Activities in SVs, focusing on breakpoint characterization

Mark Gerstein, Yale
Our Activities Related to SVs

- SV calling (eg Retroduplications)
- Functional enrichment
- **Breakpoints/Mechanism study**
Breakpoint characterization in 1000G

- Breakseq #1 w/ ~2000 breakpoints [Lam et al. Nat. Biotech. (‘10)]
- Pilot
- Phase 1 “Integrated” & Phase 1 refined
- Phase 3

<table>
<thead>
<tr>
<th></th>
<th>NH#</th>
<th>VNTR#</th>
<th>NAHR#</th>
<th>MEI#</th>
<th>Unclassified#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 refined</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Count of deletions

- TEI
- NAHR
- NH
- VNTR

Exact match

Number in parentheses: >50% reciprocal match
8,943 Deletion Breakpoints (Phase I Refined)

- FDR from IRS, PCR, and high-coverage trios
 - ~7% for site existence
 - 13% for site existence + sequence precision
Higher SNP Density and Relaxed Selection at NH Breakpoints
Higher SNP Density and Relaxed Selection at all Breakpoints

- SNP density
- Conservation score
- TEI
- NAHR

0 700 Kbps
SNP Density at NAHR is Driven by High C>T

SNP density, Conservation score, NH, TEI, NAHR

C>A C>G C>T
T>A T>C T>G
- - - C>T outside CpG

0 700 Kbps
NAHR breakpoint are associated with open chromatin environment

- Supported by Hi-C and Histone modification
- Hypothesis: Some NAHR deletions occur w/o cell Replication
* H1 & GM12878 cells

Abyzov et al. 2015
Methylation pattern associated with breakpoints mechanisms

- Lower C>T in CpG around NAHR breakpoints
 - indicates lower methylation level in germline & embryonic cells
- Confirmed in male gamete
Micro-homologies Identified around Breakpoints

- Breakpoints have micro-homologous sequences with the template sites.
NH deletions are often coupled with micro-insertions

- Templates located at 2 characteristic distances from breakpoints, which tend to replicate late
- Suggests spatial & temporal configuration of DNA during template switching

![Graph C](image1.png)

![Graph D](image2.png)
More about breakpoints/mechanisms

• See shadow
More Functional Characterization of SVs

• See shadow
More SV calling & retrodups

• See shadow
Acknowledgements

• Refined Phase 1 Breakpoints Analysis
 Alexej Abyzov, Shantao Li,
 Daniel Rhee Kim, Marghoob Mohiyuddin, Adrian Stuetz, Nicholas F. Parrish, Xinmeng Jasmine Mu,
 Wyatt Clark, Ken Chen, Matthew Hurles, Jan Korbel, Hugo Y.K. Lam, Charles Lee

• Other SV participants
 – Y Zhang, J Zhang, F Navarro, S Kumar
Info about content in this slide pack

• Breakpoints analysis was from Abyzov et al. Nat. Comm. (’15, in press)

• General PERMISSIONS
 - This Presentation is copyright Mark Gerstein, Yale University, 2015.
 - Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html.
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 - Paper references in the talk were mostly from Papers.GersteinLab.org.

• For SeqUniverse slide, please contact Heidi Sofia, NHGRI

• PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info.
 - In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt