Explorations in Summer Camp in CT:
Prioritizing non-coding mutations as potential cancer drivers

Mark
Gerstein

Slides freely downloadable from
Lectures.GersteinLab.org
& “tweetable” (via @markgerstein).
See last slide for more info.



Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Where is Waldo?
(Finding the key mutations in ~¥3M Germline variants &

~5K Somatic Variants in a Tumor Sample)
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Non-coding Annotations: Overview

Most of cancer genomics has focused on mutations in non-coding regions — ie the exome
There are several collections of information "tracks" related to non-coding features,
perhaps of use

Functional Genomics
Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

Sequence features, incl. Conservation

‘ i ; ‘ i fage-scale sequence Signal processing of raw
o =2 similarity comparison B berimental date l |
; » Removing artefacts ' i
Identify large blocks of » Normalization
repeated and deleted » Window smoothin /\/\.—
=i~ i | sequence: * L . (1) M
» Within the human ‘
[ R ] ‘ . {| reference genome Segmentation of processed a
[ EEE Q Bt the human data into active regions: @g O 0 B
|| population * Binding sites |
E& I = ' e cosely elah » Transcriptionally active
| [ [

i Rl 4T B
Identify smaller-scale Group active regions into .
repeated blocks using larger annotation blocks
statistical models
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* Finding Non-coding Regions Sensitive to Mutations

» Multi-scale "site" calling (with Music)
» Finding small number of sites particularly sensitive to mutations

 Building a network from the linear annotation
» More connectivity = more constraint => highlights hubs

» Using this to Interpret Alterations in Cancer

» Need to correct for overdispersion in bionomial
» Use beta-bin parameterized according to replication timing

« Systematically weighting all the features, for non-coding prioritization




Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

ChiP
Generate & threshold the signal

profile to identify candidate
target regions
—  Simulation (PeakSeq),

—  Local window based Poisson (MACS),

Threshold

—  Fold change statistics (SPP) ala sysassdasfldbasaadan I T

Potential Targets (O RINN (I A | T e I

Normalized Control

Score against the control

Significantly Enriched targets Nl L

Now an update: "PeakSeq 2" => MUSIC



Multiscale Analysis, Minima/Maxima based
Coarse Segmentation
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Multiscale Decomposition
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Multiscale Decomposition
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Finding "Conserved” Sites in the Human Population:

Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1

Broad Categories
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Depletion of Common Variants
in the Human Population [Khurana et al., Science (‘13)]
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1000G phase 1v pilot [Khurana et al., Science (‘13)]
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Defining
Sensitive
non-coding
Regions

Start 677 high-

resolution non-coding
categories; Rank & find
those under strongest
selection

Sub-categorization possible
because of better statistics from
1000G phase 1 v pilot
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* Finding Non-coding Regions Sensitive to Mutations

» Multi-scale "site" calling (with Music)
» Finding small number of sites particularly sensitive to mutations

 Building a network from the linear annotation
» More connectivity = more constraint => highlights hubs

» Using this to Interpret Alterations in Cancer

» Need to correct for overdispersion in bionomial
» Use beta-bin parameterized according to replication timing

« Systematically weighting all the features, for non-coding prioritization




Relating Non-coding Annotation
to Protein-coding Genes via Networks

Regulatory elements

— — — ®
v

Assigning proximal sites (< 1Kb) to target genes
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Assigning distal sites (10Kb-1Mb) to targets
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Connecting Distal Elements
via Activity Correlations.

weak | Other strategies to create linkage
incl. eQTL and Hi-C. Much in
recent Epigenomics Roadmap.




Power-law distribution Hubs Under Constraint:

log P(k) A "N — A Finding from the
4 L Network Biology

— Community
o Hub
c >
S 7\#
o High likelihood of Not under positive
() o e . O .
= positive selection selection
0 Lower likelihood of No data about
o ® positive selection O positive selection
—
log k

log(Degree)

* More Connectivity, More Constraint: Genes & proteins that
have a more central position in the network tend to evolve
more slowly and are more likely to be essential.

* This phenomenon is observed in a0
many organisms & different kinds of networks Ln

- yeast PPI - Fraser et al ('02) Science, g
('03) BMC Evo. Bio.

- Ecoli PPI - Butland et al ('04) Nature -
- Worml/fly PPI - Hahn et al ('05) MBE | ik
- miRNA net - Cheng et al ('09) BMC Genomics 7
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Unified network
degree (log scale)

Regulatory Hubs
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* Finding Non-coding Regions Sensitive to Mutations

» Multi-scale "site" calling (with Music)
» Finding small number of sites particularly sensitive to mutations

 Building a network from the linear annotation
» More connectivity = more constraint => highlights hubs

» Using this to Interpret Alterations in Cancer

» Need to correct for overdispersion in bionomial
» Use beta-bin parameterized according to replication timing

« Systematically weighting all the features, for non-coding prioritization




LARVA

« Somatic single nucleotide variant (SNV) data
— Which functional noncoding genome elements are

hotspots for SNVs across multiple samples?

 Are they mutated more than expected from neutral mutation
processes?

sample1 ——

sample2 — |

sample 3 —— i

I
sample 4 4*— |

sample N ——

[Lochovsky et al. NAR ('15, in press)]
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log(mutations/1Mb)

mutations/Mbp

mutations/Mbp
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Cancer Somatic
Mutational
Heterogeneity

The distribution of variants
throughout the genome
indicates high mutation rate
heterogeneity between
samples of the same cancer
type, and on many other levels

Goal: Develop a model for the
whole genome background
somatic mutation distribution in
cancer to identify potential
noncoding cancer driving
elements

LARVA: Large-scale Analysis
of Recurrent Variants in
noncoding Annotations

[Lochovsky et al. NAR (15, in press)]
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Cancer Somatic Mutation Modeling

 We tested 3 models
evaluating the significance
of a mutation burden of a
genome element

e Suppose there are k
genome elements. For
element i, define:

n;: total number of
nucleotides in i

X;: the number of mutation
within element j

p: the probability of observing
a mutation in each position

R: The replication timing
tenth percentile of i

Model 1: Constant Background
Mutation Rate (Model from Previous
Work?)

x, : Binomial (n;, p)

Model 2: Varying Mutation Rate
X, ‘p ; Binomial(nl.,p)

p: Beta(u,a)

Model 3: Varying Mutation Rate with
Replication Timing Correction

X, ‘p . Binomial(ni,p)
p:Beta(M|R,U|R)

1|R,0|R : constant within the same R bin

[Lochovsky et al. NAR (15, in press)]

1. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding
regulatory mutations in cancer. Nature Genetics 46, 1160-1165 (2014).



LARVA Model Comparison

« Comparison of mutation count frequency implied by the binomial
model (model 1) and the beta-binomial model (model 2) relative to

the empirical distribution

« The beta-binomial distribution is significantly better, especially for
accurately modeling the over-dispersion of the empirical distribution
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[Lochovsky et al. NAR ('15, in press)]

mutation counts
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LARVA Model Comparison

 Demonstrate that adding the
DNA replication timing
correction (model 3) further
improves the beta-binomial
model (model 2)

Top 10% of replication timing
bins requires little correction
Bottom 10% of replication

timing bins requires massive
correction

(A)

©
o B observed-repTiming bottom 10%
B beta-binomial-repTiming bottom 10%
< B binomial-repTiming bottom 10%
o B observed-repTiming top 10%
_é‘ O beta-binomial-repTiming top 10%
o) O binomial-repTiming top 10%
c N
o
o) (@)
S
o
L | e
AN
(@)

O 2 4 6 8 10 12 14
somatic mutation count

[Lochovsky et al. NAR ('15, in press)]

=

-log10(Pvalues)
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|

Demonstrate that the number of
significant p-values is inflated
under the binomial model

Neither the empirical or beta-
binomial models exhibit this
inflation

observed-bottom 10% 7/
beta—binomial-bottom 10% /
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binomial-top 10% o

T

s _n_n
o L=p=Q=8zi=%
“ n=3=”f§:§"’ '

8::-0—°*°'

ﬁsﬂ‘.:
I I I

I
0 5 10 15
somatic mutation count

24 -



* Finding Non-coding Regions Sensitive to Mutations

» Multi-scale "site" calling (with Music)
» Finding small number of sites particularly sensitive to mutations

 Building a network from the linear annotation
» More connectivity = more constraint => highlights hubs

» Using this to Interpret Alterations in Cancer

» Need to correct for overdispersion in bionomial
» Use beta-bin parameterized according to replication timing

« Systematically weighting all the features, for non-coding prioritization




ldentification of non-coding candidate drivers
amongst somatic variants: Scheme

Cancer genome
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Flowchart for 1 Prostate Cancer Genome
(from Berger et al. '11) |182950maticSNVs |
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e FunSeq2 - A flexible framework to prioritize regulatory mutations from cancer genome sequencing

Overview

This tool is specialized to prioritize somatic variants from cancer
whole genome sequencing. It contains two components : 1) building
data context from various resources; 2) variants prioritization. We
provided downloadable scripts for users to customize the data
context (found under 'Downloads'). The variants prioritization step is
downloadable, and also implemented as web server (Right Panel),
with pre-processed data context.

Instructions

<« Input File - BED or VCF formatted. Click "green" button to add
multiple files. With multiple files, the tool will do recurrent analysis.
(Note: for BED format, user can put variants from multiple genomes
in one file, see Sample input file .)

« Recurrence DB - User can choose particular cancer type from the
database. The DB will continue be updated with newly available
WGS data.

% Gene List - Option to analyze variants associated with particular
set of genes. Note: Please use Gene Symbols, one row per gene.
<« Differential Gene Expression Analysis - Option to detect
differentially expressed genes in RNA-Seq data. Two files needed:
expression file & class label file. Please refer to Expression input files
for instructions to prepare those files.

< Note: In addition to on-site calculation, we also provide
scores for all possible noncoding SNVs of GRCh37/hg19
under 'Downloads' (without annotation and recurrence
analysis).

Input File: (only for hg19 SNVs)

'y

| Choose File | No file chosen
BED or VCF files as input. Sample input file

Output Format:
bed §

MAF:
0

Minor allele frequency threshold to filter polymorphisms from
1KG (value 0~1)

Cancer Type from Recurrence DB: Summary table

A

All Cancer Types v

Add a gene list (Optional)

Add differential gene expression analysis (Optional)

Upload

F un Seq .gersteinlab.org

[Fu et al., GenomeBiology ('14)]

Site integrates
user variants
with large-scale
context

Weighted scoring scheme

Highlighting variants

28




= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____

Genome | NI N Y A I Y I N |

[Fu et al., GenomeBiology ('14)]
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

[Fu et al., GenomeBiology ('14)]

_____
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= Feature weight
- Weighted with mutation patterns in natural polymorphisms
(features frequently observed weight less)

- entropy based method
HOT region

+ Sensitive region

i Polymorphisms

_____________________________

Genome SN N T I O || N |

P=%

Feature weight: Wq = 1 + Pad lngpd + (1 - pd)10g2(1 — pd)
p T W, l p = probability of the feature overlapping natural polymorphisms

For a variant: Score = Ewd of observed features

31

[Fu et al., GenomeBiology ('14)]
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* Finding Non-coding Regions Sensitive to Mutations

» Multi-scale "site" calling (with Music)
» Finding small number of sites particularly sensitive to mutations

 Building a network from the linear annotation
» More connectivity = more constraint => highlights hubs

» Using this to Interpret Alterations in Cancer

» Need to correct for overdispersion in bionomial
» Use beta-bin parameterized according to replication timing

« Systematically weighting all the features, for non-coding prioritization
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Info about content in this slide pack

 General PERMISSIONS

- This Presentation is copyright Mark Gerstein,
Yale University, 2014.

- Please read permissions statement at

http://www.gersteinlab.org/misc/permissions.html .
- Feel free to use slides & images in the talk with PROPER acknowledgement
(via citation to relevant papers or link to gersteinlab.org).
- Paper references in the talk were mostly from Papers.GersteinLab.org.

» For SegUniverse slide, please contact Heidi Sofia, NHGRI

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and
clipped images in this presentation see http://streams.gerstein.info .
- In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be
easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt
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