LARVA: An integrative framework for Large-scale Analysis of Recurrent Variants in noncoding Annotations

M Gerstein, Yale

Slides freely downloadable from **Lectures.GersteinLab.org** & "tweetable" (via @markgerstein). See last slide for references & more info.

Finding Key Variants in Cancer Genomes: the Needle in the Haystack

[Image credit: www.yourgrantauthority.com '15]

- Increasing number of whole genome sequenced for tumor/normal pairs
 - Eg >2500 for PCAWG
- Lots of somatic mutations in an average tumor (~5K/sample), particularly in non-coding regions
- A focus is distinguishing drivers & passengers
 - Canonical Drivers are mutations driving cancer progression
 - Thought to be under positive selection
 - · Recur in the same position, gene or functional element across tumors in different individuals
 - Passengers are thought not be significant to driving cancer progression
 - Collateral damage
 - Could result from impaired DNA repair processes
- Most driver work has focused on genes
 - eg Youn & Simon ('11). Bioinformatics; Lawrence et al. ('13). Nature

Noncoding Annotations

Ultra-sensitive & Ultraconserved elements Noncoding regions more conserved than expectation across the human population & between species [Bejerano et al. ('04). Science; Khurana et al., Science ('13)]

Identification of non-coding candidate drivers amongst somatic variants: FunSeq

Identification of non-coding candidate drivers amongst somatic variants: FunSeq

Candidate driver

From Funseq 1.0 to Funseq 2.0

- Elaborated features
 - $\circ~$ Motif disruption score: changes in PWMs
 - Network centrality analysis: PPI, regulatory, and phosphorylation networks

Mutation recurrence

Mutation recurrence

Cancer Somatic Mutational Heterogeneity, across cancer types, samples & regions

[Lochovsky et al. NAR ('15)]

1 Mbp genome regions (locations chosen at random)

11

Cancer Somatic Mutation Modeling

- 3 models to evaluate the significance of mutation burden
- Suppose there are *k* genome elements. For element *i*, define:
 - *n_i*: total number of nucleotides
 - x_i: the number of mutations within the element
 - p: the mutation rate
 - R: the replication timing bin of the element

Model 1: Constant Background Mutation Rate (Model from Previous Work)

 $\mathbf{x_i}: Binomial(\mathbf{n_i}, \mathbf{p})$

Model 2: Varying Mutation Rate

 $\mathbf{x_i} | \mathbf{p_i} : Binomial(\mathbf{n_i}, \mathbf{p_i})$

 $\mathbf{p_i}: Beta(\mu, \sigma)$

Model 3: Varying Mutation Rate with Replication Timing Correction

 $\mathbf{x_i} | \mathbf{p_i} : Binomial(\mathbf{n_i}, \mathbf{p_i})$

 $\mathbf{p_i}: Beta(\mu|\mathbf{R}, \sigma|\mathbf{R})$

 $\mu|\mathbf{R},\sigma|\mathbf{R}:$ constant within the same \mathbf{R} bin

[[]Lochovsky et al. NAR ('15)]

LARVA Model Comparison

- Comparison of mutation count frequency implied by the binomial model (model 1) and the beta-binomial model (model 2) relative to the empirical distribution
- The beta-binomial distribution is significantly better, especially for accurately modeling the over-dispersion of the empirical distribution

Adding DNA replication timing correction further improves the beta-binomial model

ectures.Gersteinlab.org

14

LARVA Results

[Lochovsky et al. NAR ('15)]

LARVA Implementation

- http://larva.gersteinlab.org/
- Freely downloadable C++ program
 - Verified compilation and correct execution on Linux
- A Docker image is also available to download
 - Runs on any operating system supported by Docker
- Running time on transcription factor binding sites (a worst case input size) is ~80 min
 - Running time scales linearly with the number of annotations in the input

Acknowledgements

- LARVA.gersteinlab.org
 - L Lochovsky*, J Zhang*, Y Fu, E Khurana
- FunSeq2.gersteinlab.org

– Y FU, Z Liu, S Lou, J Bedford, X Mu, K Yip, E Khurana

Info about content in this slide pack

- General PERMISSIONS
 - This Presentation is copyright Mark Gerstein, Yale University, 2015.
 - Please read permissions statement at www.gersteinlab.org/misc/permissions.html .
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 - Paper references in the talk were mostly from Papers.GersteinLab.org.
- PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info .
 - In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt