CB 4:e1000158; PNAS 4:107: 5254 ; IJC 123:569] "~



Light-weight formats

« Some lightweight format clearly separate public &

private info., aiding exchange
* Files become much smaller

* Distinction between formats to compute on and those
to archive with — become sharper with big data

Public

AlignmentBlocks ID

Anonymization
(Optional)

chr3 F24

rh/ S

Mapping coordinates
27: 281] without variants (MRF)

----- »1 GTCGTGTCTGTATCCA...
----- =2 ATGGCTCGTTGGGATT...
""" >3 CTCTGGTCTGTGTACC...

chrl:+:201:250:1:50 1 = [
elaelma— 2 5EIL 11 Lol 2 =dbooooe

Private

ID Sequences

Reads

(linked via ID,
10X larger than
mapping coord.)

18 -



MRF
Examples

Reference based
compression

(ie CRAM)

is similar but it
stores actual
variant beyond just
position of
alignment block

chr2:4:601:630:1:30,chr2:4:921:940:31:50

TS TE TS TE
----- - [ -l Reference
AlignmentBlock 1 ;’f AlignmentBlock 2
Splice junction Read
QS QE/QS QE

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd

chr9:4+:431:480:1:50|chr9:4+:945:994:1:50

TS TE TS TE
-~ ] - - - - -~ === === [ ----[@--- Reference
AlignmentBlock ;..-"':- ;-"; AlignmentBlock
| _ Paired-end Read
Qs QE Qs QE

Legend: TS = TargetStart, TE = TargetEnd, QS = QueryStart, QE = QueryEnd
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* The Dilemma of Genomic

Privacy

- Fundamental, inherited info that’s
very private v need for large-scale
mining for med. research °

- Issues w/ current social & tech
approaches: inconsistencies,
burdensome security, various
"hacks”

- Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks & Closely
Coupled priv.-public datasets)

* RNA-seq: How to Publicly
Share Some of it
- Removing SNVs in reads w/ MRF

- Quantifying & removing variant info
from expression levels + eQTLs
using ICI & predictability

Large-scale Transcriptome Mining:
Building Interpretative, Regulatory Models,
while Protecting Individual Privacy

Modeling of RNA-seq in terms
of Logical Gates

- Preponderance of OR gates in cancer v.
cell-cycle (esp. for myc)

Using State Space Models to
Decompose RNA-seq Dynamics

- Using dimensionality reduction to
determine drivers and internal & external
canonical dynamic patterns (iPDPs &
ePDPs)

- In cell cycle, only conserved genes have
iIPDP w/ matching periodicity

- For worm-fly example, conserved genes
have similar canonical patterns in both
organisms V. species specific ones

- Instantiating a practical linking attack (eg ribosomal v signaling genes)

using extreme expression levels
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(a) C A
Individual

)

(ii)

(iii)

[Biometrics 68(1) 1-11]

Frequency

EE eX0N | SNP

mmm— non-trascriped regions,

e.g., intron etc.

(b)

(c)

15

10

eQTL Mapping
Using RNA-Seq
Data

« eQTLs are genomic loci
that contribute to
variation in mRNA
expression levels

« eQTLs provide insights
on transcription
regulation, and the
molecular basis of
phenotypic outcomes

« eQTL mapping can be
done with RNA-Seq data
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Information Content and Predictability
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Representative Expression, Genotype,
eQTL Datasets

* Genotypes are available from the 1000 Genomes
Project

* mMRNA sequencing for 462 individuals

* Publicly available quantification for protein coding genes

* Approximately 3,000 cis-eQTL (FDR<0.05)

- 3 \

1000 Genomes

A Deep Catalog of Human Genetic Variation




Per eQTL and ICI Cumulative Leakage
versus Genotype Predictability
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Cumulative Leakage versus Joint
Predictability

20
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Linking Attack Scenario

Phenotype dataset Genotype dataset
(Public) (Stolen/Hacked/Queried)
& c\"“"\’c\‘?& ’c\‘?z Phe notlyfc)_e—Gz ntotyri[e YN
S O S RIFG N
O ey correlation datase PR
) Phenotype 1 «—Variant 1 0| 1| « | 1
B 01|27 903 Phenotype 2 «<—Variant 2
HIV- 05 8.6 63.5 2 1] | 0
Phenotype g¢—>Variant g
HIV- 1 2 1

Predicted/Matched genotypes
L MO &
I status. oo (\"‘& Q,g\"‘\
I Predicted variant A NS o
1

e HIV | ‘,f’e"z,t,}'pes o HIV+ o/0 171 -~ 141

Statusl ;@& ™ oS
\\’6‘\ KON » 0 HIV- | 2721 1/1 - 0/0
HIV+ 1 o 2 Genotype comparison 1/0| 1/0 ... | 0/2
HIV-| 2 | 2 | - 1 and matching w2lop] .. | 1
o/1 1/1 ... 2/1

| HIV-| o | 1 1

[Harmanciet al. Nat. Meth. (in revision)]



Steps in Instantiation of a (Mock)
Linking Attack

Step 1

e )

G-P
correlation
dataset

Phenotype and
genotype
selection

* Absolute Value of
Correlation

b, /

[Harmanciet al. Nat. Meth. (in revision)]

Step 2

-

e

Prediction
methodology

Genotype
prediction

Maximum a
Posteriori
Genotype

~

Step 3

* Gender,
Population, Age

Auxiliary
information

Linking

Minimum Distance
between Predicted
and Individual
Genotypes

/

Estimate
Reliability of
Linking

How far is the linked
genotype distance
from second in
ranked list? (d ;)
(Higher: More
accurate linking)
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Extremity based linking with Attacker can estimate the
homozygous genotypes reliability of linkings

1.0
0
@ [0}
3 0.8} 309
2 =
° >
. 2
% 06F 5
gy g 0.8
cC
£ o
-]
z 0.4 g
5 — Genotypes 507
© 0.2) —— Genotypes + Gender
© —
n —— Genotypes + Population d1.2 thresholds
Genotypes + Gender + Populatio —— Random thresholds
0.0 | | ' 0.6 ' 1 1 : :
0.2 0.4 0-6_ 08 1.0 0.0 0.2 04 0.6 0.8 1.0
Absolute Correlation Threshold Sensitivity
Sensitivity: Fraction of correctly linked PPV: Fraction of correctly linked individuals
Individuals among all individuals among selected individuals

[Harmanciet al. Nat. Meth. (in revision)]



* The Dilemma of Genomic

Privacy

- Fundamental, inherited info that’s
very private v need for large-scale
mining for med. research °

- Issues w/ current social & tech
approaches: inconsistencies,
burdensome security, various
"hacks”

- Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks & Closely
Coupled priv.-public datasets)

* RNA-seq: How to Publicly

Share Some of it
- Removing SNVs in reads w/ MRF

- Quantifying & removing variant info
from expression levels + eQTLs
using ICI & predictability

Large-scale Transcriptome Mining:
Building Interpretative, Regulatory Models,
while Protecting Individual Privacy

Modeling of RNA-seq in terms

of Logical Gates

- Preponderance of OR gates in cancer v.
cell-cycle (esp. for myc)

Using State Space Models to
Decompose RNA-seq Dynamics

- Using dimensionality reduction to
determine drivers and internal & external
canonical dynamic patterns (iPDPs &
ePDPs)

- In cell cycle, only conserved genes have
iIPDP w/ matching periodicity

- For worm-fly example, conserved genes
have similar canonical patterns in both
organisms V. species specific ones

- Instantiating a practical linking attack (eg ribosomal v signaling genes)

using extreme expression levels
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A gene can be regulated by multiple gene
regulatory factors

Next generation sequencing _Binding signal Gene regulatory network
techniques (e.g., ChIP-seq, '
CLIP-seq) predict gene | Facior (08) (D

TF 1 Gene

regulatory factors (RFs) T2

) Peak |calli
and their target genes » e 1ca s » iGE

miRNA 1
 transcription factors

(TFs) e
 micro-RNAs I—El

Binding peaks

DIDID|ID|D
o |lo|o|o|@
AR

Many genes are regulated by multiple RFs.
How RFs coordinate to regulate target gene expression?
« cooperative?
e competitive?
 independent?



Modeling cooperativity between RFs
to target gene using logic gates

A regulatory triplet

10110101...

10110101...

0 — gene off

1 —gene on

after binarizing gene
expression data*

*BoolNet, R package

» 2-input-1-output logic gate

10110101....
RF1

00110101...

01110111... 00110101...

RF2

/ Input type RF1 |0]|0
(RF1, RF2) Re2 lol1lol1] b Binarized

expression
Output T X| X| X[ X

X can be 0 or 1, so there are 24=16 possible
output combinations, each of which corresponds
to a unique 2-input-1-output logic gate

D= DD




An example: selection of the best-
matched logic gate

TH T2 Gene 20 samples
RF1=TF1 0 1 of 1 ojog 1 ogojg OJojg1
RF2=TF2 0 0 1§ 0 ogi1go ogi1jgo ogigo
Gene 1 T=Gene1 O 0 1§ 0 O ojo o ogogo ogojgo
/
RF1 0 1
RF2 1 0

Laplace’s rule of succession
s=(# of selected output state for
the input type + 1)

/(# of input type + 2)

s1=(5+1)/(5+2)

=6/7
Consistency score:
6/7*5/7*6/7*5/7=0.37 -

s3=(5+1)/(5+2)
=6/7

RF1=TF 1

RF2=TF 2

TFA1 TF2
1
0

T=Gene 1

0 Gene 1

Wang, et al., PLoS Computational Biology, 2015



Application 1 — transcription factor
cooperativity in Yeast cell ckcle

Yeast Cell Cycle

Common Matched

Regulatory triplets Target |ogic gate
TF1 TF2 Gene (T)
1 YHRO084W YBR083W YBR082C AND
2 YKL112W YIL131C YMR198W  OR

All common gene
targets

Target gene 2464

9011 YOR113W  YBL103C YDR042C  XOR }

TF 176

0
\

Triplet 39,011 48 @
U e B

Time point 59 o 800 -
c
2 600
®
2
§ 400 -
Q
£ 200 - |:|
o
2 ) _UHHHHeeOs=soooo
o ol 8l 8 r r ¥ ¥ N N - & A —
8 rgyleelsgsssstEgen

K C g 1 1 1 % 2

2 ook L
— \ o z—C_>_ i .

AND-like gates

|
K

Wang, et al., PLoS Computational Biology, 2015




Application 2 — transcription factor
cooperativity in Acute Myeloid
Leukemia (AML)

Target gene 1824 ENCODE Data (K562, ChIP-seq)
http://encodenets.gersteinlab.org/

National Human Genome Researd h Institute

ENCODE
7

Regulatory 50,865 TCGA Data (AML, level 3, RNA-seq)
triplet https://tcga-data.nci.nih.gov/tcga/
tcgaDownload.jsp

Patient 197
sample

'l
\ -
—i— Lo

't CANCER GENOME ATL»\S@

Wang, et al., PLoS Computational Biology, 2015



Application 2 — transcription factor
cooperativity in Acute Myeloid Leukemia (AML)

OR-like gates
12
(O] _ -
S —_OD_ Human TF-TF-target
c RF2 Common Matched
% 2000 — Target logic gate
@ — Gene (T)
S 1500 — B ATF3 BDP1 YPEL1 AND
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(@)] ] ] _ _
& 1000 ATF3 BRF2  AIF1L AND
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5 a0 TF1 MTFZ
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€
2 o :_____D__D______ All common gene targets
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e N L LA
ST |
s T s g

Wang, et al., PLoS Computational Biology, 2015



T=all common targets) triplets

other human

number of logic-gate consistent triplets

200

150 —

100 —

50

0 -

Cancer-related TF, MYC universally
amplifies target expression

2,153 (RF1=MYC, RF2=other TFs,

M

AII common gene
targets

o
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$

High expression of MYC is sufficient
for high target gene expression

c-Myc Is a Universal Amplifier Cell
of Expressed Genes in Lymphocytes
and Embryonic Stem Cells

Zugqin Nie,'-® Gangging Hu,2¢ Gang Wei,? Kairong Cui,? Arito Yamane,® Wolfgang Resch,® Ruoning Wang,*
Douglas R. Green,* Lino Tessarollo,> Rafael Casellas,® Keji Zhao,2* and David Levens'*

Wang, et al., PLoS Computational Biology, 2015



 The Dilemma of Genomic
Privacy

- Fundamental, inherited info that’s
very private v need for large-scale
mining for med. research °

- Issues w/ current social & tech
approaches: inconsistencies,
burdensome security, various
"hacks”

- Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks & Closely
Coupled priv.-public datasets)

* RNA-seq: How to Publicly
Share Some of it

- Removing SNVs in reads w/ MRF

- Quantifying & removing variant info
from expression levels + eQTLs
using ICI & predictability

Large-scale Transcriptome Mining:
Building Interpretative, Regulatory Models,
while Protecting Individual Privacy

Modeling of RNA-seq in terms
of Logical Gates

- Preponderance of OR gates in cancer v.
cell-cycle (esp. for myc)

Using State Space Models to
Decompose RNA-seq Dynamics

- Using dimensionality reduction to
determine drivers and internal & external

canonical dynamic patterns (iPDPs &
ePDPs)

- In cell cycle, only conserved genes have
iIPDP w/ matching periodicity

- For worm-fly example, conserved genes
have similar canonical patterns in both
organisms V. species specific ones

- Instantiating a practical linking attack (eg ribosomal v signaling genes)

using extreme expression levels

33 = Lectures.GersteinLab.org



Internal and external gene regulatory networks

532 <& Internal regulation

7 <& External regulation

How to identify gene
expression dynamics

driven by internal/ 'é:‘ ?

external regulation?

2

¢ Q ___

:i'—'- (A Cross-species conserved  Conserved Non-conserved TFs

: 'S, genes transcriptional factors

-_ | j + o)

I Ve, Protein-coding genes TFs micro-RNAs
equiibnum
position Individual’s protein Wild-type TFs Somatic mutated TFs
coding genes
Protein-coding genes in ~ Commonly expressed Brain-specific expressed
External force brain TFs TFs

Protein-coding genes in ~ House-keeping TFs Developmental TFs
development

[Wang et al. PLOS CB (in revision, ‘15)]



State-space model for internal and
external gene regulatory networks

Internal Group External Group
i i Internal regulati
How to |dent|fy gene ® <& Internal regulation
<& External regulation

expression dynamics
driven by internal/ g
external regulation?

Control: Gene

expression
S t t vector of
ale external factors
+ Ut at time ¢
space
model

By captures temporal
casual influence from

State: Gene expression A; capt'ures temporal State: Qene §X‘Femal factor k to Gene /
vector of Group X at casual influence from expression vector of in internal group
time £+1 Gene i to Genej in internal group at

internal group time ¢

[Wang et al. PLOS CB (in revision, ‘15)]



Effective state space model for meta-genes

Not enough data to estimate state

space model for genes

(e.g., 25 time points per gene to estimate 4
million elements of 4 or B for 2000 genes) X

X =AX +BU

.

Dimensionality reduction from
genes to meta-genes (e.g., SVD)

.

Effective state space model for meta-genes

(e.g., 250 time points to estimate 50 matrix elements
if 5 meta-genes)

N A=WAW,
‘_/

/

~ ~ o~ ~

X. =AX +BU,

[Wang et al. PLOS CB (in revision, ‘15)]




Canonical temporal expression trajectories
from effective state space model

X,
Internal driven t t Externally driven
dynamics dynamics

p™ internal principal dynamic pattern g™ external principal dynamic pattern
(iPDP): [4, 1/12 o 1] (ePDP): [o, .. 07]

where 4, 1s pth elgenvalue of 4. where o, 15 qth elgenvalue of B.

Canonical temporal expression trajectories
(e.g., degradation, growth, damped oscillation, etc.)

o
o ] S o
i o e = s
= i < o =
=) E E 7 E 17
= g < | g s
3 § o k| B ¥
3 & a -
c g c c
s s 24 s
B @ @ 2
7 o 7 [
9 2 2 2 <o
=4 S S B &
Z i 1 & g
hi o | o | o

= D
|||||||||||||||||||||

0 0 5 10
Expression pattern (1. )
06 -02 02
| N I N -
E xpression pattem (1. )
-012 -0.06 A
[ |
re attern (4 )
0 08

00

|||||

Tmet Tt  Tmet  Timet

time

Time t Time t Time t Time t

iPDP expression
ePDP expression

[Wang et al. PLOS CB (in revision, ‘15)]



[Wang et al. PLOS CB (in revision, ‘15)]

A. Gene state-space model F I OWC h a rt

C. Meta-gene state-space model

B. Dimensionality Reduction

1= AXABU,

Genes of X

Meta-genes of X .

E. Gene’s internal (INT) and :

: : S D. Internal/External Principal
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|||||

P e~ N sl

dynamics composed of PDPs D P ——p———
] _ 5 § [, A2 . A e o . o]
INT— . 1 1
=] ey S &
(0] ©
G g
=

) N TN I |

T T T T T T T T T T

EXT:d/ i +d2i .,
- ] — /4— Internal regulation among genes/meta-genes Group X by A/4

— /4— External regulation from genes/meta-genes in Group U
to genes/meta-genes in Group X by B/B
+d 4 ] i

/. Genes/Meta-genes in Group X 1/ . Genes/Meta-genes in Group U

..................




Breast cancer cell cycle (under hormonal stimulation):

Conserved genes & TFs have dynamic pattern matching cell-cycle period;
Non-conserved ones, do not

Dataset

Group X (internal)

Group U (external)

1870 non-conserved

Time samples of a full cell
cycle

T=12 time points: 0, 4, 6, 8, 12, ...,

Human breast cancer

1132 metazoan conserved

metazoan transcription

28, 32 hours

cell cycle under genes incl. 150 orthologous
hormonal stimulation =~ TFs factors
iPDP 1 iPDP 2 iPDP 3 iPDP 4 :
! ! =1t
| 1 x \
“ ., 1 b | / A :
e‘ AN ' Oscillated iPDP by
| AVAVERNAR / ' conserved TFs
3 ; SR a full cell cycle:
S oo o oo : ¢ » e e e o e o oo o s )
. s e o I
Tl Oscillated ePDP by
52 , . g N, non-conserved TFs
f el AAN /N S ] N avaway
c 1 [/ ||| faster cycle due:
il ¥ || tohormone :
2 l | :
: T T T T :; T T T T 'L_ T T T T “ T T f T T
Time point Time point Time point Time point

[Wang et al.

(in revision, ‘15)]



Are gene regulations among orthologs conserved
across species?

| jz& Are gene regulatory
cpeclesA 1ol T YL [ networks among

Species B @ orthologs conserved
S N across species?

orthologs co-expressed

<& Regulation among orthologs (internal)

< Regulation from species-specific factors (external)

Orthologous genes (orthologs)

Species-specific transcription factors

To what degree can’t ortholog expression levels
be predicted due to species-specific regulation

[Wang et al. (in revision, ‘15)]
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512:445 ('14); doi: 10.1038/nature13424]

Time-course gene expression data of
worm & fly development, from modENCODE
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Late EmbryY°

Organism Major developmental stages

worm
(C. elegans)

33 stages: 0,0.5, 1, ..., 12 hours, L1, L2, L3,
L4, ..., Young Adults, Adults

fly
(D. mel.)

30 stages: 0,2, 4, 6,8,..., 20, 22 hours, L1-
L4, Pupaes, Adults
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Orthologs have similar internal but different external
dynamic patterns during embryonic development

Worm’s effective state space model
X =AX +BU, I— . +

iPDPs: time exponentials ePDPs: time exponentials
of 4 eigenvalues in worm of p eigenvalues in worm
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Orthologs have correlated iPDP coefficients

[Wang et al.
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Evolutionarily conserved and younger genes exhibit
the opposite internal and external PDP coefficients

iPDP coeffs > ePDP coeffs m Fly

Ribosomal genes p<0.001 p<2.2e-16 \ Fly

o
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(e]

\ 4
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-
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|
|
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200 300
!

Ribosomal genes have significantly larger
coefficients for the internal than external PDPs,
but signaling genes exhibit the opposite trend

100
|

0
|

Coefficients of ribosomal
related genes (absolute)

iPDPs ePDPs

*

iPDP coeffs < ePDP coeffs m Fly

Signaling genes p<7e-4 p<6e-4

* p-values from KS-test

[Wang et al. PLOS CB (in revision, ‘15)]



* The Dilemma of Genomic

Privacy

- Fundamental, inherited info that’s
very private v need for large-scale
mining for med. research °

- Issues w/ current social & tech
approaches: inconsistencies,
burdensome security, various
"hacks”

- Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks & Closely
Coupled priv.-public datasets)

* RNA-seq: How to Publicly

Share Some of it
- Removing SNVs in reads w/ MRF

- Quantifying & removing variant info
from expression levels + eQTLs
using ICI & predictability

Large-scale Transcriptome Mining:
Building Interpretative, Regulatory Models,
while Protecting Individual Privacy

Modeling of RNA-seq in terms

of Logical Gates

- Preponderance of OR gates in cancer v.
cell-cycle (esp. for myc)

Using State Space Models to
Decompose RNA-seq Dynamics

- Using dimensionality reduction to
determine drivers and internal & external
canonical dynamic patterns (iPDPs &
ePDPs)

- In cell cycle, only conserved genes have
iIPDP w/ matching periodicity

- For worm-fly example, conserved genes
have similar canonical patterns in both
organisms V. species specific ones

- Instantiating a practical linking attack (eg ribosomal v signaling genes)

using extreme expression levels
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* The Dilemma of Genomic
Privacy

- Fundamental, inherited info that’s
very private v need for large-scale
mining for med. research °

- Issues w/ current social & tech
approaches: inconsistencies,
burdensome security, various
"hacks”

- Strawman Hybrid Soc-Tech
Proposal (Cloud Enclaves.
Quantifying Leaks & Closely
Coupled priv.-public datasets)

* RNA-seq: How to Publicly
Share Some of it

- Removing SNVs in reads w/ MRF

- Quantifying & removing variant info
from expression levels + eQTLs
using ICl & predictability

Large-scale Transcriptome Mining:
Building Interpretative, Regulatory Models,
while Protecting Individual Privacy

Modeling of RNA-seq in terms
of Logical Gates

- Preponderance of OR gates in cancer v.
cell-cycle (esp. for myc)

« Using State Space Models to

Decompose RNA-seq Dynamics

— Using dimensionality reduction to
determine drivers and internal & external

canonical dynamic patterns (iPDPs &
ePDPs)

- In cell cycle, only conserved genes have
iIPDP w/ matching periodicity

- For worm-fly example, conserved genes
have similar canonical patterns in both
organisms V. species specific ones

- Instantiating a practical linking attack (eg ribosomal v signaling genes)

using extreme expression levels
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D Greenbaum

Privaseq.gersteinlab.org
A Harmanci

RSEQtOOIS.gersteinlab.org [MRF]
L Habegger, A Sboner,

TA Gianoulis, J Rozowsky, A Agarwal, M Snyder
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D Wang
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More Information on this Talk

SUBJECT: Networks

DESCRIPTION:

NOTES:
This PPT should work on mac & PC. Paper references in the talk were mostly from
Papers.GersteinLab.org.

PERMISSIONS: This Presentation is copyright Mark Gerstein, Yale University, 2010. Please read
permissions statement at http://www.gersteinlab.org/misc/permissions.html . Feel free to use images in
the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).

PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped
images in this presentation see http://streams.gerstein.info . In particular, many of the images have
particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz: http://www.flickr.com/
photos/mbgmbg/tags/kwpotppt .
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