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Abstract  
We describe the systematic acquisition of genome-wide data sets that have led to a much 
improved annotation of the C. elegans genome. These include a full transcriptome 
analysis over a developmental time course, genome-wide identification of transcription-
factor binding sites, and high-resolution maps of chromatin organization. Integrative 
analysis of these data allowed us to provide more complete and accurate gene models, 
including alternative splicing, and to find new noncoding RNAs. We identified 
chromosomal locations bound by an unusually large number of transcription factors and 
described hierarchical networks of transcription-factor-binding and microRNA 
interactions. We found striking differences in chromatin composition and histone 
modification between the arms and centers of chromosomes, and similarly prominent 
differences between the autosomes and the X chromosome. We integrated these data to 
build statistical models relating chromatin structure to transcription-factor binding and 
gene expression. Finally, our data can be used to ascribe a putative function to most of 
the evolutionarily conserved DNA in the genome. The data, materials and associated 
analyses are publicly available through modencode.org. 
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Introduction 
The ability to completely sequence genomes marked a major advance in biological 
research, providing for the first time a view of the complete instruction set required to 
direct the development and behavior of an organism. However, the ability to comprehend 
the functional content of a genome by DNA sequence alone is limited. Accurate and 
comprehensive annotation requires direct experimental evidence. To address this need, in 
2003 the United States National Human Genome Research Institute (NHGRI) initiated a 
pilot project (called ENCODE, for ENcyclopedia of DNA Elements) focusing initially on 
1% of the human genome and now the whole genome (1). Recognizing the importance of 
well-annotated genomes for experimental systems and the need to subject candidate 
functional elements to rigorous testing, in 2007 the NHGRI initiated the modENCODE 
project (model organism ENCODE) on Caenorhabditis elegans and Drosophila 
melanogaster. The project aimed to systematically annotate the functional genomic 
elements in these key model organisms (2).  
 
The nematode C. elegans offers a critical perspective on genome organization and 
function, given its intermediate complexity between single-cell eukaryotes, such as yeast, 
and highly complex organisms, such as humans. Following Brenner’s pioneering work 
describing its genetics (3), C. elegans became the first multicellular animal with a fully 
defined cell lineage, the first with a fully reconstructed nervous system by serial electron 
microscopy, and the first with a fully sequenced genome (4-6). It has also contributed to 
the discoveries of apoptosis (7), RNA interference (RNAi) (8), and gene regulation by 
microRNAs (miRNAs)(9, 10). As biology moves toward a more complete description of 
the molecular basis of development and behavior, the relevance of C. elegans to 
understanding biology continues. Its 100.3 Mb genome is only 8 times larger than that of 
the single-celled yeast S. cerevisiae, and yet it contains almost as many genes as human 
and all of the information necessary to specify the major tissues and cell types of 
metazoans.  
  
Despite the fact that the C. elegans genome is considered fairly well annotated, many key 
genomic features remain poorly defined. In particular, before the beginning of the 
project, there was a lack of experimentally verified information about protein-coding 
gene organization, including precise starts, stops, intron/exon boundaries, and alternative 
splicing events. The universe of noncoding RNAs (ncRNAs) had only been partially 
explored. As is the case in most organisms, even less was known about regulatory and 
structural elements that control gene expression and chromosomal organization. To 
address this, starting in 2007, five worm modENCODE groups began collecting genome-
wide data (2). Here, we present our progress to date. In particular, our analysis reveals: 
  
* An extensive set of directly supported protein-coding genes containing alternative 
splice junctions, 5′ and 3′ ends. 
  
* An initial set of non-coding RNAs, which includes new RNAs belonging to both 
known classes and novel types. 
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* The dynamics of gene expression and transcription factor binding across many 
developmental stages, showing coordinated changes between binding and expression. 
  
* The discovery of genomic locations bound by many of the transcription factors 
analyzed, which we call “HOT” (Highly Occupied Target) regions. 
  
*A hierarchy of candidate regulatory interactions amongst the transcription factors 
analyzed, which could, in turn, be related to the network of connections between 
microRNAs and their targets. 
 
* Striking differences in histone modifications between the centers and arms of 
autosomes in somatic cells that correlate with nuclear envelope interactions and germline 
function. 
  
* Specific histone modifications (including H4K20me1) and other features of chromatin 
organization associated with the X chromosome. 
  
* Evidence for trans-generational transmission of the pattern of germline gene expression 
from mother to daughter through a chromatin-mediated mechanism. 
 
* Models of the chromatin state around genes that provide statistical predictions of both 
transcription-factor binding and gene expression. Models developed for protein-coding 
genes are directly applicable to microRNA encoding genes.  
 
The summation of features annotated through these functional data sets now provides a 
plausible explanation for most of the conserved sequences in the C. elegans genome. The 
genome-wide view of critical gene and chromosome features revealed by the project lays 
the foundation for the study of how the genome of this multicellular organism accurately 
directs development and maintains homeostasis.  

Data Overview 
The C. elegans modENCODE data sets span the domains of gene structure, RNA 
expression profiling, chromatin structure and regulation, and evolutionary conservation. 
Many data sets were collected across a standardized developmental time course 
consisting of all the major stages of the life cycle (embryos, adults, and the four larval 
stages: L1, L2, L3, and L4) to facilitate integrated analysis (Fig. 1). Experiments were 
generally carried out using the standard laboratory strain N2 under normal conditions (3). 
Mutants were used when needed for specific experiments, for example to obtain 
populations enriched in dauers or males. In total, over 50 distinct combinations of stages, 
tissues, cells, genetic backgrounds, and environmental conditions have been assessed. 
  
To enable the analyses presented here, the data from completed projects were 'frozen' in 
February 2010, at which time we had released 237 C. elegans data sets (Fig. 1A) . Over 
4.2 billion sequencing reads covering 109 billion bases from 65 experiments were used 
for gene structure determination, RNA profiling, and mapping protein-genome 
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interactions. Whole-genome tiling microarrays were used to detect the results of 128 
chromatin immunoprecipitation (ChIP) and 44 RNA profiling experiments. To facilitate 
the integration of results from both sequencing and tiling arrays, we standardized ways in 
which the interpreted results of these technologies are reported, thereby allowing them to 
be used as merged data sets (see supplement B, Fig. S1 and Fig. S2) (11). Also part of the 
modENCODE corpus are per-base evolutionary constraint scores, generated from a six-
way alignment between C. elegans and the related nematodes C. briggsae, C. remanei, C. 
brenneri, C. japonica, and P. pacificus. These conservation data assist with the 
identification of functional elements and potentially help to distinguish essential, highly-
conserved elements from those that are either recently acquired by C. elegans, or are 
under weak selective pressure.  
  
To ensure the completeness and standardization of modENCODE data, all data sets were, 
and continue to be, submitted to the modENCODE Data Coordinating Center . Each data 
set is hand curated to include extensive structured metadata, which is validated for 
completeness and checked for consistency before public release (12). The metadata 
describe the overall design, reagents and protocols for each experiment. All raw and 
analyzed data, metadata, and interpreted results can be searched, displayed, and 
downloaded at modencode.org (13, 14). Raw sequencing reads and microarray data are 
also archived at the Short Read Archive (15, 16) and the Gene Expression Omnibus (16, 
17). All of the results are being incorporated into WormBase (18, 19). 
 
Transcriptome Analysis 
Accurate and comprehensive annotation of all RNA transcripts (the transcriptome) 
produced from the C. elegans genome is one of the main objectives of the modENCODE 
project. In addition to their functional importance, transcripts provide a framework for 
interpreting other genomic features, such as transcription-factor (TF) binding sites and 
chromatin marks. At the outset of the project, the worm genome lacked direct 
experimental support for more than one third of predicted splice junctions, and many 
transcription start sites and most polyA addition sites were not annotated at all. 
Furthermore, systematic tests of the predicted gene models revealed that many existing 
annotations were erroneous or incomplete (20, 21). Here, we sought cDNA-based 
evidence from high-throughput sequencing (RNA-seq), RT-PCR/RACE, mass-
spectrometry (mass-spec) and tiling arrays to discover previously unrecognized protein-
coding genes, precisely define known protein-coding genes, examine the dynamics of 
expression and alternative splicing, find evidence of transcription of pseudogenes, and 
begin to define non-coding RNA genes. We also used mass-spectrometry to verify the 
existence of predicted proteins and to distinguish short single-exon protein-coding 
transcripts from ncRNAs.  

Detecting Features of Protein-Coding Genes 
To detect protein-coding transcripts, we relied primarily on RNA-seq (22-24). We 
generated >1 billion uniquely aligned RNA-seq reads from 19 different worm 
populations, representing all the major life stages and both embryonic and late L4 males, 
as well as worms exposed to pathogens (Fig. S3). In addition, data sets targeting the 3′ 
ends of polyA-plus transcripts were collected (25), and sequence tags representing 
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polyadenylated 3' ends, which had been acquired using 3P-Seq (polyA-position profiling 
by sequencing) were made available to the consortium (26). 
 
By exhaustively mapping the RNA-seq reads, we were able to detect with nucleotide 
resolution transcribed exons, 5′ and 3′ UTRs, splice junctions, transpliced leaders and 
polyA addition sites independent of the pre-existing WormBase models. Relative to 
WormBase annotations available in January 2007, our results significantly increase the 
number of experimentally supported transcribed features of all types (Fig. 2A and Fig. 
S7). For example, the number of supported splice junctions rose from 70,028 in January 
2007 to 98,308 with the analysis of the first four stages (24) and then to 111,786 with 15 
additional data sets (Fig. S8). Importantly, these include 8,174 splice junctions not 
represented in WormBase gene models at the start of the project, with 2,126 deriving 
from genes not previously represented in WormBase. Similarly, the number of genes with 
a transpliced leader (either Splice Leader 1 or Splice Leader 2) at the 5′ end rose from 
6,012 in Jan 2007 to 12,413, with those genes showing a total of 20,515 different 
transplice sites (27) and the number of polyA sites associated with genes rose from 1,330 
defined in WormBase in January 2007 to 28,199 sites distributed across 15,531 genes.  
 
In addition to RNA-seq, we sought to define protein coding gene features through 
directed approaches using RT-PCR/RACE targeting regions with predicted but 
unsupported splice junctions, and mass-spectrometry targeting small single exon genes as 
well as stage-specific proteins. RT-PCR provided direct support for 37,797 splice 
junctions and mass-spec proved that >75 single exon genes produced protein products. 
About 95%  of the splice junctions detected by RT-PCR/RACE and mass-spec 
overlapped with those detected by RNA-seq, thus validating 37,830 of these features 
(Fig. S9). They also detected features not previously found in the RNA-seq data set. The 
intersection of these data sets and previous WormBase data indicate that perhaps only 
2,000-3,000 exons (2-3%) remain undetected (Fig. S10, Right). 
 
Other lines of evidence also suggest that only a small number of protein coding genes 
remain to be discovered. For embryonic and early larval stages, we have obtained a 
number of RNA-seq reads that approaches, if not exceeds, the number of mRNA 
molecules estimated to be in a single animal (24). Further, we have shown that we can 
detect genes expressed at low levels in single cells, such as gcy-5 (24). For the 
determination of conventional gene expression, our evidence indicates we are able to 
sequence to saturation, and consequently have identified most of the reproducibly 
expressed transcripts. 
 
The yield of new features with each additional RNA-seq sample is diminishing. For 
example (Fig. 2A), the L4 male and late embryo samples were among the richest sources 
of splice junctions, but respectively only supported 3,029 and 3,564 additional splice 
junctions beyond those detected in the previously published four data sets. The dauer exit 
was the least complex sample and only added 721 newly supported junctions. By 
evaluating the cumulative increase in features after randomizing the addition of new 
samples, we can show that many features discovered are approaching saturation (Fig. 
S10). However, we continue to detect rare events, particularly those associated with more 
abundantly expressed genes. For example, we find unusual splice junctions, some of 
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which disrupt the reading frame. While these could represent isoforms with important 
biological function, they also might represent aberrant splice products that occur below 
the limits of evolutionary selective forces. Transplicing provides another example where, 
occasionally, splice leader sequences are detected at splice acceptor sites downstream of 
longer introns (27). These types of events complicate assessments of the 
comprehensiveness of the gene catalog.  
 
What genes remain to be supported? Of the 478 WormBase-predicted genes with known 
domains for which we did not detect any evidence with RNA-seq, 369 are members of 
rapidly evolving gene families that have been implicated in environmental responses 
(Supplement Table 1). Although some of these models may represent pseudogenes (see 
below), sampling of additional pathogen-treated populations or other environmental 
exposures may provide support for them. 
  
Building Gene Models 
We built likely gene models based solely on the evidence produced by transcript 
sequencing, allowing for multiple transcripts (isoforms) from a region (24). We called 
these models genelets, because they could include just fragments of full genes. Genelets 
were initiated with the most highly represented splice junction in a region, and extended 
in each direction to incorporate regions covered by above-threshold sequence reads and 
splice junctions, terminating the model when either a transcript start or stop signal was 
encountered, or when coverage was interrupted (Fig. 2B). By iterating the process, we 
generated alternative gene isoforms. We then inspected the various genelet transcripts for 
the longest open reading frame to annotate protein-coding sequences (CDSs) and 5′ and 
3′ untranslated regions (UTRs). 
 
For each of the 19 stages and conditions, we built a stage-specific transcript set based 
solely on the RNA-seq data (stage-specific RNAseq-only genelets). In addition, we built 
three aggregate sets: (1) aggregate RNAseq-only genelets, based only on the total RNA-
seq data; (2) aggregate integrated genelets, which combine the RNA-seq data with 
available ESTs (expressed sequence tags), cDNAs, and OSTs (open reading-frame 
sequence tags) from the community (20, 21, 25), as well as the RT-PCR/RACE and mass 
spectrometry data produced in this project; and (3) aggregate integrated transcripts, a set 
where we allowed WormBase predictions to fill small coverage gaps within exons. The 
aggregate integrated transcripts incorporate all the splice junctions and all the splice 
leader sites, as well as multiple polyA addition sites, and thus often contain multiple 
different isoforms. Altogether, we generated 64,824 transcripts from 21,733 regions 
(genes), compared to 23,710 transcripts from 20,082 genes in C. elegans. Our gene 
models, based only on direct experimental evidence, match the internal splice junction 
pattern exactly for 10,123 previous gene models, but even for many of these genes we 
provide revised 5′ or 3′ ends. For 6,418 models, we have the same internal splice junction 
pattern as WormBase but add 5′ or 3′ exons and associated splice junctions. For the 
remaining models, we overlap WormBase models but differ in splice junctions (3,292) or 
fail to cover all of the splice junctions (2,235). 
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Expression Dynamics 
We sought to determine the dynamics of gene expression over development and in 
specific cell types. In addition to the RNA-seq data sets, we used tiling array data because 
arrays allowed us to assay very small amounts of starting RNA (<10 ng) in biological 
triplicate. We analyzed 44 biological samples, comprising 17 different combinations of 
growth stages and conditions, and 25 different cell and tissue types (Supplement Table 
2). Importantly, for many of the stages, the RNA-seq data were obtained from samples 
that were verified by the tiling array data sets. 
 
We find that transcripts for more than 95% of genes are detected in more than one stage 
and that almost half the genes are expressed in every stage (Fig. S11). In contrast, only a 
small number of genes (~100/stage) have strong stage specific expression (Fig. S12, Fig. 
S13, and Fig. S14), suggesting that the differences between stages might be more related 
to modulation in expression levels than the existence of discrete stage-specific genes. We 
find that ~75% of genes show at least a two-fold difference between a pair of stages or 
between tissues/cells and the reference (Supplement Table 3). 
 
To further investigate the relationship of gene expression between different stages, we 
correlated all RNA-seq expression values for each gene at a given stage with all other 
stages. To simplify this calculation, we focused on a set of 8428 non-overlapping 
transcripts (see supplement C.7). The resultant correlation matrix (Fig. 3A, Left)  clearly 
shows that the time course subdivides into distinct embryo and larval phases. We also 
performed principal-components analysis on tiling array data generated from several 
matched worm tissues sampled during the embryo and L2 stages (see supplement C.8). 
The embryonic cells were isolated by Fluorescence-Activated Cell Sorting (FACS) of 
fluorescently tagged cells that had been extracted from dissociated embryos and cultured 
for 24 hours to allow further differentiation (28). The matched tissues from the L2 stage 
were isolated by precipitation of PolyA Binding Protein. Points representing stages were 
plotted along the first two principal components (Fig. 3C), representing the linear 
combination of genes explaining the two greatest sources of variance within the data. The 
tight clustering of embryo tissues contrasts with that of the more dispersed organization 
of the matched L2 tissues, which form multiple clusters that are generally distinct from 
their embryonic counterparts. GABA motor neurons, coelomocytes, and A-class motor 
neurons differentiate along the same axis, whereas intestine and body-wall muscle 
differentiate along a different path. Overall, our results suggest the presence of different 
gene-expression programs in the L2 tissues compared to embryo, consistent with 
expectations for cell differentiation and specialization the worm must undergo as it 
develops from an embryo into an adult. However, the clustering could also be related to 
differences in RNA collection protocols.  
 
Alternative Splicing Dynamics  
Alternative splicing provides another mechanism for differential transcript usage. To 
discover the strongest stage-specific examples of alternative splice forms, we identified 
sites with two or more splice forms across the same region where the ratio of abundance 
of the two forms differed by more than five-fold from the beginning to the end of the 
timecourse (i.e. between embryo and L3 or YA). Differential splice junction usage 
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ranged from simply having alternative exons to more complicated examples, including 
those where a series of introns spliced out in one stage are retained entirely in another 
(Fig. 2D and 2E).  
 
To look more broadly for evidence of differential isoform usage, we developed 
algorithms to infer the quantitative expression of alternative transcripts and analyzed 
samples from a selection of stages with respect to the aggregate transcript models. Using 
the experimental evidence for exon and splice-junction usage, these algorithms distribute 
sequence reads among a set of distinct alternative transcripts in a probabilistic manner by 
applying either expectation maximization (EM) or Gibbs sampling (see supplement C.9). 
We found that alternative transcription generally does not change dramatically between 
stages (Fig. 2C). However, in systematic pairwise comparisons of the 7 observed stages , 
on average, ~300 of the ~13,000 genes with multiple isoforms show isoform switching 
between pairs of stages (see supplement C.9.a). Moreover, to identify alternative 
isoforms with divergent expression patterns across the developmental timecourse, we 
used expression profiles across 15 stages (including dauer) to cluster transcripts into 25 
distinct expression profiles (Fig. S15 and supplement C.9.b). We found nearly 1,500 
genes for which different isoforms fell into different expression-profile clusters (Fig. 
S16) and used these to distinguish several classes of variation in terminal or internal 
exons (Fig. S17; see Fig. S18 for examples). These genes provide candidates for possible 
stage-specific functions. 
 
Pseudogenes 
We noted several examples of gene models derived from RNA-seq that fell in regions 
previously annotated as pseudogenes. Pseudogenes are DNA sequences that are similar to 
protein-coding genes, but are thought to be non-functional in a conventional sense, 
producing no protein products (29). They are usually identified by the presence of 
disablements such as premature stop codons. Many were created from existing protein-
coding genes, either by duplication followed by disablement or from reverse transcription 
of processed transcripts. Although considered to be non-functional, in some instances, 
pseudogenes have been found to be transcribed, potentially acting as endo-siRNA 
(endogenous-small-interfering RNA) regulators of their parent genes (30-32). 
  
We began with a reanalysis of worm pseudogenes using the automated pipeline 
PseudoPipe (33) (see supplement C.10). Predicted pseudogenes were then manually 
reviewed with the help of the WormBase curators in order to identify a total of 1,293 
likely pseudogenes in the worm genome (Fig. S19), adding 173 new annotations and 
removing 213 others. We also established the probable source (parent) gene for 1,198 
pseudogenes. 
  
We investigated the pseudogenes for evidence of transcription using the RNA-seq and 
tiling-array data. For the pseudogenes with identified parents, we found evidence of 
transcription for 789. We further characterized 323 of these as abundantly expressed, 
based solely on the RNA-seq data (see supplement C.10). To address the possibility that 
the reads were derived from the parent gene and not the pseudogene, we classified the 
pseudogenes into three subcategories. The first includes pseudogenes with expression 
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levels at least two-fold higher than the parent gene. The second subclass contains 
pseudogenes for which the expression patterns of the pseudogene and parent are 
discordant across samples (see Fig. 4C for an example). Both of these cases indicate 
independent transcription of pseudogene and parent, arguing against mapping artifacts. 
The last subclass includes instances where the expression pattern of the pseudogene is 
concordant with the parent gene across multiple samples, which by itself would not 
exclude mapping artifacts. Altogether 191 of the 323 candidates fell into the first two 
subclasses (87 and 104, respectively) and are thus likely transcribed independently from 
their parents. The transcripts from these pseudogenes may potentially function in a 
variety of ways, from creating endo-siRNAs that regulate the parent gene to producing 
small peptides (30, 31, 34). Intriguingly, 17 of the potentially transcribed pseudogenes 
have a mass-spec peptide match, where the peptide does not match any protein already 
annotated in WormBase. This implies that these 17 pseudogenes could potentially give 
rise to novel, short peptides. 
  
Non-Coding RNAs 
In addition to protein-coding genes, the genome produces a variety of transcripts that do 
not code for proteins and function directly as RNA (ncRNAs). These include snoRNAs 
and well-known RNAs involved in mRNA translation and splicing (e.g., rRNAs, tRNAs 
and snRNPs). In addition, diverse classes of small regulatory RNAs that program 
Argonaute effector complexes have been characterized, such as: miRNAs, 21-24 bp 
RNAs produced by Dicer cleavage of short hairpins that direct post-transcriptional 
repression (35, 36); piRNAs (21U-RNAs in C. elegans)  that may control transposon 
activity in the germline (37); and multiple classes of endo siRNAs (38, 39). 
  
Because the catalog of ncRNA types is still being defined (40), we sought to provide a 
more comprehensive annotation of small RNA transcripts, and profiled miRNA gene 
expression using RNA-seq on size-fractionated total RNA. We obtained a total of 81 
million aligned reads from small RNA fractions from 11 different stages. This enabled us 
to identify 154 previously annotated miRNA genes and their relative expression levels 
(39, 41). Most of these are products of the canonical Drosha-Dicer cleavage pathway. 
However, 4 are mirtrons whose precursor hairpins are independent of Drosha but are 
instead generated directly by intron splicing (42, 43). Our small RNA data defined 102 
additional candidate canonical miRNAs (39), of which 42 have evidence of star 
sequences (the complementary strand sequence, providing confirmation of the miRNA). 
Of these, 20 were recently incorporated into miRBase (44). We also developed a 
computational model for prediction of mirtrons which identified 13 such loci that 
potentially produce endogenous miRNAs (45) (see supplement C.11). Finally, the small 
RNA data revealed thousands of piwi-interacting RNAs (21U-RNAs), although all of 
these were from previously identified loci (39, 46). 
  
To identify other candidate ncRNA genes, particularly longer ones than those discussed 
above, we integrated all of our transcriptome data sets, along with RNA structure and 
sequence conservation. Looking at individual data sets, we found that, in comparison to 
other genomic "elements" (i.e. well curated CDSs, UTRs, or intergenic regions), known 
ncRNAs (Supplement Table 4) tended to have different values for characterized 
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"features" (e.g. a higher small RNA-seq signal, more stable and conserved RNA 
secondary structures, and very little polyA-plus RNA-seq signal). However, no single 
feature was able to reliably distinguish the known worm ncRNAs from the other elements 
(Fig. 4A, Left). By using pairs of the features, discrimination improved, but was still 
incomplete (Fig. 4A, Right). 
  
To make further improvements, we combined many features together in the framework of 
a machine-learning model (47). Initially, we focused only on features derived from 
expression data. Because the tiling array data were obtained from total RNA samples, we 
began by looking outside of coding exons and known ncRNAs for novel transcriptionally 
active regions  >100 nt in length (Fig. S20) . By then integrating them with the additional 
expression data in a machine-learning model, we found support for 21,521 ncRNAs 
(4,352,048 bp). These tiling array-based predictions, which we call the 21k-set of 
ncRNAs, were characterized by a lower polyA RNA-seq signal and a higher small RNA-
seq signal than other genomic elements (see Supplement Table 7). 
  
Because the identification of potential ncRNAs from tiling arrays can be problematic due 
to cross-hybridization and other array issues (11, 48, 49), we sought to define a more 
confident set, incorporating both conservation and RNA secondary structure. The 
requirement for conservation restricts the search space to only ~15% of the genome. 
Nonetheless, the potential for greater specificity warranted these trade-offs. Incorporating 
these additional features into our machine-learning model (47), we predicted 7,237 novel 
ncRNAs (1,045,795 nt), with an estimated positive-predictive value of 91%, based on 
testing against the known ncRNAs. We call this the 7k-set. In this set, 1,678 ncRNAs 
(181,552 bp) fall in intergenic regions, with the remainder in introns, pseudogenes, or 
antisense to coding exons. Using RT-PCR, we tested 15 novel ncRNAs located in 
intergenic regions, and detected RNA products for 14 of them (47). We found many RNA 
structural motifs among the ncRNAs, many of which were not found in the known RNA 
secondary structure families from the Rfam database (50). In contrast to many known 
ncRNAs, such as rRNAs and tRNAs, (but similar to miRNAs (51)) our novel ncRNAs 
tended to be differentially expressed across developmental stages (47). 
  
In comparing the 7k and 21k sets of candidate ncRNAs, the overlap is small, with just 
1,259 of the 7,237 predicted ncRNAs in the former overlapping with the latter. Thus, the 
additional constraints of conservation and structure allowed us to detect candidate 
ncRNAs not found in the expression data sets alone. On the other hand, the additional 
constraints may well have omitted non-conserved ncRNAs or those with less structure.   
 
 
Regulatory Sites and Interactions 
 
TF Binding Sites and Targets 
Accurate annotation of sites regulating gene expression and the transcription factors that 
bind to these sites is central to understanding the regulatory networks underlying 
development and homeostasis. To date, large-scale projects mapping TF binding sites 
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have been performed either in cell culture or in single-celled organisms, and fail to link 
the identified regulatory elements to developmental events. We investigated binding sites 
within the whole animal using high-throughput sequencing ChIP (ChIP-seq) to map 23 
GFP-tagged fusion proteins and RNA polymerase II (RNA Pol II, Supplement Table 8 
and (52)). Generally, the factors were mapped at the developmental stages during which 
they have their highest expression levels, as deduced using Green Fluorescent Protein 
(GFP) fusion proteins. However, both PHA-4 and RNA Pol II were analyzed at six 
developmental stages to examine how TF and RNA Pol II binding sites change over the 
life cycle. A number of the factors have expression patterns limited to ~10% of cells in 
the whole animal, indicating that we can successfully identify binding sites for factors 
expressed in a fraction of somatic cells. Control experiments using antibodies directed 
against native proteins demonstrate that tagged protein binding sites correlate strongly 
with those from native protein. Also, TF binding sites identified through ChIP-seq have 
been verified through an independent method, ChIP-qPCR (see supplement D.1 and (52, 
53)). At least two independent ChIP-seq experiments were performed for each factor. The 
binding peaks of each factor were scored using PeakSeq with a stringent threshold (54). 
We only kept those peaks reproduced in both replicates. For comparison we also 
analyzed the binding sites scored with SPP (55). The numbers of total mapped reads and 
binding sites for 23 factors are shown in Supplement Table 8. 
 
DNA Motifs Bound by TFs 
A major characterization for each TF and its associated sites is a sequence motif. These 
motifs are typically short, inexact sequences ranging in size from 8 to 12 bp (56). We 
developed a technique to identify high-likelihood cis-regulatory motifs from the 
modENCODE ChIP-seq TF binding data sets. We combined information from both 
PeakSeq (54) and SPP (55) with information from the six-way nematode alignment (see 
Conservation section, below). For these calculations we excluded the HOT regions 
(described below). We weighted sequences under peaks for each TF by their degree of 
evolutionary constraint and distance from the peak center. To discover motifs, weighted 
sequences were presented to a standard sequence-pattern discovery algorithm (57, 58), 
along with background sequence generated by a fourth-order Markov model from peak 
flanking regions. We then performed a specificity analysis on each recovered motif by 
measuring the frequency of the motif occurrences in peak regions relative to random 
upstream sequences and peaks from other TF data sets (e.g. Fig. S21C). We also 
performed localization tests for each motif relative to point binding positions (e.g. Fig. 
S21B). We recovered statistically enriched motifs for 21 of the 22 TFs’ binding profiles, 
only 8 of which remained after specificity testing (Fig. S21A). Of the three TFs with 
previously described putative binding site motifs, we recovered the previously described 
motif in two cases.  
 
The Distribution of TF Binding Sites 
As shown in Fig. 5B, most TF binding sites defined by ChIP-seq peaks lie within 500 bp 
upstream of transcript start sites (TSS). In comparison to coding genes, binding sites 
assigned to known ncRNAs are even closer to the 5′ end of the transcript (Supplement 
Table 8). Consequently, binding sites could be readily assigned to specific protein-coding 
or known-ncRNA genes, based on proximity to the TSS. Most binding sites were 



 - 15 - 

assignable to annotated loci (see supplement D.2), but a subset remains unassigned for 
each factor. Although most factors bind sites near both protein coding and known ncRNA 
genes, GEI-11 mostly binds to ncRNAs (Fig. 5C; see  Fig. S22 for example). We also 
examined whether any TF binding sites were adjacent to our novel predicted ncRNAs 
(intergenic ncRNAs from the 7k-set above). About 59% are potential targets of these 23 
TFs, providing additional evidence for their activity (47). (An example is in Fig. 4B; 59% 
is significantly more than would be expected by chance (P<0.001).)  
  
Pairwise correlation analysis of target genes reveals that factors with related functions 
often show substantial overlap in the target genes to which they bind (Fig. S23A). Three 
Hox genes involved in establishing the body plan (MAB-5, LIN-39, and EGL-5) provide a 
particularly striking example (59). They are more strongly correlated with each other in 
terms of targets than with the four other HOX genes analyzed, which have more diverse 
developmental roles. In contrast, pairwise correlation of miRNA targets shows that the 
factors bound to them tend to cluster together more by stage than by factor type (Fig. 
S23B). For example, one group of 4 different TFs analyzed in embryos target similar 
miRNAs, whereas a different group of six disparate TFs analyzed at L3 target another set 
of miRNAs. Integrated regulation by multiple TFs at a given developmental stage may be 
connected to the fact that the expression of miRNAs tend to show strong stage-
enrichment (39, 51).  
 
In sum, the binding sites cover a total of 11,831,636 base pairs and target 8,859 protein-
coding genes as well as 652 known ncRNA genes. The large fraction of the genome 
associated with sites and the high number of genes targeted from the relatively small set 
of TFs we analyzed (from >900 candidate TFs in the worm) suggests that each gene may 
have sites for many factors.  

Clustered Binding in HOT Regions 
We identified 304 short DNA regions (avg. ~400 bp) that were significantly enriched in 
most TF ChIP-seq experiments despite the fact that the 23 analyzed TFs have diverse 
functions and expression patterns. These regions were bound by 15 or more factors at a q-
value cutoff of 1e-5; we term these Highly Occupied Target (HOT) regions (Fig. 5A, 6A 
and Fig. S24 (60)). Control ChIP-seq experiments, using either Immunoglobulin G (IgG) 
antibodies in transgenic worms or GFP antibodies on N2 worms lacking a GFP-tagged 
TF revealed that apparent enrichment of these regions was not the result of generally 
open chromatin or the GFP-antibody binding to secondary targets (Fig. S25; see 
supplement D.3 and Fig. S26 for further discussion of control experiments).  
 
Most TFs also cross-link to factor-specific DNA regions (bound by 0-3 additional 
factors) in addition to the HOT regions (Fig. 5A). We compared these different classes of 
sites to look for functional differences. For example, the HLH-1 TF drives muscle 
development in C. elegans (61) and is associated with 598 specific regions and 165 HOT 
regions. The specific HLH-1 ChIP-seq regions were over four-fold enriched for the HLH-
1 binding motif (62) and were more than seven-fold enriched for genes with muscle-
enriched expression (“muscle genes”) (63)(Fig. 6B). By contrast, the 165 HOT regions 
associated with HLH-1 were less than two-fold enriched for the motif and were not 



 - 16 - 

enriched for muscle genes (Fig. 6B). For 3 other factors with identified binding motifs, 
we observed that motif enrichment was higher in specific targets than in HOT regions 
(see supplement D.3). Also, like HLH-1, 13 other TFs have targets whose expression is 
highly enriched for specific tissues. In every case, target genes bound specifically by the 
TF were enriched for expression in specific tissues, but target genes associated with HOT 
regions were not enriched (data not shown). These results suggest that there are 
functional differences between HOT regions and factor-specific sites. 
 
To look for additional differences, we examined the expression patterns and functional 
classifications of genes associated with HOT regions. Initially, we looked at data from a 
single-cell gene expression atlas for L1 worms (64), in which single-cell expression 
levels were extracted from confocal microscope data stacks of 93 genes in 363 individual 
cells. Promoter regions that contained HOT regions often drove expression in most or all 
cell types (Fig. 6C), whereas most other genes show tissue-specific expression. As might 
be expected given this ubiquitous expression, we found that genes associated with HOT 
regions were associated with higher expression levels in whole worm RNA-seq 
measurements (Fig. S27) as well as tissue-specific tiling arrays (Fig. S28).  
 
Using the results of a genome-wide RNA interference (RNAi) screen (65), we also found 
that genes associated with HOT regions are much more likely to be essential than other 
genes (Fig. 6D and supplement D.3). Specifically, 21% of genes associated with HOT 
regions are essential, compared to 3% of genes associated with binding to 1-4 TFs (8.7-
fold enrichment; p < 1e-40) (65). Gene Ontology (GO)(66) analysis reveals a variety of 
biological processes highly represented in genes associated with HOT regions, including 
growth, larval and embryonic development, and reproduction (p < 1e-15), as well as 19 
ribosomal protein genes (a more than 12-fold enrichment, p < 1e-12) (Supplement Table 
9). In comparison, GO analysis of the remaining (non-HOT) targeted genes identifies 
functional terms consistent with the known tissue-specificity and function of the TFs 
(59). 
 
Overall, these results suggest that many TFs cross-linked to HOT regions are not directly 
associated with DNA via specific binding, consistent with findings for highly occupied 
regions in Drosophila (67, 68). Rather, they suggest that association with HOT regions 
may be driven by protein-protein interactions to a currently unknown set of HOT-region-
associated DNA-binding factors. HOT regions are significantly enriched for a few 
sequence motifs (Fig. S21), but additional experiments will be needed to discover which 
protein factors bind directly to them. 
 
Building a TF Hierarchy 
With the assignment of binding sites to target genes, the results of a ChIP-seq experiment 
can be represented by a series of potential regulatory interactions in a "binding network". 
Such a regulatory network graph has commonly been used in yeast (69) and E. coli (70), 
but has not previously been employed in metazoans because of the scarcity of the 
binding-site data for multiple TFs. A section of the worm network focusing primarily on 
interactions between TFs for the larval stages after removing the HOT regions is shown 
in Fig. 7A. Given only 18 larval factors, this is a relatively dense network, with each TF 
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regulating an average of 828 genes including both TF genes and other gene targets. The 
amount of auto-regulation among the factors is notable, including the known example of 
LIN-39 (59, 71) 
 
The expression of a TF tends to be more strongly correlated with the expression of its 
targets (over the time course) than its non-targets (Supplement Table 10). For example, 
transcript levels for the pqm-1 gene have an average correlation coefficient of 0.31 with 
PQM-1 target genes, whereas the average correlation coefficient for non-target genes is 
0.02 (p < 1e-200). The correlation is positive for potential activators and negative for 
repressors. We can then prune the network to reflect this correlation, keeping only strong 
relationships (Fig. 7B). Interestingly, we find more putative activators, with the only two 
identified repressors targeting GEI-11, specifically.  
 
Within the network, TFs were organized hierarchically based on the extent to which they 
“target” other TFs (most targeting on top rows) or are themselves targets for other TFs 
(most targeted on bottom rows). This layout is motivated by the fact that TFs are often 
thought to act in regulatory hierarchies carrying out spatial and temporal control over 
developmental events (72, 73). Moreover, there are a number of clear differences that can 
be observed between the TFs at each level of the hierarchy (Fig. 7). First, we examined 
the expression of the TFs in 8 tissues in L2 and found that TFs at the lower layers tended 
to be more uniformly expressed across multiple tissues (see Fig. 7C caption for numbers). 
Next, we found that TFs at the bottom level tended to be essential more often than those 
at the top. This is, in a sense, consistent with results for tissue-specificity, with lower 
level TFs always being “necessary”. In contrast, TFs of the Hox family were more often 
at the top of the hierarchy -- among the six Hox TFs, four were at the top layer of nine 
TFs -- perhaps reflecting their role in globally modulating specific developmental 
processes in different tissues. Finally, we examined the TFs for their connectivity in the 
existing C. elegans protein-protein interaction network (74), and found that the TFs at the 
top of the hierarchy tended to have significantly fewer protein-protein interactions than 
those below. This result suggests that TFs in the middle and bottom layers act as 
“mediators” or "effectors," which are more likely to exchange information with other 
proteins. While the larval network here is obviously small and one cannot make strong 
statistical statements, these conclusions follow a pattern consistent with the more studied 
regulatory hierarchies in yeast and E. coli, where essential and highly connected, 
"workhorse" regulators tend to be at lower levels while overall modulators are on the top 
of the hierarchy (72).   

An Integrated miRNA-TF Network and its Motifs 
miRNAs can mediate post-transcriptional regulation of mRNAs, including those that 
encode TF proteins. We therefore endeavored to build a combined TF and miRNA 
network to identify potential interactions between these two types of regulators. We first 
made new predictions of candidate miRNA binding sites in C. elegans mRNAs using the 
integrated transcript models described above (25, 75). We identified a total of 20,427 
predicted target sites within 4,866 3′UTRs for 2,244 genes that are conserved in C. 
briggsae (see supplement D.4).  
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We then used the miRNA data in combination with the TF network to generate an 
integrated network (Fig. 7C). We focused on miRNAs expressed during larval stages, as 
determined by the small RNA sequencing data, to match the selection of larval TFs in 
Fig. 7A. Each miRNA is placed on a hierarchical level depending on the highest-level TF 
it regulates or, if it does not regulate a TF, the lowest level TF that regulates it. Even with 
only 18 TFs and only larval regulation, the hierarchy reveals impressive complexity, with 
miRNAs clearly falling into several distinct levels, paralleling the TF arrangement. 
Moreover, the different levels effectively create different classes of miRNAs -- i.e. those 
that are more strongly regulated by TFs (at bottom right) in contrast to those that 
predominantly regulate TFs (top left).  
 
In actual biological networks, some recurring regulatory patterns, or network motifs, are 
over- or under- represented relative to randomly wired graphs (76, 77). We identified 
over-represented network motifs, involving at least 3 members, in the integrated miRNA-
TF network (Fig. 7D). Specifically, we compared the number of network patterns in the 
real network to 1000 random networks generated by re-wiring the real network, while 
keeping its rough topological statistics constant (see supplement D.6). As an example, the 
feed-forward loop, in which a TF regulates another TF, and both jointly regulate a target 
coding gene or a miRNA, is highly over-represented in the integrated network. Previous 
studies suggest that this motif can reduce the time required to turn on the expression of a 
target (76). Another interesting motif involves one in which a miRNA binds to a 
transcript encoding a TF, as well as a target gene of that TF. This motif could represent a 
way in which down regulation of a target gene is ensured by inhibiting both it and its 
activator. Finally, in reviewing two-member motifs, we observed many instances of 
specific miRNA-TF loops, where in which a miRNA regulates a TF, and the same TF 
regulates the miRNA. While these individual examples are interesting and fit a pattern 
reported earlier(78), overall, the occurrence of miRNA-TF loops was not significantly 
enriched relative to that in random network rewirings.  
  
Dynamics of RNA Polymerase II Binding & Expression 
To explore regulatory dynamics, we profiled RNA Pol II and one specific factor (PHA-4) 
in each of the main stages of C. elegans development and compared their binding profiles 
to the corresponding RNA-seq data. For RNA Pol II, we analyzed the aggregate ChIP-seq 
signal over promotors for the set of 8,428 non-overlapping transcripts (see expression 
dynamics discussion above and in supplement C.7). The binding profiles for each stage 
were then compared to each other and to the average expression profiles across each of 
the corresponding genes, giving rise to the correlation matrices in Fig. 3A and 3B.The 
most evident finding is that the embryonic stages form a distinct cluster from the larval 
stages (Fig. 3A, Right). This is broadly similar to what was observed for the gene 
expression correlation described earlier (Fig. 3A, Left). The embryonic-larval division is 
also observed for PHA-4 binding across different stages (Fig. S30). It presumably reflects 
the different transcriptional programs at work in embryos compared to larvae and adults.  
  
In comparing the RNA Pol II profiles to gene expression, the correlation between RNA 
Pol II binding and expression profiles within the same stage is relatively high (0.64 to 
0.70), as would be expected (Fig. 3B). However, the intra-stage correlation is lower for 
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embryonic stages than larval ones, perhaps reflecting the fact that worm embryos have a 
large number of transcripts that are inherited from the parent which are not transcribed in 
the embryo(79, 80).  
  
Fig. 3B also shows that expression in earlier developmental stages is more tightly 
correlated with binding at later stages, rather than a relationship in which RNA Pol II 
binding precedes RNA production. The correlation structure follows a consistent trend 
across rows: it is low initially, peaks at the matching stage and then remains high for later 
stages. This can be interpreted as RNA Pol II binding to genes at the same developmental 
stage where they are initially expressed, with RNA Pol II then remaining bound in later 
stages, even if expression drops. The initial round of transcription may affect the 
accessibility of the promoter, which may remain unaltered in later stages for these non-
dividing cells. Moreover, this result may potentially reflect the presence of paused RNA 
polymerase at genes with reduced expression at later stages. Indeed, we have found 
several examples of genes where RNA Pol II binding remains high in later stages where 
gene expression falls (e.g. isl-1 and pgp-2, Fig. S31).  
 
Chromatin Organization and its Implications  
The modENCODE project aims to identify functional elements that control chromatin 
and chromosome behavior and to identify chromatin features that control the function of 
associated DNA elements. C. elegans has several unusual features that offer an 
opportunity to study diverse aspects of chromatin behavior. Its holocentric chromosomes 
have microtubule attachment sites distributed along the length of each chromosome, 
rather than being embedded in the long, highly repeated sequences of mammalian 
chromosomes. Gene expression from the two sex chromosomes present in 
hermaphrodites (XX) is down regulated in somatic cells by a dosage compensation 
mechanism to better match the output from the single X chromosome in males (X0) (81). 
A distinct mechanism silences almost the entire X chromosome in the germline cells of 
both hermaphrodites and males (82). Finally, C. elegans autosomes have distinct domains 
– a central region flanked by two “arms”, where the two arms together comprise more 
than half the chromosome. Compared to the centers, the arms have higher meiotic 
recombination rates, lower gene density and higher repeat content (6, 83, 84). These 
domains are less distinct on the X. Overall, these features provide fertile ground for the 
investigation of chromosome-level mechanisms of regulation. 
 
To discover elements that control chromatin and chromosome behavior, we have 
performed 68 sets of experiments to map the distribution of chromatin proteins and 
histone modifications, most examined in at least two developmental stages. This 
information has been integrated with transcriptional and regulatory data described above 
to determine how chromatin organization is related to the specification of TF-binding 
sites and the levels of gene expression. 
 
Chromosome-Scale Domains of Histone Modification 
Using ChIP, we examined the distribution of 19 histone modifications and three key 
histone variants (C. elegans homologs of H2A.z, CENP-A, and H3.3) (85-88). Several of 



 - 20 - 

these histone marks revealed striking, broad domains of histone modification states on 
the autosomes, with relatively sharp boundaries between the central region of each 
autosome and the distal chromosomal regions (Fig. 8A, 8C and 8D). We found that 
modifications traditionally associated with gene activity and euchromatin such as 
acetylation and H3K4 and H3K36 methylation are enriched in the central regions of the 
chromosomes. In contrast, H3K9 mono-, di-, and tri-methylation, histone modifications 
traditionally associated with transcriptional repression and heterochromatin formation, 
were very strongly enriched on the arms of the autosomes, and relatively depleted from 
the central regions (Fig. 8A). Despite the biased distribution of these repressive marks, 
the terminal regions of the chromosomes do not appear heterochromatic by DAPI 
staining or classical banding techniques (89). The chromosome-scale domains of histone 
modification do not vary significantly in composition or position between embryos and 
L3 larvae. Even though these animals contain only a small fraction of germline cells, the 
broad domains of histone modifications correspond to regions defined by differences in 
recombination rate, with the boundaries located at the recombination rate inflection point 
(Fig. 8A) (6, 83, 84). We also note that these megabase-scale chromosomal domains are 
far from homogeneous, with small zones of repressive marks occurring within the 
generally active central regions, and active marks occurring within the generally 
repressed arms. 
 
On each chromosome, one arm contains a specialized region known as a homolog 
recognition region, or pairing center, which mediates homologous pairing and synapsis 
(89, 90). We found that H3K9me3 is more highly enriched on the chromosomal arm that 
contains the meiotic pairing center than the opposite arm (Fig. 8A), consistent with 
previous observations (91). However, the methylation is not particularly enriched within 
the pairing center regions themselves (92).  
  
The pattern of H3K9 methylation on the autosome arms also mirrors the genomic 
distribution of repetitive DNA elements. We therefore examined the histone modification 
patterns associated with each of five DNA repeat classes: tandem repeats, inverted 
repeats, transcribed mobile elements, non-transcribed mobile elements, and inactive 
mobile remnants. H3K9me1, H3K9me2, and H3K9me3 are all enriched over repeat 
elements, while transcribed mobile elements are additionally marked with H3K36me2 
and H3K36me3 (Fig. S32). 
  
  
The X Chromosome Exhibits Several Unique Chromatin 
Features, Including Enrichment of H4K20me1 
The organization of the X chromosome differs from the five autosomes in several key 
respects, with gene density, recombination rates, and repeat content more uniformly 
distributed along the length of the X (6). Consistent with this, we find that the chromatin 
marks on X are more uniformly distributed. A high density of repressive marks, similar to 
that seen throughout the autosome arms, is only associated with two ~300 kb regions at 
the left end of X. These more autosome-like regions are on the same end as the X-
chromosome pairing center (Fig. 8B); they flank the pairing center, which has been 
mapped to between 0.5 and 1.5 Mb from the left telomere (92). 
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To further investigate the differences between X and the autosomes, we determined the 
genomic distribution of proteins mediating dosage compensation, which comprise the 
dosage-compensation complex, and found that all of them were highly enriched on the X 
chromosomes of XX animals (Fig 8B)(93-96). In addition to the dosage-compensation 
complex, we also observed a prominent enrichment of H4K20me1 on the X. The X-
enrichment of this mark is detected in early embryo populations, which contain a mixture 
of embryos that have not initiated dosage compensation, and those that have. However, 
the X enrichment is more pronounced at L3, by which time all somatic cells are thought 
to have established dosage compensation. Interestingly, H4K20me1 has been linked to 
mammalian chromatin maturation during development (97, 98) and to mammalian X 
chromosome inactivation (99) but has not previously been associated with the X 
chromosome or dosage compensation in C. elegans. 
 
Interaction Between Chromosomes and the Nuclear Envelope 
We examined the interactions between the genome and the nuclear envelope by ChIP of 
LEM-2, a transmembrane protein associated with the nuclear lamina (100). We found 
that in embryos LEM-2 interacts strongly with the repeat-rich, H3K9 methylated arms of 
the autosomes, and does not interact with the autosome centers (Fig. 8A). The transition 
between the LEM-2 associated and free chromosomal regions is rather sharp, and 
coincides with the transition between regions of low and high meiotic recombination rate. 
In addition to this large-scale organization, regions associated with the nuclear envelope 
exhibit a complex underlying subdomain structure (100). LEM-2 also shows strong 
interaction with the small regions on the left end of the X chromosome that have an 
autosome-like distribution of repressive chromatin marks, as described above (Fig. 8B). 
These findings suggest that the three-dimensional organization of the X chromosome is 
subject to different constraints than those of the autosomes. 
  
X-linked Genes are Enriched in Several Mono-Methylated 
Histone Marks 
To measure how histone modifications were distributed on a typical gene, we plotted the 
distribution of each chromatin mark relative to gene features. We further subdivided 
these plots by the expression level of the associated gene and by X-linkage (i.e. autosome 
vs X) (Fig. 9). Overall, the results are consistent with the known distributions and 
functions of chromatin marks in other eukaryotes (101). However, a striking exception is 
the distribution of several mono-methyl marks that are more strongly associated with 
highly transcribed genes on the X than with similarly expressed genes on autosomes. In 
addition to the H4K20me1 modification mentioned above, H3K36me1, H3K9me1, 
H3K27me1 are all more highly associated with the bodies of highly expressed X-linked 
genes than with autosomal ones. H3K36me1 was also associated with highly transcribed 
genes on autosomes, but was confined to gene bodies only on the X (Fig. 9). Conversely, 
H3K36me3 and H3K36me2 were more strongly associated with autosomal than with X-
linked genes. The causes and consequences of these differential histone-modification 
patterns remain unclear, but we speculate that they reflect dosage-compensation mediated 
repression of X-linked gene expression. 
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Nucleosome Organization 
Nucleosome positioning and occupancy were determined by paired-end Illumina 
sequencing of isolated mononucleosomal DNA generated by micrococcal nuclease 
digestion of chromatin in embryos and adults (102). Overall, the results are consistent 
with previously published maps of C. elegans nucleosome organization (91, 103, 104). 
We observed a typical nucleosome-depleted region upstream of TSSs, and at the 3′ ends 
of genes. Also consistent with previous data (104), our nucleosome maps were highly 
concordant with computational predictions derived from yeast data or in vitro 
nucleosome affinities (105), suggesting a prominent role for DNA sequence in 
nucleosome organization in C. elegans (102).]] Nucleosome positioning was not 
markedly dependent on developmental stage.  
  
We noted a striking difference in the average GC content and nucleosome occupancy of 
X vs. autosomal gene promoters (Fig. S33). X-linked promoters have a higher GC 
content, which is predictive of high nucleosome occupancy in vitro (105-107). 
Accordingly, in silico models predicted that X-linked genes would have higher 
nucleosome occupancy at their promoters than autosomes (102, 105). Our experimental 
nucleosome mapping data from both embryos and glp-1 germlineless adults were 
consistent with this. While both X and autosomal promoters exhibit nucleosome 
depletion at promoters and a well-positioned +1 nucleosome, average nucleosome 
occupancy at 5′ ends of genes on the X is 1.6-fold higher than that of genes on autosomes 
(as measured between -300 to +200 bp relative to the TSS, p < 2.2e-16 by Wilcoxon rank 
sum test). The increased nucleosome occupancy we observe between X and autosomes 
appears to be specific to the  region immediately upstream of the +1 nucleosome (102). 
 
Notably, we observed a similar difference between X and autosomal promoters when 
naked DNA was digested with micrococcal nuclease (MNase). This result was not 
unexpected, because MNase has an intrinsic bias to cleave at sequences that define linker 
DNAs in chromatin assembled either in vitro or in vivo (108-115). Moreover, a wealth of 
data validates the correspondence between MNase cleavage patterns and nucleosome 
positions in vivo (104, 111, 112, 116, 117).  
 
DNA sequences that exclude nucleosomes or that support higher nucleosome occupancy 
have been shown to evolve according to the expression requirements of the downstream 
gene (114, 118), and the single most important feature of DNA sequences in supporting 
higher nucleosome occupancy is GC content(106). Therefore, higher GC content may 
have evolved to support higher nucleosome occupancy on X-linked promoters as part of 
the mechanism of somatic dosage compensation or silencing of the X in the germline.  
 
Evidence for Epigenetic Transmission of Chromatin State to 
Progeny 
Our data also provide evidence for chromatin-mediated transmission of the pattern (i.e. 
"memory") of germline gene expression from mother to progeny. This phenomenon is 
illustrated by the activity of the C. elegans protein MES-4, a histone H3K36 
methyltransferase that is required for the survival of nascent germ cells in developing 
animals. ChIP analysis in early C. elegans embryos revealed that MES-4 binding sites are 
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concentrated on the autosomes and on the leftmost ~2% (300 kb) of the X chromosome 
(Fig. 8A and 8B), consistent with cytological evidence (119, 120). Also, like other 
methyltransferases, MES-4 is associated with gene bodies. However, in contrast to 
previously studied H3K36 methyltransferases, which are targeted to genes by association 
with RNA Pol II (121-123), our data show that MES-4 can continue to associate with 
genes in an RNA Pol II-independent manner. In embryos, MES-4 binds preferentially to 
genes that were highly expressed in the maternal germ line, many of which are no longer 
expressed in embryos. Conversely, MES-4 was not associated with genes expressed 
specifically in early embryos, despite recruitment of RNA Pol II to those genes. 
Therefore, RNA Pol II association with genes is neither necessary nor sufficient to recruit 
MES-4 in embryos (95). These and other findings suggest that MES-4 serves as a 
maintenance methyltransferase, perhaps by recognizing H3K36 methylation itself, to 
propagate a memory of gene expression from the parental germ line to the cells of the 
next generation (95). This propagation is required for the viability of the next generation 
of germ cells, since offspring of mes-4 mutants are sterile. 
 
Another case of epigenetic transmission was observed for the histone H3 variant HCP-3, 
an ortholog of CENP-A/CenH3, which defines centromeres in both monocentric 
organisms, including yeast, flies, and mammals, and holocentric organisms such as C. 
elegans (124). We found that HCP-3 was generally excluded from regions of 
transcriptional activity in early embryos, and that RNA Pol II occupancy was inversely 
correlated with the presence of HCP-3. Unexpectedly, we found that HCP-3 was also 
absent from regions that are silent in embryos (and lack RNA Pol II) but were previously 
transcribed in the maternal germline. Furthermore, HCP-3 distribution does not change 
between early and late-stage embryos, even on genes whose transcription levels change. 
This suggests that the memory of the maternal germline transcriptional state, rather than 
the transcriptional state in the embryo, defines genomic regions permissive for HCP-3 
incorporation (86). 
  
Statistical Models for TF Binding and Gene Expression from 
Integrating Chromatin Features 
We have shown how the signals of chromatin features vary substantially at different 
positions around genes and with levels of gene expression (Fig. 9), observations 
consistent with previous findings (125). This suggests that the various chromatin marks 
may be used to statistically "predict" the locations of promotors and enhancers, as well 
as gene expression levels. We show here by integration of the data sets this, in fact, is 
possible. Moreover, the models themselves reveal which specific chromatin marks are 
most strongly associated with the binding of particular TFs and the amount of gene 
expression. They also reveal the relative importance of different chromosomal locations 
(e.g. positions relative to the TSS) in relation to binding or expression.  
 
TF-Binding Model 
Since TF binding is influenced by chromatin features (126, 127), we used our data sets 
to explore relationships between TF binding and chromatin patterns. In pairwise 
combinations, we observed that there are only weak global correlations across the whole 
genome between histone marks and TF-binding signals (Fig. S34). However, the 
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relationship between these two types of genomic features potentially involves more 
complex, non-linear relationships than is ascertained by straight correlation. To probe 
these complexities, we built machine-learning classifiers that predict the location of TF 
binding from chromatin features, considered individually and in combination (Fig. S35). 
The prediction success of a classifier can be interpreted as a measure of the degree of 
association between specific histone marks and particular TFs (Fig. 10A). 
 
Using such an approach on features individually, we found that H3K4me2 and 
H3K4me3, which are usually enriched in promoters, identified the binding peaks of 
most TFs with reasonable accuracy (Area Under the Receiver Operating Characteristic 
curve, AUROC, up to .92 in Fig. 10A). In contrast, the repressive marks H3K9me3 and 
H3K27me3 were found to be discriminative between different TFs by being 
significantly depleted at the binding peaks of some TFs. Further, some of the TFs were 
clearly more strongly associated with individual marks than others. For instance, CEH-
14, LIN-13, and LIN-15B were more strongly correlated with promoter-specific marks 
H3K4me2 and H3K4me3 than the other TFs. In fact, the association of chromatin marks 
can be used to cluster the TFs into distinct groups (e.g. promoter associated). The HOT 
regions were also strongly related to the individual chromatin features. As expected, the 
binding of RNA Pol II was also strongly indicative of HOT regions, suggesting strong 
active transcription at them. 
 
Chromatin features are thought to work in combination to influence binding site 
selection (126, 127). Indeed, when we combined all the histone marks together, the 
resulting integrative models were more accurate in identifying binding sites in the 
genome (Fig. S36) than any of the models involving single histone marks (Fig. S37), 
illustrating the complex interactions between different chromatin features. Although 
RNA Pol II peaks alone provide reasonable predictions of TF binding, the integration 
shows that adding in the histone marks provides quantitative improvement in prediction 
accuracy. The chromatin features are also effective in distinguishing the specific binding 
regions of some groups of TFs from those of others, as well as the HOT regions from 
other TF binding sites (Fig. S38). In fact, the chromatin features more readily identify 
the HOT regions than individual TF targets, perhaps reflecting the broad, high 
expression of HOT-region associated genes. We also observed that in order to construct 
an accurate model for the binding sites of a TF measured at a certain developmental 
stage, we usually must include chromatin features measured at the same stage (Fig. 
S39). This finding suggests a dynamic relationship between chromatin features and 
protein binding sites across developmental stages. 
 
Although the models constructed from chromatin features generally discriminate 
strongly between TF binding peaks and other regions, they are not always sufficient for 
specifically discriminating between the binding sites of individual TFs. Additional 
discriminating information undoubtedly comes from the exact binding motif of a given 
TF, usually summarized in terms of a position-weight matrix (PWM). On the other hand, 
direct searching of a genomic sequence with just a PWM will usually result in large 
numbers of false positives (128). However, we find that when the static sequence 
information from the PWM and the dynamic chromatin data are combined, the resulting 
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models are more accurate than the models from either type of information alone, as seen, 
for example, with HLH-1 (Fig. 10B and Fig. S40 with motif from Fig. S21). One 
interpretation of this finding is that chromatin features enable one to predict TF-
accessible regions and broad classes of binding sites but motifs provide information on 
the exact sites of particular factors, chosen from these broad classes. These findings are 
consistent with those reported in previous work (129-131).  
  
Gene-Expression Model 
Next, we developed a model to relate the levels of gene expression to the chromatin 
marks near the TSS and transcript termination site (TTS) of a gene. To understand the 
spatial effect of chromatin features, we divided the DNA regions around the TSS and 
TTS of each transcript into small 100-bp bins, and calculated the average signal of each 
chromatin feature and RNA Pol II (13 total different features) in a set of 160 bins up to 4 
kb upstream and downstream of these two anchors to include even long-range effects. 
Then, as shown in Fig. 10C, we constructed a matrix, whose elements were the 
correlation of signals in each of the 100-bp bins with the stage-matched gene expression 
value. As shown, the elements form two categories, those positively correlated with 
expression and those negatively correlated. The first category shows substantial spatial 
variation across the different bins, i.e., the effect of activating marks appears to be more 
sensitive to their exact positioning relative to the TSS and TTS than the repressive ones. 
 
We then combined all features and constructed a statistical model for gene expression at 
each of the 160 bins. In particular, we predicted the quantitative expression levels of 
transcripts using support vector regression (SVR). We found, for instance, that the 
predicted expression levels based on the bin closest to the TSS are highly correlated with 
the real expression levels, with a Pearson correlation coefficient of 0.75 (cross-
validation result). As an overall benchmark of the model performance we compared it to 
a model based on the level of RNA Pol II binding upstream of a gene. Our statistical 
model based on chromatin features achieves more accurate prediction of expression 
levels than the one based on RNA Pol II binding alone (Fig. 10D).  
 
Next, we evaluated the relative importance for gene expression of the 160 bin locations 
upstream and downstream of the TSS and TTS. To simplify the model, we divided 
transcripts into high and low expression classes using the median as a divider, and 
predicted the class of a given gene from the bin values using a support vector machine 
(SVM). The prediction accuracy of each bin was estimated by cross-validation. The best 
predictions were obtained for the bins immediately after the TSS and just prior to the 
TTS. Moreover, with increasing distance upstream of the TSS, predictive power fell off 
smoothly. Intriguingly, the predictive capability of chromatin features extends as much 
as 4kb upstream of the TSS and 4kb down-stream of the TTS. These results were seen 
even when we restricted the analysis to widely separated genes with distant upstream 
neighbors and may indicate long-range influences of chromatin features on gene 
expression. 
 
In contrast to protein-coding genes, the association of histone modifications with 
miRNA gene expression is largely unknown. Since protein-coding and miRNA genes 
are both transcribed by RNA Pol II, we investigated the effectiveness of the above 
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chromatin model for predicting miRNA expression and histone association. Because 
precise TSSs are not generally available for worm miRNAs, we calculated the signals of 
chromatin features in the genomic region corresponding to candidate pre-miRNAs, and 
used them as the input features for our chromatin model trained solely on data for 
protein-coding genes. The predicted expression levels of 162 worm microRNAs for 
which genomic locations are provided by miRBASE (44) were compared with the 
experimental results measured by the modENCODE small RNA-seq data set (39). Our 
predictions showed remarkable agreement with the experimental results, with a 
correlation coefficient of 0.6 (Fig. 10D). Since some miRNAs are located within or near 
protein-coding gene loci, a fact that may confound the prediction of microRNA 
expression, we checked the prediction accuracy using the miRNAs that are isolated from 
any known gene; a similar prediction accuracy was achieved (Pearson correlation 
coefficient is 0.62). The fact that the expression of miRNAs may be accurately predicted 
using a chromatin model trained on protein-coding genes suggests that miRNAs and 
protein-coding genes share similar mechanisms of transcriptional modulation by histone 
marks.  
 
Conservation Analysis 
Because purifying selection slows the rate of divergence of functional sequence relative 
to the “neutral model” (132), the knowledge of evolutionarily constrained regions can 
assist in identifying true functional elements. For example, TF-binding sites that are 
active in regulating a nearby transcriptional promoter could be distinguished from those 
that may be biochemically real, but have no effect on gene expression (133). While there 
may be many functional sequences that are not conserved, are conserved in a way that we 
are unable to detect, or are under strong positive selection, our ability to account for 
conserved sequences with annotations provides one measure of the completeness of our 
annotations. For these reasons, we characterized regions of the C. elegans genome under 
evolutionary constraint by constructing a six-way multiple alignment among the 
nematodes C. elegans, C. remanei, C. briggsae, C. brenneri, C. japonica, and 
P. pacificus using the previously described methods (1). Evolutionary conservation 
scores were then calculated using PhastCons (134). 
  
Considering only regions under purifying selection, there are 59,504 constrained blocks 
covering 29.6% of the C. elegans genome. Coverage ranges from a low of 27.4% on 
chromosome IV, to a high of 31.9% on chromosome X. The single largest constrained 
block is 3558 bp on chromosome V (spanning a portion of unc-70, spectrin beta-chain), 
but conserved blocks are typically much smaller (mean 49 +/- 58.6 bp). These conserved 
regions are highly correlated with functional elements. This finding applies to previously 
known elements as well as to those discovered by modENCODE.  
 
First, we asked what proportion of evolutionarily constrained regions could be explained 
by experimentally annotated regions on the genome (Fig. 11A and Fig. S41). Prior to 
modENCODE, 58% of constrained blocks were covered by genomic annotations 
(primarily CDS and UTR) but only 51% were covered by annotations supported by 
direct experimental evidence. When new protein-coding transcribed regions discovered 
by modENCODE are included, the proportion of the genome covered by 
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experimentally-supported CDS and UTR annotations increases to 59%. When ncRNAs 
and TF binding sites are included, coverage increases to 71%. Sites bound by dosage 
compensation and other chromatin modifying factors increases coverage further to 82%. 
Hence, modENCODE provides an explanation for an additional 31% of the constrained 
regions of the genome, whereas the amount of sequence covered by the new data would 
be predicted to cover only an additional 18% by chance (p-value < 1e-34 by GSC, see 
below). 
 
Next we looked at the converse question: What fraction of the annotated functional 
elements is constrained? First, in Fig. 11B we graph the distribution of PhastCons 
conservation scores of a variety of annotations. Non-coding RNAs (both known and in 
the 7k-set) are the most constrained. However, this likely reflects the fact conservation 
was one of the features used in their identification. Then come coding elements followed 
by transcribed UTRs and miRNAs. Among the elements annotated by modENCODE, 
the TF binding sites and other chromatin regulatory factor binding sites have 
intermediate levels of conservation, falling between CDSs and UTRs. 
 
Fig. 11C shows the distribution in another form more suitable for testing whether the 
degree of constraint in a functional element is significantly different from the genomic 
background. We first show the degree of constraint after normalizing against a 
background model drawn from sections of the genome that have not been annotated. The 
background distribution (expectation) of constrained bases is represented as a horizontal 
line at 0; this was derived independently for each site group examined. Values higher 
than 0 represent a larger fraction of bases at that conservation level than background, 
whereas values lower than 0 represent a smaller fraction of bases at that level than 
background. To perform significance testing on the evolutionary constraint we used the 
Genome Structure Correction (GSC) statistic (1) to calculate confidence intervals on the 
degree of overlap between evolutionarily constrained blocks with functional elements 
defined by modENCODE and other annotations. This confirms that coding regions, 
UTRs, and TF-binding sites are all significantly more constrained than would be 
expected by chance; in contrast, the overlap of pseudogenes with constrained blocks is 
not significantly different from chance. 
 
Roughly 18% of the constrained genome remains uncovered by current functional 
annotations. However, some of this sequence partially overlaps known functional 
elements, suggesting that it might be covered if the borders of transcribed regions or 
binding sites were modestly extended. This leaves ~3.4 Mb (11%) of constrained blocks 
that do not overlap with functional genomic elements at all. Interestingly, these residual 
constrained blocks are markedly enriched in introns and intra-genic regions (see 
Supplement Table 12). The blocks are slightly overrepresented in the 1kb regions 
upstream of genes and markedly under-represented in the 1kb downstream regions. 
Together, these observations suggest that the residual constrained blocks might contain a 
population of intronic regulatory sites, such as splice enhancers, or possibly alternative 
exons that are expressed only under unusual circumstances. Finally, plots of the increase 
in coverage of constrained sequence by each additional TF experiment shows the 
beginning of saturation even with the relatively small numbers of TFs studied here (Fig. 
S42 ). This implies that doing more TF experiments may not account for all the 
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remaining constrained regions and that the population of unexplained constrained blocks 
in intragenic regions is particulary mysterious and may represent novel classes of 
functional elements that are yet to be discovered. 
 
 

Discussion 
 
Model organisms such as C. elegans have long served as key experimental systems for 
developing technological advances and providing fundamental insights into human 
biology. As part of the modENCODE project, we have generated multiple data sets 
aimed at functional annotation of the C. elegans genome for two main purposes. First, 
decoding the genome of this powerful model organism will directly enhance and 
facilitate future studies in the worm. Second, these data sets will provide insights that 
can be useful for understanding general principles of genome organization and function, 
which will ultimately aid in deciphering the function of the human genome. 
  
Our analysis illustrates general patterns evident at multiple genomic scales: individual 
gene, chromosomal domain, and whole-chromosome. At the single-gene level, we have 
annotated thousands of individual gene features, substantially improving gene models 
and increasing the number of new splice variants and transcript ends. In addition to 
improving annotation of protein-coding genes, we have found transcribed pseudogenes 
and identified many candidate noncoding RNAs, including additional miRNA genes. 
More accurate and reliable knowledge of gene models will simplify and expedite in-
depth functional analysis, in both global and gene-by-gene studies. For instance, 
improved annotation has already been useful for mapping binding sites of TFs, allowing 
us to more accurately assign sites to specific target genes and to build regulatory 
networks. Finally, we found the relationship between histone marks and both TF-
binding locations and gene-expression levels to be strong enough for individual genes so 
that we could build statistical models predicting binding location and expression level 
with reasonable accuracy. 
  
On the level of chromosomal domains, we have found large-scale patterns characterized 
by repressive marks and interactions with the nuclear envelope on the arms of 
autosomes, with activating marks and a lack of nuclear envelope interaction at the 
centers of autosomes. The boundaries of these domains correlated with many known 
chromosomal features, including the shift from low to high recombination frequency 
between chromosome centers and ends. Quite strikingly, this relationship between 
recombination frequency, histone modifications, and nuclear envelope components is 
apparent on the autosomes in somatic nuclei, even after multiple mitotic divisions. The 
persistence of this chromosomal organization throughout development suggests that the 
events occurring in the germline are one of the strongest and most lasting influences on 
chromatin and chromosomal organization in the soma. Additionally, although it has long 
been appreciated that the X chromosome has unique features and regulation, our data 
sets have identified several additional X-specific properties, including the preferential 
accumulation of multiple mono-methylated histone marks. These features provide the 
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opportunity to develop and ultimately test new hypotheses about mechanistic differences 
in X chromosome vs. autosome expression in both the soma and the germline. 
  
Overall, one major advantage of our large-scale approach is the ability to discover 
unexpected biological phenomena that could not be discovered by single-gene studies. 
In particular, upon profiling the binding sites for only 23 different TFs, we identified 
obvious regions of clustered TF binding, which we have termed HOT regions. Since 
these HOT regions were apparent after analyzing a relatively small fraction of TFs, we 
may assume that HOT regions can be cross-linked to hundreds of different TFs. Further 
characterization of these HOT sites will improve our ability to predict the functional 
consequences of individual TF binding events on gene regulation from genome-wide 
binding site data in the future. Mechanistically, HOT regions may represent a particular 
3-D nuclear organization, resulting in previously uncharacterized regions of dense TF 
co-localization within the nucleus. 
  
We believe that these data provide an important foundation for functional annotation of 
the C. elegans genome, and that persistent coordinated collection of these types of data 
will continue to provide new global insights into genome organization and function. 
More TF profiles will provide important functional information about individual TFs 
and will also expand regulatory networks. One current limitation of the data is that 
almost all experiments were performed in whole animals composed of multiple tissues. 
A primary focus in the future will be to increase the tissue-specific resolution of the 
data. Such efforts will lead us ever closer to unraveling the complexity and elegance of 
the C. elegans genome.   
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Exhibit Legends  
 
Figure 1: Overview of the modENCODE Worm Data Sets  
Part (A) gives an overview of the amount of raw experimental data (e.g. reads and 
replicates) present in the February 2010 data freeze, and Part (B) shows some of the 
derived quantities (e.g. peaks and transcripts) for key developmental stages. For brevity, 
in part (A) developmental substages, isolated tissues, and several mutant strains have 
been collapsed into single columns, although not every experiment type may have been 
performed on every substage. The following list enumerates all stages possibly 
represented within each column, given numerically in the column header. Background 
strain is N2, unless otherwise stated: Embryo: early embryo, late embryo, mixed-stage 
embryo, one-cell stage embryo, post-gastrulation embryo, two-to-four cell embryo; L1 
larva: N2, N2 starved, lin-35; L4 larva: hermaphrodite, JK1107 soma, L3-L4; Dauer: 
daf-2 dauer larva (entry, mid, exit), daf-3, daf-7, daf-9, daf-11; Adult hermaphrodite: 
adult (includes controls for pathogen assays), young adult, spe-9 adult (0, 5, 8, 12 days), 
JK1107 soma, L4-YA; Male: him-8 embryo, dpy28(y1);him-8(e1489) L4 male, him-8 
adult male; Isolated tissues: GABA neurons, A-class motor neurons, AVA neurons, body 
wall muscle, coelomocytes, dopaminergic neurons, GABA motor neurons, germline 
precursor, hypodermal cells, intestine, panneural, BAG neurons, pharyngeal muscle, PVC 
neurons, excretory cell, glutamate receptor neurons, PVD & OLL neurons, cephalic 
sheath cells (CEPsh), spermatids, oocytes, gonad; Infection (3 pathogens): E. faecalis, P. 
luminscens, S. marcescens. In Part (B) we summarize genomic elements that have been 
inferred for each major element type across the developmental series. For simplicity, we 
have chosen a single representative subcondition for each stage. Embryo: early N2 
embryo for all experiments except for the miRNA and other ncRNA experiments, which 
were performed on mixed embryonic stages from N2; L1-L4: L1 through L4 larva in the 
N2 strain; YA: Young adult N2 hermaphrodites 
 
 

Figure 2: Transcriptome Features, Gene Models & Alternative 
Splicing 
 (A) The histogram indicates the extent to which the modENCODE project has increased 
our knowledge of splice junctions in C. elegans. On the left is the number of directly 
supported splice junctions annotated as of January 2007 in WormBase (WS170). 
Columns L2, L3, L4 and YA (24) indicate the number of splice junctions identified by 
RNA-seq experiments in the indicated stage, either confirming known junctions (blue) or 
finding novel splice junctions compared to WormBase transcript predictions in the 5’ 
UTR (yellow), internal to the CDS (green), in the 3’ UTR (purple), or in novel transcript 
sequences (orange). For stages and samples to the right of L2-YA, the red box represents 
splice junctions already confirmed by the L2-YA RNA-seq data, while newly supported 
splice junctions are colored as indicated above.  
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(B) This diagram illustrates the process of gene model construction. The top half shows 
the various features identified through RNA-seq and the bottom half shows the resultant 
models. To build gene models in regions across the genome we search for the most 
abundantly represented splice junction, indicated by “(1)”, and then move away in both 
directions until another feature is encountered. Moving to the right in this example, 
coverage continues until a second splice junction is encountered, so the model 
incorporates this junction and continues through the next area of coverage until the end of 
coverage is encountered. Here, this position corresponds to a polyA site, indicating a 
transcript stop signal (black line). Moving to the left of the initiating splice junction, a 
splice junction is again encountered and incorporated. The first gene model is completed 
when the end of coverage is encountered. A splice junction indicated by “(2)”  that was 
not incorporated into the first model is then used to initiate a second gene model. Moving 
to the right, this gene model is the same as model 1. Moving to the left, it encounters the 
end of coverage, with an associated start site (either a spliced leader junction or a strand 
bias signal) and the model is complete. Orientation is implicit in the sequences of the 
splice junctions and the start and stop sites.  
 
(C) This histogram shows the distribution of differences in isoform composition for all 
genes with multiple isoforms in 21 pairwise comparisons across 7 developmental stages 
(EE, LE, L1, L2, L3, L4, YA). (Note that the Y-axis is on log scale). Isoform 
composition for gene i in stage S is represented by a vector �(i,S,k) where the kth 
component is the relative abundance of isoform k in relation to the other isoforms. 
Between two stages R and S for a given gene i the difference in abundance vectors gives 
a measure of the change in isoform usage for a gene. This is represented as D(i,R,S)  = 
∑/k  ((�(i,R,k) - �(i,S,k))2)/k. The difference D is a fractional number between 0 and 1; 
scores close to 1 indicate dramatic differences in the relative composition of different 
isoforms of the gene. The histogram plots the distribution of D values for all genes i. It is 
averaged over all pairs of stages R and S. The error bars represent the range of number of 
genes in every histogram across the 21 pairwise comparisons. Overall, the histogram 
shows that most genes have minor differences in their isoforms, but a small fraction 
(~300) have major and minor isoform switching between stages. (The minor isoform is 
defined as that with the lowest expression and account for less than 15% of the total 
expression of a given gene, while the major isoform account for more than 85% of of 
total expression. This corresponds to a cutoff value 0.5 of the fractional difference).  
 
(D) This region of the gene F01G12.5 (let-2) is a simple example illustrating alternative 
exon usage and the dynamics of expression across stages. The alternative integrated 
transcript models are shown (black) followed by raw read counts per base across stages. 
The first alternative exon is used almost exclusively by stages L1 through young adult. 
The second alternative exon is used primarily in early and late embryo, with decreasing 
usage in later stages. Note that the raw read counts for each exon may come from 
multiple isoforms.  
 
(E) This region of the transcript ZK783.1, homologous to human fibrillin-1, illustrates 
that alternative splicing in worm can be quite complex. The current WormBase model is 
shown at the top with our aggregate integrated transcript models shown below. Raw read 
counts per base for early embryo (orange) reveal clearly evident splice junctions, whereas 
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in L3 (blue gray), a series of introns are apparently read through without splicing until 
apparently splicing to either the penultimate exon in the region or skipping this to the 
final exon shown.  
 
Figure 3: Expression & Binding Dynamics  
 
(A) (LEFT) Spearman correlation of expression of 8,428 genes across seven different 
stages of the C. elegans life cycle. Gene expression in early and late embryo are highly 
correlated with each other, while gene expression between larval and young adult stages 
are also highly correlated. (RIGHT) Cluster patterns similar to those in the left panel also 
become evident when correlating RNA Pol II binding levels across the same 8,428 
genes. Values in each cell represent Spearman’s ρ. For both RIGHT and LEFT panels 
correlations were done over 8,428 genes with simply defined TSSs (see supplement C.7).  
 
(B)  Spearman correlation of RNA Pol II binding levels and gene expression for 8,428 
genes across seven different stages of the C. elegans life cycle. Correlation is generally 
high between RNA Pol II binding levels and gene expression within the same stage, with 
correlation the highest for the larval stages. Additionally, in considering correlation 
between stages, embryonic stages and larval/young adult stages form an symmetric 
pattern. RNA Pol II binding in the embryonic stages shows poor correlation with gene 
expression in the larval and young adult stages but expression in the embryo stages 
correlates moderately well with RNA Pol II binding in later stages. Values in each cell 
represent Spearman’s ρ. 
 
(C) Results of principal components analysis (PCA) of 6 matched tissue samples from the 
MxE and L2 stages. Tissues/cell types from embryo cluster together along both principal 
components. Tissues from L2 are differentiated with respect to their embryonic 
counterparts along principal components 1 and 2, spreading out with respect to the 
embryonic cluster. Component 1 is particularly enriched in genes associated with the GO 
terms nematode larval development, larval development, post embryonic development, 
and growth. 
 
Figure 4: Non-protein-coding RNA 
(A) The two panels illustrate the increased power achieved by combining features to 
discriminate between ncRNAs and other regions of the genome. These graphs show the 
distribution of expression feature values (e.g. from small RNA-seq) for genomic regions 
in the worm genome corresponding to ncRNAs and other types of sequence elements. 
The two panels show that while each feature alone cannot discriminate among different 
types of genomic elements, combining features into an integrated model can. The left 
panel shows the distributions of expression values for four representative features of the 
nine features examined using the gold-standard set of annotated regions (see (47)for the 
definition of the gold-standard set). The gold standard consists of four types of genomic 
elements: the known non-coding RNA, coding sequences (CDSs), untranslated regions 
(UTRs), and intergenic regions. A scatter plot of individual regions with values 
normalized to the same scale shows that the known ncRNAs are not readily distinguished 
from other regions, particularly using the bottom two features. At right, the maximum 
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signal of polyA RNA on a tiling array is plotted in a two-dimensional scatter plot against 
predicted secondary structure conservation. Even using just two features, the ncRNAs 
begin to separate from the other regions. Expression values in the right panel are log-
transformed normalized read counts (DCPM). Where multiple experimental data sets 
exist, the maximum value is used. The data used in the plots are from gold standard bins 
defined in (47).  
 
(B) Example of a novel ncRNA with support from multiple sources of information in 
embryos. Track labels are PHA-4, HLH-1, RNA Pol II: ChIP-seq reads from the 
indicated protein, where signal heights are normalized by their total mapped reads; 
H3K27ac (histone 3 lysine 27 acetylation), H3K4me (H3K4 methylation): log-
transformed values of the ChIP-chip data for two chromatin features normally associated 
with active genes; PolyA and Small RNA-seq: reads from polyA-selected and small RNA 
sequencing; Total RNA tiling arrays: log-transformed values of transcription on the tiling 
array in embryo; TARs: Transcriptionally Active Regions called from the tiling array 
signal track; Refseq: annotated genes in the region. The grey box at center shows a novel 
non-coding RNA ~160 nt in length captured only by the tiling array, indicating that it is 
not polyadenylated and is longer than the 30 nt size cutoff of the small RNA-seq 
experiment.  
 
(C) Example of a differentially transcribed pseudogene presumably creating a ncRNA.  
Rows represent normalized signal tracks derived from uniquely mapped reads for the 
developmental stages indicated. The left panel denotes the expression pattern of the 
parent gene (T01B11.7.1; shown in orange), whereas the right panel shows the expression 
profile of the associated pseudogene (duplicated pseudogene derived from PseudoPipe; 
PP00501; shown in green). The dashed vertical lines demarcate the exon boundaries of 
the parent gene and pseudogene. Note that the scales of the y-axis (normalized signal 
tracks) are set independently for the parent gene and the pseudogene. The expression 
patterns of the pseudogene and parent gene are discordant.  For instance, the parent gene 
is expressed in mid-L2, while the pseudogene does not appear to be expressed in that 
development stage. On the other hand, the pseudogene is expressed in the dauer entry and 
dauer stages, whereas the parent gene is not expressed during these stages. The 
discordant expression patterns indicate that the pseudogene is expressed independently of 
the parent gene. 
 
Figure 5: Transcription Factor Binding 
 
(A) Examples of TF binding peaks at a HOT region (blue box) and two specific regions 
(orange boxes), integrated with chromatin features and expression data. The top tracks 
(red labels) show raw reads from ChIP-seq experiments where a GFP antibody 
precipitated each of the 22 TFs  indicated, from strains carrying a GFP-tagged form of 
that TF. The remaining tracks are: polyA RNA-seq: the raw reads from early embryos; 
H3K4me and H3K27ac: the logarithm of ChIP-chip signals for histone methylation and 
acylation in early embryos; Pol II: raw reads of ChIP-seq data in early embryos; N2 Input 
track: raw reads from genomic DNA of the N2 strain; N2 GFP: ChIP-seq of genomic 
DNA from the N2 strain with pull-down by a GFP antibody; EGL-27 IgG: ChIP-seq of 
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genomic DNA from the EGL-27 strain with pull-down by IgG antibody; EGL-27 and 
HLH-1 Input: raw reads from genomic DNA of the EGL-27 and HLH-1 strains, 
respectively. All tracks of TFs are scaled based on the total mapped reads of each 
experiment (To fit all the tracks on a consistent scale, the range of each track is ~20 to 
~200 reads). The RNA-seq range is between 1 to 20 reads. High peaks exceeding the 
maximum range are truncated, as indicated by a dotted line. The displayed region is 
chrIII:7,193,967-7,224,48, where the HOT peak (blue box) is adjacent to the rpl-6 
(ribosomal large subunit) gene; downstream, there are specific peaks for the HLH-1 and 
UNC-130 TFs (orange boxes) upstream of R151.1, which is a muscle-enriched gene. The 
two specific binding peaks are enlarged at right. (Note, ChIP-chip is chromatin 
immunoprecipitation ("ChIP") using microarray technology ("chip").) 
 
(B) Average ChIP-seq signal around the transcript start site (TSS) of target coding (red) 
and non-coding (blue) transcripts for four representative TFs. The signal is the 
normalized mapped reads over input at each position (window size is 100nt).  
 
(C) Enrichment of binding targets and signal of TFs in non-coding vs. coding genes. Max 
signal value represents the ratio of maximum binding signal of a TF around its target 
non-coding genes to that of its target coding genes. Target fraction represents the ratio of 
target percentage in non-coding genes to that in coding genes. Only TFs at the larval 
stages are shown. Some factors such as GEI-11 clearly bind more to ncRNA than others 
(e.g. PHA-4). 
  
Figure 6: Highly Occupied Target (HOT) Regions  
 
(A) Compares the TF binding signals 304 HOT regions (left) across the C. 
elegans genome are bound by 15 or more TFs (out of 23 ChIP-seqs) and 150 regions 
(right) randomly chosen from the rest of the genome that indicate little to no TF binding. 
The results show that the HOT regions are highly enriched with TFs. Each row represents 
a TF ChIP-seq dataset, and rows are ordered by the number of HOT regions bound. 
Columns are separated by chromosome, and then ordered from left to right by increasing 
numbers of TF’s bound. ChIP-seq experiments were performed in worms synchronized 
for a specific developmental stage as indicated. Black indicates regions without 
significant TF binding, while colored regions have significant binding (maximum q-value 
1e-5) colored based on the enrichment q-value (with increasing significance from red to 
white). 
 
 (B) (Left) HOT regions containing HLH-1 binding show a relative lack of HLH-1 
binding motifs. In black, the frequency of the in vitro HLH-1 binding motif (hexamer 
CAGCTG) is greater in HLH-1-specific regions than in HLH-1 binding sites within HOT 
regions. The sequences in HLH-1 peak regions were randomized using the Fisher-Yates 
shuffling algorithm, and motif density was calculated for these shuffled regions (grey bar, 
error bars indicate standard deviation). 598 HLH-1 specific targets are defined as regions 
with 1-4 factors (including HLH-1); 165 HOT regions are bound by 15 or more factors 
(requiring inclusion of HLH-1). 
(Right) HLH-1 binding does not correlate with muscle expression in HOT regions.  
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Genes associated with  specific peaks for HLH-1, a muscle-specific TF, are over 7-fold 
more likely to be muscle-specific genes (61, 63) than genes located near HLH-1-
containing HOT regions. For each dataset, the frequency of muscle-specific genes is 
shown in black, and the frequency in  random gene sets of equal size is shown in grey 
(error bars indicate standard deviation).  
 
(C) HOT regions are broadly expressed. Single-cell gene expression measurement of 
promoter transcriptional reporter constructs in L1 worms from 3D confocal data stacks 
(data from (64)). The x-axis represents 363 specific cells present in the L1 worm, and the 
y-axis shows expression of 93 mCherry reporters, with the expression level of the 
mCherry reporter shown by the red scale bar. Promoters containing HOT regions (bound 
by 15 or more factors), and even promoters containing regions bound by 10-14 factors, 
show broad expression across 363 cells in the L1 worm, whereas promoters lacking these 
regions show a variety of diverse tissue-specific expression patterns. (See Fig. S29 for 
row annotations.) 
 
(D) Genes near HOT regions are enriched for essential function. Genes were separated 
based upon the presence of ChIP-seq peaks within 1kb of the TSS. The y-axis shows the 
percent of genes bound only by 1-4 factors (“specific targets”) or genes bound by 15 or 
more factors (“HOT regions”) that serve essential functions, as indicated by RNAi 
knockdown. The dotted line signifies the percentage of all genes that are essential. By 
Chi-square test, genes nearby HOT regions are significantly more likely to be essential 
(9-fold; p < 10-40), whereas genes that only had specific peaks were not.  
 
 
Figure 7: Integrated Regulatory Network 
 
The TFs (blue triangles) in panels A, B, and C are organized hierarchically: the top layer 
has TFs that are not regulated by any other TF in the network, the second layer contains 
TFs that are regulated by and also regulate other TFs in the network, and the third layer 
contains TFs that are regulated by but do not regulate any other TFs. In addition a 
sampling of TF interactions with other genes (purple) is shown in the fourth row. The 
TFs are as follows. In the first row: LIN-11, MDL-1, PQM-1, LIN-15B, MAB-5, ALR-1, 
ELT-3, PES-1, CEH-14; in the second row: PHA-4, EOR-1, LIN-39, BLMP-1; in the 
third row: GEI-11, UNC-130, EGL-5, SKN-1, EGL-27. The totals interactions associated 
with each type of edge are shown in parentheses. 
 
(A) shows all of the TF-TF interactions in the larval stages based on the TF binding 
experiments with the HOT regions already removed. The HOX genes are highlighted in 
the figure. 
 
(B) shows the interactions of the same genes after filtering by gene expression 
correlation, calculated using Pearson's correlation and allowing a stage shift of +/- one 
stage, with the maximum correlation being used. Correlations with absolute values less 
than 0.75 were filtered out. Essential TFs are highlighted red in this panel. The key to the 
colors used in the edges in B and C is shown to the right. 
 
(C) shows interactions between miRNA (red circles) and TFs. miRNAs that bind to 3' 
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UTRs of TFs are shown on the left whereas those that fail to bind to the 18 TFs but do 
have associated TF binding sites upstream are shown to the right. miRNAs that had their 
max larval expression level lower than 10% of their maximum expression level in all 
stages were filtered out. The miRNAs are also arranged hierarchically based on their 
interactions with the TFs. At left is an indication for the average value of the number of 
protein-protein interaction and tissue specificity for each level (see Supplement D.6 for 
detail on tissue specificity calculation). The star indicates that the difference the top and 
lower (bottom and middle) layers is statistically significant. (Specifically, it is P=0.002 
for degree in protein-protein interaction network and P=0.003 for tissue specificity 
score). The differences between the levels for HOX genes and essential genes, while 
notable, are not statistically significant given the small size of the network. 
 
(D) shows significantly enriched network motifs involving all of the interactions in the 
figure.  
 
Figure 8: Chromosome-scale domains of chromatin organization 
 
(A, B) Data from whole-genome ChIP-chip experiments for various histone 
modifications and chromatin-associated proteins, along with other relevant genome 
annotations, were normalized, placed into 10 kb bins, and displayed as a heatmap. Red 
indicates a higher value, whereas blue signifies a weaker signal. The continuous black 
line plots the relationship between physical and genetic distance (135). Three major 
groups of data were identified by hierarchical clustering. Group 1 contains H3K9 
methylation marks and LEM-2, which tend to be enriched at distal autosomal regions, 
and correlate with repetitive DNA and a high recombination rate. Group 2 contains the 
dosage compensation complex members and H4K20me1, which are highly enriched on 
the X chromosome. Group 3 contains regulatory element and gene-body marks for active 
chromatin. In general, the signal for active marks is much weaker on the X chromosome 
than on autosomes. This megabase-scale chromatin organization persists throughout all 
stages of development and adulthood. Chromosome III (A) is representative of all 
autosomes, whereas the X (B) has a distinct chromatin configuration. (C, D) The 
H3K9me1/2/3 signals gradually decrease at the boundaries between the central and distal 
domains, whereas the boundary defined by LEM-2 is relatively sharp.  
  
Figure 9: Chromatin Patterns around Genes 
 
Average gene profiles around the TSS and TTS of various histone marks displayed for 
the X chromosome (red), and autosomes (blue). Genes were further stratified according 
to their expression level, with the top 20% of expressed genes shown in darker shade, and 
the bottom 20% of expressed genes shown in lighter color. The top two panels show that 
histone variant H3.3 marks regions of active chromatin on both autosomes and the X 
chromosome.  Marks typically associated with active or repressed transcription are 
labeled on the left. Plots from L3 worms (bottom row), highlight some of the differences 
in histone mark patterns between the EE and L3 stages. For example, H3K27me1 and 
H3K27me3 show stronger enrichment on expressed genes on the X in EE, whereas 
H4K20me1 is more strongly enriched on the X in L3.   
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Figure 10: Integrated Statistical Models Predicting Regulation 
and Expression from Chromatin Features 
 
The figure shows the results of developing statistical models to predict TF binding and 
gene expression from chromatin features.   
 
(A) Modeling binding peaks of TFs using chromatin features. The color of each cell 
represents the modeling accuracy (quantified by the area under the receiver-operating 
characteristics curves, AUROC) of a statistical model where a single chromatin feature 
acts as a predictor for the binding peaks from a TF binding experiment. The last row 
shows the prediction accuracy for the HOT regions. 
 
(B) An example of combining chromatin and sequence features. Potential binding sites 
of HLH-1 were identified by the MEME algorithm (57, 58). Chromatin features were 
used to model general potential binding active regions (BAR+) that are not specific to 
any DNA-binding proteins. Three sets of regions were compared: all general binding 
active regions (BAR+), all regions with high motif scores (PWM+), and binding active 
regions with high motif scores (BAR+PWM+). Clearly the last combination does the 
best.  
 
(C) Correlation pattern of each chromatin feature in 160 100-nt bins around the TSS and 
TTS (from 4kb upstream to 4kb downstream from each) of worm transcripts at the EE 
stage. The Spearman correlation coefficient of each chromatin feature with gene 
expression levels was calculated for each bin. Ab1 and Ab2 represent experimental 
results using different antibodies for the same chromatin feature. 
 
(D) Chromatin models enhance the accuracy of predicting expression levels for both 
protein-coding genes and miRNAs. The x-axis shows the expression levels of protein-
coding genes (upper and middle figures) and miRNAs (lower figure), measured by 
RNA-seq and small RNA-seq, respectively. The y-axis shows the RNA Pol II binding 
signals (upper figure) and predicted expression levels for protein-coding genes (middle 
figure) or microRNAs (lower figure) by chromatin models. For the latter miRNA 
prediction we used model is just trained on the chromatin features of protein coding 
genes. 
 
 
Figure 11: Relative Proportion of Different Annotations Among 
Constrained Sequences 
 
(A) shows the proportion of constrained and unconstrained blocks in the C. elegans 
genome as a pie chart. The bar shows the cumulative proportion of the constrained 
region covered by various types of annotated functional elements, starting with CDS at 
the bottom. The indicated percentage shows the increase in the total proportion of the 
constrained region covered by the addition of that element type 
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(B) Kernel density estimate of distribution of element conservation. Enrichment of 
constrained bases among several types of annotated elements, relative to a background 
model drawn from a random distribution of untranscribed regions of the genome are 
plotted across the entire conservation spectrum (0 having no alignment, 1 having an 
alignment perfectly generated by the conserved state of the PhastCons phylo-HMM 
(134)). Points above and below the dotted horizontal line are enriched and depleted, 
respectively, relative to expectation. Higher conservation values represent subsets of 
bases within each annotation class that are more evolutionarily constrained. 
 
(C) shows the fraction of constrained and unconstrained bases underneath annotated 
elements. 95% confidence intervals for random placement of elements are indicated and 
were calculated using the GSC algorithm (1). If the ends of the columns are outside the 
confidence interval, then it is unlikely that the fraction of constrained or unconstrained 
bases underneath the annotation could have occurred by chance. Thus CDSs cover a 
higher fraction of constrained bases and a lower fraction of unconstrained bases than 
expected by chance, and the opposite is true for pseudogenes. Annotation types: CDS: 
all predicted and confirmed coding regions from WormBase; 5' UTR, 3' UTR: 
WormBase 5'- and 3'-UTRs confirmed by EST alignments; pseudogenes: WormBase-
designated pseudogenes; small RNA: Small RNAs identified by modENCODE; TF sites: 
Transcription factor binding sites identified by modENCODE; Dosage compensation: 
the union of binding site peaks for the factors DPY-27, DPY-28, MIX-1, SDC-2 and 
SDC-3; ChIP-Other: the union of binding site peaks for the factors HCP-3, LEM-2, 
MES-4 and MRG-1; HOT: ChIP target regions occupied by at least 15 TFs. 
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