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How might we
annotate a human

text?

Coloris
Function

Lines are

Similarity

[B Hayes,
Am. Sci.
(Jul.- Aug. '06)]
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The Semicolon Wars |

IF YOU WANT TO BE a thorough-
=800 werld traveler, youneed to,
Mearn 6,912 ways to say “Where is the |
toilet, please?” That’s the number of |
SIan ST Ages KROW 10 DE spoKen Dy the.
peoples of planet Earth, according to
Ethnologue.com.

If you want to be the complete poly

glot you also have quite

a challenge ahead of you, learning all

Iprintf("hello, world\n") ; I

(This one 1s In C.) A catalog maintained
by Bill Kinnersley of the University of
Kansas lists about 2,500
languages. Another survey, compiled
by Diarmuid Piggott, puts the total
even higher, at more than 8,500. And
keep in mind that whereas human lan-
guages have had millennia to evolve
and diversify, all the computer languag:
es have sprung up in just 50 years. Even
by the more-conservative standards of
the Kinnersley count, that means we’ve
been inventing one language a week,
on average, ever since Fortran.

For ethnologists, linguistic diversity
is a cultural resource to be nurtured
and preserved, much like biodiversity.

Brian Hayes

Every|programmer

knows there is one

true|programming
language. A new one
every week

a good-enough notation—for express-
ing an algorithm or defining a data
structure.

There are[programmers Jof my ac-
quaintance who will dispute that last
statement. I expect to hear from them.
They will argue—zealously, ardently,
vehemently—that we have indeed
found the right programming lan-
guage, and for me to claim otherwise
is willful ignorance. The one true lan-
guage may not yet be perfect, they’ll
concede, but it’s built on a sound foun
dation and solves the main problems,
and now we should all work together
to refine and improve it. The catch, of
course, is that each of these friends will

cide which end of a boiled egg to crack.
This famous tempest in an egg cup was
replayed 250 years later by designers of
computer hardware and communica
tions protocols. When a block of data is
stored or transmitted, either the least-
significant bit or the most-significant
bit can go first. Which way is better?
It hardly matters, although life would
be easier if everyone made the same
choice. But that’s not what has hap-
pened, and so quite a lot of hardware
and software is needed just to swap
ends at boundaries between systems.
This modern echo of Swift’s Endian
wars was first pointed out by Danny
Cohen of the University of Southern
California in a brilliant 1980 memo,
“On holy wars and a plea for peace.”
The memo, subsequently published
in Computer, was widely read and ad-
mired; the plea for peace was ignored.
nother felﬁ:ﬁ)arw fo%ﬂen,-l
I think, but never settled by truce or
treaty—focused on the semicolon. In
Algol and Pascal, program statements
have 10 be separafed by semicolons. ror
example, inx:=0; y:=x+1; z:=2the
semicolons tell the compiler where one
statement ends and the next begins. C



Non-coding Annotations: Overview

There are several collections of information "tracks" related to non-coding features

Sequence features, incl. Conservation

) }

Large-scale sequence
similarity comparison

Functional Genomics

ChiP-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

v

dentify large blocks of
repeated and deleted
sequence:

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing

» Within the human
reference genome

!

» Within the human
population

+ Between closely related
mammalian genomes

Segmentation of processed
data into active regions:

* Binding sites

» Transcriptionally active

v

regions
v

Identify smaller-scale
repeated blocks using
statistical models

Group active regions into
larger annotation blocks
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o/ /\ Ml

OEE = DEE

.
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ENCODE
Consortium
& various
annotation
rollouts




Compa rative « Broad sampling of conditions across

transcriptomes & regulomes for

ENCODE Functional human, worm & fly

— embryo & ES cells

G enom iCS Re source — developmental time course (worm-fly)

(EncodeProject.org/modENCODE.org) ¢ In total: ~3000 datasets (~130B reads)

Number of data sets

1,500
12070) et
900
f)’\j)’\ B Chromatin
features
600
yI\Q(A‘ Regulatory-factor
0 binding

.\//[;.;)'\\//'\‘ B RNA transcripts
2012 Now 2010 Now 2010 Now

Human Worm Fly
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Comparative ENCODE

Previous studies have compared EUKARYOTES
RNA transcription between

closely related organisms (e.g. ’
RNA-seq within mammals, ‘
Brawand et al. '11) ... ANIMALS

|
MAMMALS YEAST

500 MYO | | | |
75 MYO ‘

Mouse Fission Yeast ~ Budding Yeast

RNA ] I




Comparative ENCODE

Previous studies have compared .. or integrated diverse —omic
RNA transcription between EUKA’RYOTES information within each of several

closely related organisms (e.g. species (eg modencode '10)
RNA-seq within mammals, ‘
Brawand et al. '11) ... ANIMALS

|
MAMMALS YEAST

(W | | L
75 MYO ‘
N

Worm Human Mouse Fission Yeast Budding Yeast




Comparative ENCODE

Previous studies have compared .. or integrated diverse —omic
RNA transcription between EUKA’RYOTES information within each of several

closely related organisms (e.g. species (eg modencode '10)
RNA-seq within mammals, ‘
Brawand et al. '11) ...

ANIMALS A first effort to

‘ comprehensively integrate
| diverse data across distantly
MAMMALS related species YEAST

500 MYO | | | |
75 MYO ‘

Mouse Fission Yeast ~ Budding Yeast
RNA
TF

chromatin




Applications of Machine Learning for
Comparing Transcriptomes of Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative Analysis

« App. #1: Characterizing ncRNAs &
TARs

Not much news in canonical gene models

Simple contig search (TARSs) finds uniform
density of non-canonical transcription

ML model shows few TARs similar to existing
ones, but some enrichment for eRNAs

« App. #2: Expression Clustering,
Cross-species

Potts-model optimization gives 16 conserved
co-expression modules (which can potentially
annotate NncCRNAs/TARSs)

Developmental 'hourglass' genes in 12 of
these. They also exhibit intra-organism
hourglass behavior.

Stage alignment of worm & fly development,
strongest with hourglass genes

« App. #3: HM Models
Relating Gene
Expression to Promoter
Activity

— Works for ncRNAs as well
as genes

- Universal cross-species
model uses same set of
parameters across diverse

phyla
« App. #4: Similarly
constructed TF Models

- Variable importance of
regions around genes for
HMs & TFs

- TF & HM signals are
redundant for ‘prediction’

- Surprisingly, a few TFs are
quite predictive

9 = Lectures.GersteinLab.org



Protein-coding gene counts in worm, fly & human

have stabilized & have remained fairly constant
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Discovering Transcriptionally Active
Regions (novel RNA contigs)

e Cluster reads setting minimum-run and maximum
gap parameters for newly identified transcribed
regions (TARS)

* Assess exon discovery rates for known genes and
noncoding RNAs

mis ain
- Knownexon ~ Known exon
TAR TAR TAR
novel TAR correct identification possible exon extension

ENCODE RNA-Seq Data



512:445 ('14); doi: 10.1038/nature13424]

[

Uniform Annotation of non-coding Elements

« Uniformly processed the RNA-seq expression
compendium and for identification of pervasively
transcribed regions
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Annotated ncRNAs

Human Worm Fly
Elements Genome Coverage Elements Genome Coverage Elements Genome Coverage
mRNAs (exons) 20,007 86,560 3.0 21,192 34,437 34.3 13,940 35,970 28.0
Pseudogenes 11,216 27,089 0.95 881 1,343 1.3 145 155 0.12
pri-miRNA 58 44 43 300 0.23
<
& £ premiRNAs 1,756 221 236 22 0.02
2 9
= g tRNAs 624 609 314 22 0.02
E S snoRNAs 1521 141 287 34 0.03
g E srnas 1944 114 47 7 0.006
< IncRNAs 10,840 233 852 868 0.68
Other ncRNAs 5,411 40,104 376 2,103 1.6
nCPIENA - gg 35,329 27 1,473 11
Total 22,154 17,770 (0.62 41,466 2,611 2.6 2,155 3,279 2.6

|dentify non-canonical transcription in regions
of the genome excluding mRNA exons,
pseudogenes or annotated ncRNAs.

[Nature 512:445 ('14); doi: 10.1038/nature13424] 13



& Non-Canonical Transcription

Human Worm Fly

Genome Coverage Genome Coverage Genome Coverage

Elements Elements Elements

Total ncRNAs 22,154 17,770 0.62 41,466 2,611 2.6 2,155 3,279 2.6

Regions Excluding
mRNAs,
Pseudogenes or
Annotated ncRNAs

283,816 2,731,811 95.5 143,372 63,520 63.3 60,108 89,445 69.6

Transcription
Detected 708,253 916,401 | 32.0 | 232,150 37,029 36.9 83,618 44,256 34.5
(TARs)

Supervised
Predictions

104,016 13,835 0.48 2,525 392 0.39 599 164 0.13

e Similar fraction of non-canonical transcription of non-
canonical transcription in human, worm and fly

— 32-37% of each genome

[Nature 512:445 ('14); doi: 10.1038/nature13424] 14



IncRNA:
Machine-learning
Identification of
many candidate
ncRNAs through
evidence integration

* No single feature
(e.g. expr. expts.,
conservation, or
sec. struc.) finds all
known ncRNAs =>
combine features in
stat. model

* 90% PPV, 13 of 15
tested validate

[Lu et al. Genome Res. 2011;21:276-285]

= Known ncRNAs = CDSs o UTRs = Intergenic Regions

I

Gold-standard Set

N

Normalized Value

o

GC% DNA 2° 2°  Protein Poly-A+ Small  Total Poly-A+
Cons. Structure Structure Cons. RNA-seqRNA-seq RNA RNA

Free Cons. Tiling Tiling

Energy - Array  Array

- -
N D

Poly-A+ RNA Tiling Array

A ncRNAs

Intergenic Regions

0

2 4 6 8 10
RNA 2° Structure Conservation
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TAR Characterization

Non-canonical transcription (TARSs):

* Mostly transcribed at lower levels
than protein-coding genes.

* Enrichment for overlap of TARs with
ENCODE enhancers and distal HOT
regions -> potential enhancer RNAs
(eRNAs).

Human, Worm & Fly

[ENCODE-modencode
Transcriptome paper, Nature (in
press), doi: 10.1038/nature13424]
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Applications of Machine Learning for
Comparing Transcriptomes of Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative Analysis

« App. #1: Characterizing ncRNAs &
TARs

Not much news in canonical gene models

Simple contig search (TARSs) finds uniform
density of non-canonical transcription

ML model shows few TARs similar to existing
ones, but some enrichment for eRNAs

« App. #2: Expression Clustering,

Cross-species
» Potts-model optimization gives 16 conserved

co-expression modules (which can potentially
annotate NncCRNAs/TARSs)

Developmental 'hourglass' genes in 12 of
these. They also exhibit intra-organism
hourglass behavior.

Stage alignment of worm & fly development,
strongest with hourglass genes

« App. #3: HM Models
Relating Gene
Expression to Promoter
Activity

— Works for ncRNAs as well
as genes

- Universal cross-species
model uses same set of
parameters across diverse
phyla

« App. #4: Similarly
constructed TF Models

- Variable importance of
regions around genes for

HMs & TFs

- TF & HM signals are
redundant for ‘prediction’

- Surprisingly, a few TFs are
quite predictive

17 = Lectures.GersteinLab.org



Time

> A Array Data

Gene coexpression clustering

Gene expression can vary over a
range of features such as time, tissue,
etc.

Expression Level

\ J \‘

Sample Type

—

-
Correlation coefficients for all genes

B Similarity Matrix (correlation)

Gl G2 G3 G4 G5 G6 G7 G8 G9 G10
Gl 1 06 02 08 09 06 09 01 05 03
G2 06 1 09 01 02 06 10 01 03 04
G3 02 09 1 02 03 04 08 02 03 09
G4 08 01 02 1 09 09 08 03 06 00
G5 09 02 03 09 1 09 09 06 01 05
G6 06 06 04 09 09 1 06 02 07 01
G7 09 10 08 08 09 06 1 08 09 02

Clustering genes based on their
expression profiles can help reveal
relationships.

G8 01 01 02 03 06 02 08 1 09 02
G 05 03 03 06 01 07 09 09 1 09
G10 03 04 09 00 05 01 02 02 09 1

-
Threshold correlations into edges

A

C Adjacency Matrix
Gl G2 G3 G4 G5 G6 G7 G8 GY G10
Gt NA O O E E O E O O O
G2 ONN E O O O E O O O
G3 O EN O O O E 0O O E
G4 E O ON E E E O O O
G5 E 0O O EN E E O O O
rR N A Pro c O 66 0 0 0O E EN O O O O
67 E E E E E O N E E O
G 0 0O 0O OO O E NAE O
G 0 0 0O 0O 0O O E E NAE
Prot S nth O G0 O 0O E 0 O O O O E NA

y Draw network
D Network

Ubiquitin @

N0 w

é
s D
& A\ ) = s o
. X c(;E
b o g .o"u (3 ..o e & o ® he S
L™ .'.°. .% ey Q vwf, oi‘ .. » o H -
55,"«*’ A & “w "¢ Gene co-expression ﬁ‘—t
Dt RGerteeEe networks can reveal g E
I functional \
"o ons groupings Gene co-expression data
MR can also be viewed from a

e network perspective

M. B. Eisen, P. T. Spellman, P. O. Brown,
D. Botstein, PNAS 95, 14863-14868 M. R. J. Carlson et al., BMC

M. R. J. Carlson et al., BMC genomics 7, 40 (2006). (1998) genomics 7, 40 (2006).



Modular organization in networks

Zachary k'arate club network

Intuition:
To divide vertices into groups such that connections
within groups are relatively dense while those
between groups are sparse.

Method:
Many. A common one is to maximize an objective

function (modularity function) over all
possible divisions of a network.

kk.
Q — L 2 L 5 sum over nodes within a group (module) Newman PNAS 2006
2m Yo2m)

m: total number of edges

iI,j
negative contribution of non-links
(if two nodes are not connected, they should not be in the same group)

kk,

2m

=Dy =expected number of edges between i and j in a null model

positive contribution of links
(if two nodes are connected, they should be in the same group) 19



A toy example [orthoclust]

a Every node i is assigned with a spin value o, (labels of modules: 1,2,...q).

co-expressed

[Yan et al. GenomeBiol 15:R100 ('14)]

orthologs

reward an
0 4 e ° orthologous
«‘ pair
\ (2) \ with the
@ @ a same value
_ (A) (A) (B) (B) /
H = E( Wi+ py )5@0]- "‘E(‘Wi-; TPy )50;0; K E Qoo
.. l.' j' .o

i,] \ \(i,j)EOrtho
reward a co-expressed punish a non co-expressed
pair with the same value pair with the same value

Species B

Favorableness = "Modularity" in species A + "Modularity" in species B + consistency betw. A& B



[Yan et al. GenomeBiol 15:R100 ('14)]

A toy example [orthoclust]

B |

species A specific

conserved modules

species B specific

The ground state configuration correspond to three modules: 1, 2, 4.

co-expl'essed

ortholegs

21



Cross-Species Co-expression Clustering

Use Potts model (generalized Ising model)
to simultaneously cluster co-expressed
genes within an organism as well as
orthologs shared between organisms.

Conservation of modules
across # of species

O >30@2-30 &1

22

[Nature 512:445 ('14); doi: 10.1038/naturel13424]



Human
orthologs
(5575)

Worm
orthologs
(aa86)

Fly orthologs
(4349)

16 Conserved Modules

~
|

I

Lo

. EE,
.

|

‘ l

[Nature 512:445 ('14); doi: 10.1038/nature13424]

# of Genes 1000 500 0
(I TN Y (Y I Y AN (N N SN (NS N N M
Signal transduction, cytoskeletal
Morphogenesis, epidermal GF
Histone mRNA proc., nuc. export
Topoisomerase, RNA POL Il
* Cell cyc. ctrl, signal transduction
. Ribosome
Translocase, folding, G1S cell cyc.
H l La autoantigen
\ I Signal transduction, Integrins
Wik Spliceosome
S
sle |
fi \
I L
I
|
L
—— b [ ] o
Gene-gene
Co-association

16 Conserved Modules

23



NcRNAs associated with modules

Non-canonical transcription (TARSs):

* Identify TARs that are significantly correlated and anti-correlated with genes in the 16
modules.

Correlated Anti-correlated

HOXB4 vs. hsa-mir-10a SGCB vs. TAR chr19:7698570-7701990

g lin-39 vs. TAR chrlll:8871234-2613
.a /\\ p; A -
o
X
L Dfd vs. mir-10

- "'".\ 7 Ll

p f) \-\( = ’\"' -
Stage/Sample Stage/Sample

Ortholog — — — -ncRNA / TAR
Human, Worm & Fly

[Nature 512:445 ('14); doi: 10.1038/nature13424]
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Hourglass
Behavior

Canonical Inter-organism
Behavior

* “Hourglass hypothesis”: all
organisms go through a
particular stage in
embryonic development
("phylotypic" stage) where
inter-organism expression
differences of orthologous
genes are smallest.

 We identify modules (12
out of 16) which have this
behavior at the phylotypic
stage.

512:445 ('14); doi: 10.1038/naturel13424]

Temporal expression
divergence is
minimized during the
phylotypic period.

[AT Kalinka et al.
Nature 468, 811-814 (2010)
doi:10.1038/nature09634]
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Hourglass Behavior m e

Intra-organism Behavior also Present

03
2
1
0
1
0.2

uolssaldx3 ainpo A4

genes across 12 modules are the
most tightly coordinated at the

phylotypic stage (fly).
phylotypic stage (worm).

 We observe that the expression of
e Strongly correlated correlation at

1 3 5 7 9 11 13 15 17 19 21 23

26
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[Nature 512:445 ('14); doi: 10.1038/naturel13424]



[

Alignment of Developmental Time-Course

All worm-fly orthologs

» I [
2 =ty
81 n
Q:'Z

Fly &7 o A
8 - 4
: F'I
3 i j-r
0 1|
E ]
[T

Embryos Larvae Adults

Worm

stage alignment

score (-log,, p)
6

For worm & fly find stage-specific genes
We can align developmental stages using
fraction of shared orthologs between worm

and fly amongst these

Reuse of genes from LE in worm in fly pupa

[ )

Embryos (hrs)

e - -
a2

oy

Male Adults (hrs) Female Adults (hrs)

Larvae Pupae (hrs)

10 12 14 16 18 20 22

24

0", 11Y,221,33/,44%,55,6 6,7 7,8 8,9 9Y, 10 10, 11 117, 12

Worm

Embryos (hrs)

L1 L2 L3 ¢rs) L3 puff stage

0 12 24 48 72 96 0 24 120 720 0 24 120 720

0 12 12 36 79

secondary alignment

L4
L4 male

Young  Adult

adult spe-9
Adults

o

L1 L2 L3
Larvae

“~= ——

A A
———

512:445 ('14); doi: 10.1038/nature13424]
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[

Alignment of Developmental Time-Course

A All worm-fly orthologs

L.

Fly

Larvae  Pupae Adults
|

Embryos
]
]

Embryos Larvae Adults

Worm

Fly

Larvae  Pupae Adults
| ] O A AR O A O S D

Embryos
1 1 1

stage alignment

Hourglass orthologs score ("09610 p)
i
5
4
[ K
I I | |
) -
] | | | 1
3 T
||
\\\\\\\ _\\ll\\\ll\\ITT' 0
Embryos Larvae Adults

mm phylotypic stage
Worm pnylotyp g

Using only orthologs in 12 "hourglass" modules show stronger
alignment except for absence of genes at the phylotypic stage

— By definition genes in hourglass modules are not phylotypic

stage specific, hence the gap

512:445 ('14); doi: 10.1038/naturel13424]
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Applications of Machine Learning for
Comparing Transcriptomes of Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative Analysis

« App. #1: Characterizing ncRNAs &
TARs

Not much news in canonical gene models

Simple contig search (TARSs) finds uniform
density of non-canonical transcription

ML model shows few TARs similar to existing
ones, but some enrichment for eRNAs

« App. #2: Expression Clustering,

Cross-species
» Potts-model optimization gives 16 conserved

co-expression modules (which can potentially
annotate NncCRNAs/TARSs)

Developmental 'hourglass' genes in 12 of
these. They also exhibit intra-organism
hourglass behavior.

Stage alignment of worm & fly development,
strongest with hourglass genes

« App. #3: HM Models
Relating Gene
Expression to Promoter
Activity

— Works for ncRNAs as well
as genes

- Universal cross-species
model uses same set of
parameters across diverse
phyla

« App. #4: Similarly
constructed TF Models

- Variable importance of
regions around genes for

HMs & TFs

- TF & HM signals are
redundant for ‘prediction’

- Surprisingly, a few TFs are
quite predictive

£ = Lectures.GersteinLab.org

2



Focus on Promoters
| N7
Active Promoter > /l_: / o > >
VTS TTYY —
| :'/— ‘\l ‘ ‘ , & /
Q.R,NA?," E ~ Histone modifications

Aalal oo,

» Key Questions
- How do we define the active regions of promoter?

- For an active promoter, how do we relate it bound TFs,
its epigenetic marks & its chromatin state to the level of
transcription?

— Are these definitions & relationships conserved between
very different species?

Repressed Promoter

Zhou et al. Nat. Rev. Genetics 2011 8



Relating Genomic Inputs to Outputs

Cell Type 1 g - { - {
Cell Type 2 . f f f f f
= = =
:7=k8 \
7
o 6
9 5 o
)
2 4 :
| .-
S, o
) i
2 o o
1
0 ®
0 1 2 3 4 5 6

Promotor Activity
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Inputs v Outputs:
Upstream Binding/Modification v Expression

o o PCC: Pol I,
Pol |l blndlng 0.33:
' - for Worm . ’
H3IK4AMe3 H3K4me3,
™ 0.28
E
.
™
I
g o
E .
ﬁ s
3 T -
Q.
o _ T e
' M j ! I T I 1

Expression

[Nature 512:445 ('14); doi: 10.1038/nature13424]
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Histone Modification (HM) model

TTS
_ _ Gene k
.44 0 1
Bin 40-1 Bin 41-80 Bin 120-81 Bin 121-160
(TSS-4kb to TSS)  (TSS to TSS+4kb) (TTS-4kb to TTS) (TS to TTS+4kb)

[Cheng et al. ("11) Genome Biol. 12: R15]

RNA-Seq data

Chromatin features: i
Histone modifications d

Prediction target:
Predictors Gene expression level
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His. mods around TSS & TTS are clearly related to level
of gene expression, in a position-dependent fashion

Early work in '09/'10

Science 330:6012
[here]

Also:

Ouyang, Zhou, Wong
('09) PNAS;

Karlic et al. & Vingron
(‘10) PNAS

-4kb —=&—— TSS = 4kb

H3(Ab1)
H3(Ab2)
H3K4me2
H3K4me3
H3K9me2
H3K9me3(Ab1)
H3K9me3(Ab2)
H3K36me2(Ab1)
H3K36me2(Ab2)
H3K36me3
H3K79me1
H3K79me2
H3K79me3
MES-4

MRG-1

POLII
-4kb —e—— TTS ——3— 4kb
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[Cheng et al. ("11) Genome Biol. 12: R15]

Integrate all histone modifications to predict
gene expression levels

Magnitude of
Prediction
from a “bin”
around the
TSS

Sensitivity

AUC

Classify H/L genes (SVM)
<
«Q
o
©
o — BIN1 (0kb)
<+ — BIy#10 (-1kb)
o —— BJN #20 (-2kb)
o JPIN #30 (-3kb)
=} 7 BIN #40 (-4kb)
o 7 7
o' 1 1 1 [ L i 1 1
0.0 0.2 04 ,7 06, 08 1.0
yépecifici}f
/7
o # T L
~ [ / v 4
4 :

S V4 "Jhﬂﬁﬂﬂﬁmﬂﬁﬁgﬁgﬁﬁﬁﬁr_
o 4 |
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«© 2 14 :
= W :
N~ :
o 1
© I
o. I
0 | :
-4kb - TSS > 4kb

Observed Expression (*)

Obs. miRNA Expression (*)

Predict expression values

Predicted expression from
13HMs (SVR model)

R=0.60 ¢

2 3 4 5 6

i

0

Predicted miRNA expression

SVR model above
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relative contribution to R?

0.10 0.15

0.05

Pearson's r= 0.9 (p-value <2.2x10")
RMSE=1.9

Human
ENCODE

Classification: AUC = 0.95
Regression: r = 0.77 (RMSE = 2.3)

10

N
g
c
Results ¢
o
Q.
3
®
2
3
£
. &
) 10
predicted expression (log2)
: OO e——
& & & @& ,6&@7:" 0l «dp * & C’roa‘éb
&@“& ¥ & F e T I & R

[Encode Consortium, Nature ('12)]
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Comparison of Models for Gene Expression,
Building a Universal Model

Human, Worm & Fly

Scaled Correlation
with Expression

H3K4me2

ame: [ ——
|

H3K27me3

|
H3K36me3

H3K27ac

Histone Modifications (HM)

H3K4me1

s B -

Universal
Human
Worm

Fly

0%

120%

140%

160%

180%

1100%

H4K20me1 [

-2Kb TSS +2Kb

[Nature 512:445 ('14); doi: 10.1038/nature13424]

Universal Model is Built
Simultaneously on Data from
all 3 Organisms & Predicts
on all 3 with a Single Set of
Parameters

Relative Importance

Model
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Performance of
Universal,
Cross-organism
Model

e works almost as well as species
specific models

e works for both mRNAs and ncRNAs

[Nature 512:445 ('14); doi: 10.1038/nature13424]

Model Trained in

Prediction Accuracy
for Protein-coding Genes

Human Worm Fly

Worm Human

Fly

Prediction Accuracy
of Universal Model

Protein
coding

ncRNA
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Applications of Machine Learning for
Comparing Transcriptomes of Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative Analysis

« App. #1: Characterizing ncRNAs &
TARs

Not much news in canonical gene models

Simple contig search (TARSs) finds uniform
density of non-canonical transcription

ML model shows few TARs similar to existing
ones, but some enrichment for eRNAs

« App. #2: Expression Clustering,

Cross-species
» Potts-model optimization gives 16 conserved

co-expression modules (which can potentially
annotate NncCRNAs/TARSs)

Developmental 'hourglass' genes in 12 of
these. They also exhibit intra-organism
hourglass behavior.

Stage alignment of worm & fly development,
strongest with hourglass genes

« App. #3: HM Models
Relating Gene
Expression to Promoter
Activity

— Works for ncRNAs as well
as genes

- Universal cross-species
model uses same set of
parameters across diverse

phyla
« App. #4: Similarly
constructed TF Models

- Variable importance of
regions around genes for

HMs & TFs

- TF & HM signals are
redundant for ‘prediction’

- Surprisingly, a few TFs are
quite predictive
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worm TFs

Transcription

Factors (TF)

ALR-1
CEH-14
SKN-1
BLMP-1
MEP-1
PHA-4
PES-1
MDL-1
HLH-1
CEH-30
EGL-27
ELT-3
UNC-130
LIN-11
LIN-13
PQM-1
LIN-15B
MAB-5
EOR-1
LIN-39
GEI-11
EGL-5
—2kb

-2kb

YY1

NANOG K

CEH-22
ELT-3

SR
HP1

10.087

10.0036

10.17

Correlation

-0.08

-0.16

|
-0.25
-0.33
TSS 2kb

TSS +2kb

— e

: j— ]

10 1

e

Fly

Doing a Model
with TFs:
Positive and
negative
regulators
from
correlating TF
signal at TSS
with gene
expression

== Human
= \\lorm

[Nature 512:445 ('14); doi: 10.1038/nature13424]

[Cheng et al. ("11) PLOS CB]



TSS-4kb TSS TSS+4kb

Bin# '1 2 .. 38394041 .. 80
Signal of 12 Signal of 12 Signal of 12
TFsinBin 1 TFs in Bin 2 TFsin Bin 80 .
Gene 1 S
Gene 2 & Observed
. — expression
: & Profile
Genen £
Prediction by each Bin Y, Y Yso
\ )
- LN
Predictor v2:
2-levels, now N
Combined Prediction - Compare

with TFs
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Regression
(Increase of Node Purity)

1000 1500 2000 2500 3000 3500

500

0

Human
Results

measured expression (log2)

10

CAGE PolyA+ K562 Whole Cell

Pearson’s r=0.81; RMSE=2.57

Classification: AUC = 0.89
Rrgression: r = 0.62; RMSE = 3.06
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0 0D @

-4 -2 0 2 4
predicted expression (log2)
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Models R
llluminates S
Different 5. 1
Regions of ¢~
Influence for
TFs vs HMs |
. Datasets : s TSS 4kb —4Kb 3 4kb

— ChIP-Seq for 12 TFs
(Chen et al. 2008)

— ChIP-Seq for 7 HMs : TF Model
(Meissner et al.’08; Mikkelsen et al. @_ | S Moo
'07) S .

— RNA-Seq (Cloonan et al. 2008) 5.

A TF+HM model that S
combine TF and HM St
features does NOT improve
accuracy! St : :
-4kb TSS 4kb -4kb TTS 4kb

44
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TF model accuracy only needs a small number of
TFs for high accuracy (>90%)

>

o ©

(U1—

-

O

& o

3 ©.

N e

-

=<

2o

Y

@)

c N —— Human
o o

©

c O —— Fly
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Number of randomly selected TFs

[ 512:445 ('14); doi: 10.1038/nature13424] 45



Applications of Machine Learning for
Comparing Transcriptomes of Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative Analysis

« App. #1: Characterizing ncRNAs &
TARs

Not much news in canonical gene models

Simple contig search (TARSs) finds uniform
density of non-canonical transcription

ML model shows few TARs similar to existing
ones, but some enrichment for eRNAs

« App. #2: Expression Clustering,
Cross-species

Potts-model optimization gives 16 conserved
co-expression modules (which can potentially
annotate NncCRNAs/TARSs)

Developmental 'hourglass' genes in 12 of
these. They also exhibit intra-organism
hourglass behavior.

Stage alignment of worm & fly development,
strongest with hourglass genes

« App. #3: HM Models
Relating Gene
Expression to Promoter
Activity

— Works for ncRNAs as well
as genes

- Universal cross-species
model uses same set of
parameters across diverse

phyla
« App. #4: Similarly
constructed TF Models

- Variable importance of
regions around genes for
HMs & TFs

- TF & HM signals are
redundant for ‘prediction’

- Surprisingly, a few TFs are
quite predictive
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Applications of Machine Learning for
Comparing Transcriptomes of Distant Organisms

* Intro to Comparative ENCODE

- Lots of Matched Data for Comparative Analysis

« App. #1: Characterizing ncRNAs &
TARs

Not much news in canonical gene models

Simple contig search (TARSs) finds uniform
density of non-canonical transcription

ML model shows few TARs similar to existing
ones, but some enrichment for eRNAs

* App. #2: Expression Clustering,

Cross-species
» Potts-model optimization gives 16 conserved

co-expression modules (which can potentially
annotate NncCRNAs/TARSs)

Developmental 'hourglass' genes in 12 of
these. They also exhibit intra-organism
hourglass behavior.

Stage alignment of worm & fly development,
strongest with hourglass genes

« App. #3: HM Models
Relating Gene
Expression to Promoter
Activity

— Works for ncRNAs as well
as genes

— Universal cross-species
model uses same set of
parameters across diverse
phyla

* App. #4: Similarly
constructed TF Models

- Variable importance of
regions around genes for

HMs & TFs

- TF & HM signals are
redundant for ‘prediction'’

— Surprisingly, a few TFs are
quite predictive
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Info about content in this slide pack

« PERMISSIONS: This Presentation is copyright Mark
Gerstein, Yale University, 2012 (and beyond). Please
read statement at
http://www.gersteinlab.org/misc/permissions.html . Feel

free to use images in the talk with PROPER acknowledgement (via citation to

relevant papers or link to appropriate place on gersteinlab.org).

» Paper references in the talk were mostly from Papers.GersteinLab.org.

« PHOTOS & IMAGES. For thoughts on the source and permissions of many of the photos and
clipped images in this presentation see http://streams.gerstein.info . In particular, many of the
images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz:
http://www . flickr.com/photos/mbgmbg/tags/kwpotppt
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