Thoughts on Computational Biology at Yale Related to Research, Education & Infrastructure

Mark Gerstein

Computational Biology at Yale

(Molecular) BIOINFORMATICS Data Mining Sequence & Genome Analysis Other 'omic & Network Analyses Medical & Translational **Informatics** 3D Structure Analysis Systems Analysis Modeling & **Simulation**

[Luscombe et al. ('01). Methods Inf Med 40: 346]

What is Bioinformatics?

- (Molecular) Bio informatics
- One idea for a definition?
 Bioinformatics is conceptualizing biology in terms of molecules (in the sense of physical-chemistry) and then applying "informatics" techniques (derived from disciplines such as CS, stats & physics) to organize, analyze, model & understand the information associated with these molecules, on a large-scale.
- Bioinformatics is a practical discipline with many applications.

What Information to Organize?

- Sequences (DNA & Protein)
- 3D Structures
- Network & Pathway Connectivity
- Phylogenetic tree relationships
- Large-scale gene expression & functional genomics data
- Phenotypic data & medical records....

6 - M Gerstein, 2014, Yale, GersteinLab.org

Moore's law

2007

Sequencing Data **Explosion: Going to** \$0/base

\$10,000.00

\$1,000.00

Cost per Mb of DNA Sequence

Chip Technology

General Types of "Informatics" techniques in Computational Biology

- Databases
 - Building, Querying
 - Representing Complex data
- Data mining
 - Machine Learning techniques
 - Clustering & Tree construction
 - Rapid Text String Comparison & textmining
 - Detailed statistics of significance
 & association
- Network Analysis
 - Analysis of Topology (eg Hubs)
 - Predicting Connectivity

- Structure Analysis & Geometry
 - Graphics (Surfaces, Volumes)
 - Comparison & 3D Matching (Vision, recognition, docking)
- Physical Modeling
 - Newtonian Mechanics
 - Electrostatics
 - Numerical Algorithms
 - Simulation
 - Modeling Chemical Reactions & Cellular Processes

Defining the Boundaries of the Field

(Determining the "Support Vectors")

Are They or Aren't They Comp. Bio.? (#1

- (Digital Libraries & Medical Record Analysis
 - ♦ Automated Bibliographic Search and Textual Comparison
 - ♦ Knowledge bases for biological literature
- (Motif Discovery Using Gibb's Sampling
- (Methods for Structure Determination
 - ♦ Computational Crystallography
 - Refinement
 - ♦ NMR Structure Determination
 - (Distance Geometry
- (Metabolic Pathway Simulation
- (The DNA Computer

Are They or Aren't They Comp. Bio.? (#1, Answers)

- (YES?) Digital Libraries & Medical Record Analysis
 - ♦ Automated Bibliographic Search and Textual Comparison
 - ♦ Knowledge bases for biological literature
- (YES) Motif Discovery Using Gibb's Sampling
- (NO?) Methods for Structure Determination
 - ♦ Computational Crystallography
 - Refinement
 - ♦ NMR Structure Determination
 - (YES) Distance Geometry
- (YES) Metabolic Pathway Simulation
- (NO) The DNA Computer

Are They or Aren't They Comp. Bio.? (#2

- Gene identification by sequence characteristics
 - Prediction of splice sites
- (DNA methods in forensics
- (Modeling of Populations of Organisms
 - ♦ Ecological Modeling (predator & prey)
- (Modeling the nervous system
 - ♦ Computational neuroscience
 - ♦ Understanding how brains think & using this to make a better computer
- (Molecular phenotype discovery looking for gene expression signatures of cancer
 - What if it included non-molecular data such as age ?

Are They or Aren't They Comp. Bio.? (#2, Answers)

- (YES) Gene identification by sequence characteristics
 - ♦ Prediction of splice sites
- (YES) DNA methods in forensics
- (NO) Modeling of Populations of Organisms
 - ♦ Ecological Modeling (predator & prey)
- (NO?) Modeling the nervous system
 - ♦ Computational neuroscience
 - ♦ Understanding how brains think & using this to make a better computer
- (YES) Molecular phenotype discovery looking for gene expression signatures of cancer
 - ♦ What if it included non-molecular data such as age ?

Are They or Aren't They Comp. Bio.? (#3

RNA structure prediction Radiological Image Processing Computational Representations for Human Anatomy (visible human) **Artificial Life Simulations** Artificial Immunology / Computer Security Genetic Algorithms in molecular biology Homology Modeling & Drug Docking Char. drugs & other small molecules (QSAR) Computerized Diagnosis based on Pedigrees Processing of NextGen sequencing image files Module finding in protein networks

Are They or Aren't They Comp. Bio.? (#3, Answers)

- (YES) RNA structure prediction
- (NO) Radiological Image Processing
 - ♦ Computational Representations for Human Anatomy (visible human)
- (NO) Artificial Life Simulations
 - ♦ Artificial Immunology / Computer Security
 - ♦ (NO?) Genetic Algorithms in molecular biology
- (YES) Homology Modeling & Drug Docking
- (YES) Char. drugs & other small molecules (QSAR)
- (NO) Computerized Diagnosis based on Pedigrees
- (NO) Processing of NextGen sequencing image files
- (YES) Module finding in protein networks

Computational Biology at Yale

History

- Started in '02 1st as BBS track
 & in '03 then as a PhD granting program
- by M Gerstein & P Miller
- split betw. MedSchool & Sci Hill

Curr. Structure

- co-DGSes
 M Gerstein [MB&B & CS] &
 H Zhao [Public Health,
 Genetics & Stats]
- DGAs (M Krauthammer & C O'Hern)

History & Current Structure of PhD Program

Key Numbers

- 77 matriculated,34 graduated so far
- 3 in PEB
- ~7 students/yr(~40% non-US)

Inputs

CBB Graduates – Undergrad Majors

Biology	Bioinformatics	Informatics	Other
19	3	15	5

CBB Current Students – Undergrad Majors

Biology	Bioinformatics	Informatics	Other
18	8	8	1

- Admissions
 - '14 numbers
 XXX131162 % US accepted,
 XXX131162 % foreign accepted,
 XXX131162 % of the accepts come
- XXXXXXX See Shadow

Curriculum: Courses & Competency in Core CBB, Biological Sciences & Informatics

- 10 Courses in Three Core Areas of Competency
 - Computational Biology & Bioinformatics (3 grad courses)
 - CBB 752b Bioinformatics: Practical Applications of Simulation & Data Mining [18yrs!]
 - CBB 740a Clinical and Translational Informatics
 - CBB 562a Dynamical Systems in Biology
 - Biological sciences(2 grad courses)
 - Informatics e.g., CS, stats, app. math (2 grad courses)
 - Electives (2 undergrad or grad courses, in any of the above)

- Competency of incoming students (need to take courses to get to this level)
 - Biology & Natural Science: introductory biology, biochemistry, chemistry
 - CS: introduction to CS, data structures & programming techniques
 - Math & Stat: introduction to probability and statistical inference, multivariate calculus and linear algebra

Students studying over whole campus

Labs of CBB students (incl. rotations) (*=PhD advisor, incl. jt.)

Location	Faculty
Science Hill	L Regan*, T Emonet*, A Pyle*, M Gerstein*, J Chang, C O'Hern*, W Jorgensen*, A Silberschatz, R Coifman, S Zucker*, F Isaacs, K Miller-Jensen, S Mochrie, S Dellaporta*, J Townsend, J Zhang, G Brudvig, V Batista, A Schepartz, E Yan, A Phillips*, J Peccia*, C Wilson, F Slack*, M Snyder*, A Miranker
West Campus/ VA	M Acar*, A Justice*, G Wagner*, J Gelernter*, A Levchenko, C Jacobs-Wagner
Med. School	M Krauthammer*, S Kleinstein*, Y Kluger*, H Zhao*, F Crawford*, D Stern*, J Noonan*, K Kidd*, V Reinke, M Günel*, H Lin*, K Cheung*, L Pusztai*, C Brandt, C Cotsapas, M Crair, D Hafler, R Lifton, S Ma, S Weissman, M Bosenberg*, J Lu*, M State*, J Cho*, TH Kim*, D Tuck*, R Flavell, P Lizardi*, P Miller*, A Molinaro*, M White*, W Shlomchik

Program is doing well from Grad. Sch. Surveys & Rankings

XXXXXXX – See Shadow

Program is doing well from Grad. Sch. Surveys & Rankings

Outputs

- Over last 7 yrs
- Some faculty;
 many in
 industry, split
 betw.
 traditional

bioinfo. route in biotech/ pharma &

more general

"data-science"

business

positions

<u>.</u>	2003-2007	Assoc Professor, ASU
	2002-2007	Asst Professor, UT
	2005-2010	UCLA Lecturer
Fa	2009-2014	Asst Professor, UNC
_	2006-2012	Assoc Bioinformatics Scientist , Children's Hospital of Philadelphia

	2002-2008	Postdoc, Stantord University
ostdoc	2002-2009	Postdoc, Dana Farber Institute
	2004-2010	Resident in General Surgery, Yale
	2007-2012 Computational Biologist, Broad Institute,	
	2007-2012	Postdoc, Stanford University
Д	2008-2013	Postdoc, Stanford University
	2006-2013	Programmer Anaylst II, Yale University

	2002-2007	Sr. Bioinformatics Scientist, Illumina
	2004-2009	Data Integration Officer, St. Jude, Memphis
	2003-2010	Scientist, Celgene
	2004-2010	Quantitative Trader, Laurion Capital Mgt
	2005-2010	Director of Informatics, Bina Technologies Inc.
	2005-2010	Investigator, Novartis Institutes for BioMedical Research
	2004-2010	Sr. Developer, Schrodinger, Inc.
	2006-2011	Assoc Principal Scientist, Merck Company
-	2005-2011	Product Manager & Bioinformatics Analyst, 5AM Solutions
	2005-2011	Financial firm in Beijing
	2006-2011	Quantitative Analyst, Google
	2005-2011	Data Analyst/NLP Specialist, Elsevier
	2007-2012	Lead Bioinformatics R&D Developer, Regeneron Pharmaceuticals Inc.
	2006-2012	Software Developer, Berkeley Nat Lab
	2009-2012	Information Technology and Services, Germany
	2008-2013	Economic Modeling Senior, Freddie Mac
	2007-2013	Analytics Consultant, SeqWise Next Generation Sequencing Consulting
	2008-2014	Research Scientist, GE Global Research
	2008-2014	Bioinformatics Scientist, Illumina
	2009-2014	Senior Consulting Engineer, Attivio, Inc.

1999 – 2002	Johns Hopkins
1999 – 2004	McGill U
1999 – 2002	Yale
2000 – 2004	Univ. College London
2002 – 2004	U of Toronto
2003 – 2005	Miami U.
2003 – 2006	McGill U
2003 – 2006	Cincinnati Children's Hospital
2003 – 2005	Royal Inst. of Technology, Sweden
2003 – 2007	Albert Einstein College of Medicine
2003 – 2005	U of London
2004 – 2008	U of Toronto
2005 – 2010	Albert Einstein College of Medicine
2005 – 2007	EMBL
2006 – 2011	Cornell Medical School
2008 – 2011	Tsinghua University
2008 – 2012	Dartmouth University
2008 – 2014	Mayo Clinic/U of Minnesota

Weill Cornell Medical College

Of 25 faculty positions split betw. bio, cs & bioinfo & later incr.

Bigger Output Dataset (MG lab since '97)

Faculty

<= postdocs
PhD students=>

1998 – 2005 EBI (Cambridge) 2000 – 2005 Cornell U 2004 – 2007 Uppsala U 2004 – 2009 CUHK

1998 - 2004**Goldman Sachs** 2000 - 2002Incyte 2000 - 2003Sigma-Aldrich 2002 - 2004**ExxonMobil** 2002 - 2004Genelogic 2002 - 2004**McKinsey Consulting UCB Pharma** 2002 - 20052003 - 2006**McKinsey Consulting** 2005 - 2006Glaxosmithkline 2005 - 2007**British Telecom** 2005 - 2009Quantitative consulting & writing 2007 - 2011 **BASF** 2011 - 2012**NEC**

BioMarin Pharmaceutical

NYU (Shanghai)

2008 - 2014

2007 - 2014

2013 - 2014

Industry

<= postdocs
PhD students=>

Majority of industry positions in generalized data-science rather than traditional bioinfo. in biotech/pharma

1996 - 2001 Bank of America
1997 - 2002 Goldman Sachs
1998 - 2003 Psychogenics
1999 - 2004 Pearl Cohen Zedek Latzer
2002 - 2007 Illumina
2002 - 2007 Bristol-Myers Squibb
2004 - 2010 JP Morgan
2005 - 2011 MF Global
2005 - 2010 23andme
2006 - 2006 Merrill Lynch
2001 - 2007 Latham & Watkins
2007 - 2012 LEK Consulting
1997 - 2014 Illumina

US programs in Bioinformatics |Harvard |P+D+I MIT ll+D C+P Brown For more information see: http:// Dartmouth blog.gerstein.info/2014/05/updated-Yale P+T+i listing-of-us-programs-in.html Cornell D+C+P Columbia P=program P+I((F) Princeton UW P D=department |Penn |P C/I=center / institute G=Research Group Only UC San Francisco P+I JHU **UC** Berkely P+C P+d Stanford UC Santa Cruz Caltech G **USC** P+G Rice U UC Los Angeles MD Anderson D+P Baylor UC San Diego D+P

Computational Biology at Yale

Yale Life Sciences HPC

Current workhorses

- BulldogN [W Campus Seq. Ctr.]: 2Pb, 2.6K cores
 - used by ~20 groups (at 1% level) w/ 5 big users on each (~5% level)
- Louise [300 George]: 1Pb, 3.5K cores
 - Similar usage profile to BulldogN ("20 & 5")
- Omega: 1.4Pb, 8.5K cores
 - Phys. Sci. cluster, small use by ~10 bio. groups

Future

- Grace: 1 Pb, 1.6K cores
- Louise & BulldogN to fold into Grace, most compute hardware moving to WC
- Expanding Grace storage
 & mounting it on all clusters as a shared resource

XXXXXXX - See Shadow

XXXXXXX – See Shadow

XXXXXXX - See Shadow

il.

Technical Architecture

 XXXXXXX – See Shadow

Cancer Genomics & PDX Use Case

- Importance of topic obvious
- JAX is rapidly accruing genomics data for many PDX (Patient-derived xenograft models) samples
 - Expect the scale of data in next year to be 100-200 TB.
- Desire to analyze data, collaborate, merge data & compare with public cancer genomics information

At Yale: Researchers developing systems for analyzing cancer genomes

- Variant Calling
- Recurrence Analysis
- MutationPrioritization

 All req. access to many sequenced genomes for context

[Khurana et al., Science ('13)]

Seq Universe

[from Heidi Sofia, NHGRI]

Biocompute Comparables

- Princeton (only FAS)
 - Della Cluster 2816 cores, 2PB storage
- Columbia (FAS+med+seq. ctr.)
 - C2B2 6336 CPU cores, 73,728 GPU cores, 1.4PB storage
 - NY Genome Center 2,000 CPU cores, 2PB storage

Harvard

- Odyssey Cluster 60,000 cores, 79,872 CPU cores, 14PB storage
- Massachusetts Green High Performance Computing Center
 - Incl. part of Odyssey
 - MIT, Harvard, NEU, BU, UMASS
 - \$95M

Texas

Texas Advanced Computing Center (TACC): 203K CPU cores, 319K
 GPU cores, 14PB storage, 200Tb of RAM!

(Extracted from public websites)

Computational Biology at Yale

Computational Biology at Yale

- Current PhD program with many students & grads (>75,>35)
 - Balanced combination of Bio.,
 Informatics & focused
 Bioinformatics
 - "Happy" students & diverse outcomes
 - Rise of Data Science as a driver for education
 - Students studying over whole campus
- Importance of robust computational infrastructure
 - Expertise for cloud computing
 - Necessary to tackle future problems in cancer genomics
 - More so than physical buildings!

Key points & challenges

- Challenge: Quality People!
 - Importance of getting highest quality faculty, students & computational staff
 - Often it's hard for people outside the field to judge & recruit
- Challenge: Unifying 3 locations for CBB at Yale
 - "Embedding" computational faculty, students & fellows but still giving them a coherent identify
 - Addressed by program, but what for faculty & postdocs?
 - XXXXXXX See Shadow

Lectures.GersteinLab.org

Info about content in this slide pack

- General PERMISSIONS
 - This Presentation is copyright Mark Gerstein,
 Yale University, 2014.
 - Please read permissions statement at http://www.gersteinlab.org/misc/permissions.html .
 - Feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or link to gersteinlab.org).
 - Paper references in the talk were mostly from Papers.GersteinLab.org.
- For SeqUniverse slide, please contact Heidi Sofia, NHGRI
- PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and clipped images in this presentation see http://streams.gerstein.info .
 - In particular, many of the images have particular EXIF tags, such as kwpotppt, that can be easily queried from flickr, viz: http://www.flickr.com/photos/mbgmbg/tags/kwpotppt