Transcriptome Analysis:

Expression Clustering across Distant Organisms

M Gerstein, Yale

See last slide for references & more info. (Background image from http://www.genomenewsnetwork.org/articles/04_02/leukemia.shtml)
Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @markgerstein)
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Compa rative « Broad sampling of conditions across

transcriptomes & regulomes for

ENCODE Functional human, worm & fly

— embryo & ES cells

G enom iCS Re source — developmental time course (worm-fly)

(EncodeProject.org/comparative) * |n total: ~3000 datasets (~130B reads)

Number of data sets

1,500
12070) et
900
f)’\j)’\ B Chromatin
features
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yI\Q(A‘ Regulatory-factor
0 binding

.\//[;.;)'\\//'\‘ B RNA transcripts
2012 Now 2010 Now 2010 Now

Human Worm Fly
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[Nature 512:445 ('14); doi: 10.1038/nature13424]

Time-course gene expression data of
worm & fly development
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Transcriptome Analysis:
Expression Clustering across Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative
Analysis

« Expression Clustering, Cross-species

» Potts-model optimization gives 16
conserved co-expression modules
(which can potentially annotate
NCRNASs/TARS)

* Relating Clusters to Hourglass Genes

» Developmental 'hourglass' genes in
12 of the clusters. They also exhibit
intra-organism hourglass behavior.

» Stage alignment of worm & fly
development, strongest with
hourglass genes

* Decoupling expression
changes into those
driven by worm-fly
conserved genes vs
species-specific ones

- Using dimensionality
reduction to help
determine internal &
external drivers

- Conserved genes have
similar canonical
patterns (iPDPs) in
contrast to species
specific ones (Ex of
ribosomal v signaling
genes)
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Expression clustering:
revisiting an ancient problem

Species A Species B
Clustering Clustering
algorithm algorithm
co-expressed genes co-expressed genes
responsible for the same responsible for the same

function in a species Q @ function in a species

Eisen MB et al. PNAS 1998 two independent sets
Langfelder P et al. BMC Bioinfo. 2008 Q @ of modules

Tamayo P et al. PNAS 1999

Kluger Y et al. Genome Res. 2003 10



Expression clustering:
revisiting an ancient problem

Species A Orthologous pairs __ Species B
between species

A novel unified framework to integrate co-
expression data acro‘Fs species

[ OrthoClust }

@ @ cross species modules

Yan et al. Genome Biol. 2014 @ @
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Network modularity
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Network modularity

Q — Qmax

Optimization problem

degree of node i
adjacency matrix /
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OrthoClust: toy example

Every node i is assigned with a label o; (labels of modules: 1,2,...q).

2
oga 5

(2
Species A e )

Species B

co-expressed

orthologs

Yan KK et al. Genome Biology. 2014



OrthoClust: toy example

Every node i is assigned with a label o; (labels of modules: 1,2,...q).

(4,5')€(A,B)

co-expressed

2
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speciesA  (3) ) (3) |

T 0

Yan KK et al. Genome Biology. 2014
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OrthoClust: toy example

Use Potts model (generalized Ising model) to simultaneously cluster co-expressed
genes within an organism as well as orthologs shared between organisms. Here,
the ground state configuration correspond to three modules: 1, 2, 4.

species A specific

conserved modules

species B specific

Species AI

Species B
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Application for 3 species
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NcRNAs associated with modules

» Identify ncRNAs & TARs that are significantly correlated and anti-correlated with
genes in the 16 modules.

Correlated Anti-correlated

HOXB4 vs. hsa-mir-10a SGCB vs. TAR chr19:7698570-7701990

S lin-39 vs. TAR chrlll:8871234-2613
.7) /\\ -, & -
g " =
Q.
X
- Dfd vs. mir-10
—_pt T\ 7 " . ;
y \ - \ A a
P 4 ~N7 U
Stage/Sample Stage/Sample
Ortholog — — — -ncRNA / TAR
Human, Worm & Fly 18

[Nature 512:445 ('14); doi: 10.1038/nature13424]



Transcriptome Analysis:
Expression Clustering across Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative
Analysis

« Expression Clustering, Cross-species

» Potts-model optimization gives 16
conserved co-expression modules
(which can potentially annotate
NCRNASs/TARS)

* Relating Clusters to Hourglass Genes

» Developmental 'hourglass' genes in
12 of the clusters. They also exhibit
intra-organism hourglass behavior.

» Stage alignment of worm & fly
development, strongest with

hourglass genes

* Decoupling expression
changes into those
driven by worm-fly
conserved genes vs
species-specific ones

- Using dimensionality
reduction to help
determine internal &
external drivers

- Conserved genes have
similar canonical
patterns (iPDPs) in
contrast to species
specific ones (Ex of
ribosomal v signaling
genes)
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Conserved modules exhibit canonical hourglass behavior

Developmental stages that
show the basic architecture
of vertebrates Frog

Zebrafish = . Mouse

‘ Expression divergence across species is
lllustrations courtesy Naoki Irie minimized during phyIOtypiC Stage
(Kalinka et al. Nature 2010)

% - T Canonical Inter-organism Behavior
ERCI-5 I mis «  “Hourglass hypothesis”: all organisms go
o 8_ =T . . .
?5 » e through a particular stage in embryonic
5; s Q.D development ("phylotypic" stage) where
88 . , I inter-organism expression differences of
g2 1+ 2 T4 orthologous genes are smallest.
S  We identify modules (12 out of 16) which
B "o Ts T oW have this behavior at the phylotypic stage.
phylotypic Stage
stage

[Nature 512:445 ('14); doi: 10.1038/nature13424]
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genes across 12 modules are the
most tightly coordinated at the

phylotypic stage (fly).

 We observe that the expression of

[Nature 512:445 ('14); doi: 10.1038/naturel13424]
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Alignment of Developmental Time-Course

All worm-fly orthologs
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For worm & fly find stage-specific genes
We can align developmental stages using
fraction of shared orthologs between worm
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Reuse of genes from LE in worm in fly pupa
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[

Alignment of Developmental Time-Course

A All worm-fly orthologs

L.
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Using only orthologs in 12 "hourglass" modules show stronger
alignment except for absence of genes at the phylotypic stage

— By definition genes in hourglass modules are not phylotypic

stage specific, hence the gap

512:445 ('14); doi: 10.1038/naturel13424]
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Transcriptome Analysis:
Expression Clustering across Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative
Analysis

« Expression Clustering, Cross-species

» Potts-model optimization gives 16
conserved co-expression modules
(which can potentially annotate
NCRNASs/TARS)

* Relating Clusters to Hourglass Genes

» Developmental 'hourglass' genes in
12 of the clusters. They also exhibit
intra-organism hourglass behavior.

» Stage alignment of worm & fly
development, strongest with
hourglass genes

* Decoupling expression
changes into those
driven by worm-fly
conserved genes vs
species-specific ones

- Using dimensionality
reduction to help
determine internal &
external drivers

- Conserved genes have
similar canonical
patterns (iPDPs) in
contrast to species
specific ones (Ex of
ribosomal v signaling
genes)
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Are gene regulations among orthologs conserved
across species?

| jz& Are gene regulatory
cpeclesA 1ol T YL [ networks among

Species B @ orthologs conserved
S N across species?

orthologs co-expressed

<& Regulation among orthologs (internal)

< Regulation from species-specific factors (external)

Orthologous genes (orthologs)

Species-specific transcription factors

To what degree can’t ortholog expression levels
be predicted due to species-specific regulation

[Wang et al. (in revision, ‘15)]
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State-space model for internal and external gene
regulatory networks

External Group

Internal Group

u <& Internal regulation

How to identify gene expression u & External regulation
dynamics driven by internal/ -
external regulation?
|
|
|
Control: Gene
expression
vector of
State external factors
+ at time ¢
space
model
B,, captures temporal
casual influence from
State: Gene expression A;; captures temporal State: Gene external factor k to
vector of Group X at casual influence from expression vector Gene [ in internal group
time 7+1 Gene i to Genej in of internal group at
internal group time ¢

[Wang et al. PLOS CB (in revision, ‘15)]
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Effective state space model for meta-genes

Not enough data to estimate state space
model for genes (e.g., 91K time points to
estimate 11.5M elements of 4 & B in worm) X,

X =AX +BU

g

Dimensionality reduction from
genes to meta-genes (e.g., SVD)

.

Effective state space model for meta-genes
(e.g., 250 time points to estimate 50 matrix
elements 1f 5 worm meta-genes)

/

\
\
\
\

\

\

\

\,
\\

"\AWAW,:"

~ ~ o~

X, =AX +BU

t+1

[Wang et al. PLOS CB (in revision, ‘15)]



Orthologs have similar internal but different external
dynamic patterns during embryonic development

Worm’s effective state space model
X =AX +BU, I— . +

iPDPs: time exponentials ePDPs: time exponentials
of 4 eigenvalues in worm of p eigenvalues in worm
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Similar iPDP canonical trajectories Different ePDP canonical trajectories
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Expression
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ePDPs: time exponentials
of g eigenvalues in fly

iPDPs: time exponentials
of 4 eigenvalues in fly

Fly’s effective state space model
X AX +BU

t+1

[Wang et al. PLOS CB (in revision, ‘15)]



[Wang et al. PLOS CB (in revision, ‘15)]

A. Gene state-space model C. Meta-gene state-space model

B. Dimensionality Reduction

1= AXABU,

Genes of X

Meta-genes of X

E. Gene’s internal (INT) and :

external (EXT) driven expression time B Inter.naFI)/ Eti{(ternaIPPl:;lgmpal
dynamics composed of PDPs ynamic Patterns (PDPs)
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Orthologs have correlated iPDP coefficients

[Wang et al.

15

0 5

0

Coefficients of orthologs on fly iPDPs
-5

(in revision, ‘15)]
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Evolutionarily conserved and younger genes exhibit
the opposite internal and external PDP coefficients

iPDP coeffs > ePDP coeffs m Fly

Ribosomal genes p<0.001 p<2.2e-16 \ Fly

o

(e]
(e]

\ 4

_—
|

-
—

|
|
—_—

200 300
!

Ribosomal genes have significantly larger
coefficients for the internal than external PDPs,
but signaling genes exhibit the opposite trend

100
|

0
|

Coefficients of ribosomal
related genes (absolute)

iPDPs ePDPs

*

iPDP coeffs < ePDP coeffs m Fly

Signaling genes p<7e-4 p<6e-4

* p-values from KS-test

[Wang et al. PLOS CB (in revision, ‘15)]



Transcriptome Analysis:
Expression Clustering across Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative
Analysis

« Expression Clustering, Cross-species

» Potts-model optimization gives 16
conserved co-expression modules
(which can potentially annotate
NCRNASs/TARS)

* Relating Clusters to Hourglass Genes

» Developmental 'hourglass' genes in
12 of the clusters. They also exhibit
intra-organism hourglass behavior.

» Stage alignment of worm & fly
development, strongest with
hourglass genes

* Decoupling expression
changes into those
driven by worm-fly
conserved genes vs
species-specific ones

- Using dimensionality
reduction to help
determine internal &
external drivers

- Conserved genes have
similar canonical
patterns (iPDPs) in
contrast to species
specific ones (Ex of
ribosomal v signaling
genes)
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- Lots of Matched Data for Comparative
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Info about content in this slide pack

« PERMISSIONS: This Presentation is copyright Mark
Gerstein, Yale University, 2012 (and beyond). Please
read statement at
http://www.gersteinlab.org/misc/permissions.html . Feel

free to use images in the talk with PROPER acknowledgement (via citation to

relevant papers or link to appropriate place on gersteinlab.org).

» Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and
clipped images in this presentation see http://streams.gerstein.info . In particular, many of the
images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz:
http://www . flickr.com/photos/mbgmbg/tags/kwpotppt
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Are there any conserved regulatory networks between
worm and fly during embryonic development?

Dataset Internal External Group Developmental stages # of unknown # of available i
Group parameters in 4 and B time samples
worm N,=3147 N,=509 worm-specific =~ T=25 time points: 0, _ 3147*3147+3147*50  3147*25+509
(C. elegans) worm-fly transcription factors 0.5, 1, ..., 12 hours I 9=11.5\M *25=91400
orthologs .
fly h(llnCLT oy N2 flyspecific  T=12 time points: 0,2, | 3147314743147%44  3147%25+442
(D. met)y ~ Ortholog TFS) ./ scription factors 4, 6, 8,..., 20, 22 hours » 2=11.3M ¥25=89725

No enough time samples!

worm

N\ —

It A, and 4 have similarities, cross- Embryonic stem
species conserved regulatory networks » cells (ESCs)
in embryonic development
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