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Supplementary Text for  
“Integrative Analysis of Functional Elements in the 
Caenorhabditis elegans Genome by the modENCODE 
Project” 

A. More Details on Author Roles 
The authors who were involved with data generation: 
Julie Ahringer, Cathleen M. Brdlik, Jennifer Brennan, Ming-Sin Cheung, Luke O. Dannenberg, 
Abby F. Dernburg, Arshad Desai, Lindsay Dick, Andréa C. Dosé, Thea Egelhofer, Sevinc Ercan, 
Ghia Euskirchen, Brent Ewing, Reto Gassman, Ting Han, Steven Henikoff, LaDeana W. Hillier, 
Heather Holster, Tony Hyman, David M. Miller III, Kohta Ikegami, A. Leo Iniguez, Judith 
Janette, Morten Jensen, Masaomi Kato, Vishal Khivansara, John K. Kim, Stuart K. Kim, Paulina 
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MacCoss, Marco Mangone, Gennifer Merrihew, Andrew Muroyama, John I. Murray, Wei Niu, 
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Robert H. Waterston, Christina Whittle, Beijing Wu, Mei Zhong, Xingliang Zhou 

The authors who were involved with data analysis: 
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Kent, Ellen Kephart, Ekta Khurana, Stuart K. Kim, Jing Leng, Suzanna Lewis, Tao Liu, X. 
Shirley Liu, Paul Lloyd, Lucas Lochovsky, Yaniv Lubling, Zhi John Lu, Rachel Lyne, Sebastian 
D. Mackowiak, Sheldon McKay, Gos Micklem, Mitzi Morris, Eric L. Van Nostrand, Siew-Loon 
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Iniguez, W. James Kent, John K. Kim, Stuart K. Kim, Mitzi I. Kuroda, Eric C. Lai, Suzanna 
Lewis, Jason D. Lieb, X. Shirley Liu, Michael MacCoss, Gos Micklem, Fabio Piano, Nikolaus 
Rajewsky, Valerie Reinke, Eran Segal, Frank J. Slack, Michael Snyder, Lincoln Stein, Susan 
Strome, Robert H. Waterston 

The authors who were involved in overall project management: 
Elise A. Feingold, Peter J. Good, Mark S. Guyer, Rebecca F. Lowdon 

B. More Details on the Data Overview 

B.1. Comparing and Scaling of Array and Sequencing Data: ChIP-chip 
vs. ChIP-seq 
The modENCODE project began when tiling arrays were still the platform of choice for genome-
wide location analysis. Many genome-wide location data sets, especially on histone marks and 
chromatin factors, were obtained using ChIP-chip on tiling arrays. To ensure the compatibility 
between ChIP-chip and ChIP-seq data generated by different modENCODE groups, we 
examined RNA Pol II ChIP data detected by both ChIP-chip (from the Lieb group) and ChIP-seq 
(from the Snyder group) (Fig. S1).  
 
At 1 kb resolution, the correlation between indvidual Pol II profiles at a given worm stage is 
0.75-0.88 within ChIP-seq replicates and 0.77-0.91 within ChIP-chip replicates. The correlation 
between ChIP-seq and ChIP-chip replicates are 0.56-0.78. Although variations across 
platform/group are slightly higher than those within platform/group, data across different labs at 
the same stage are still more correlated than those across different stages by the same lab.  
 
Finally, while ChIP-seq yielded more peaks than did ChIP-chip, the top 3,000 peaks identified 
by ChIP-chip and ChIP-seq overlap by approximately 2/3, a level of agreement normally 
observed for ChIP data from different labs on the same platform. These observations not only 
indicate that the two platforms are comparable, but also attest to the high quality of the 
respective data sets. 

B.2. Tiling Arrays vs. RNA-seq 
We also had an opportunity to compare tiling array and RNA-seq technologies for measurement 
of gene expression, as data sets were generated using both techniques on matched samples. A 
detailed comparison of these methods was described in (1); in addition to presenting some main 
points from this analysis here, we also repeat this analysis on new unpublished data sets 
associated with this manuscript. From this comparison, we were able to develop methods of 
optimally scaling the tiling array measurements to make them best correspond to those from 
RNA-seq.  
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Signals from the two platforms agree well (Fig. S2). For a young adult sample, the Pearson 
correlation is 0.83 between RNA-seq measurements using polyA-selected RNA and tiling array 
measurements using total RNA. A higher correlation of 0.90 was found when polyA-enrichment 
was also used for the sample which had been hybridized on tiling arrays. Using the maxgap-
minrun algorithm with optimized parameters, we then segmented the signals into 
transcriptionally active regions (2, 3). A ROC curve, parameterized by signal threshold, indicates 
that RNA-seq consistently outperforms tiling array in its ability to predict known transcribed 
regions. For instance, at a false positive rate (FPR) of 0.05, the tiling array yields a sensitivity of 
0.68, while RNA-seq attains a sensitivity of 0.85. Correspondingly, we also found that the RNA-
seq data predicted exon boundaries with greater accuracy, with a median offset of 0 bp (in 
comparison to 7 bp for the tiling array data). This is to be expected, as the resolution of an array 
is limited by its probe size, which was 25 bp in this experiment. 
 
Fig. S2 shows several genes in the upper left, indicating they are measured as highly expressed 
by tiling array but not RNA-seq. We conducted a "nearest neighbor" analysis to investigate the 
hypothesis that this is due to cross-hybridization effects on the array. For each gene, we 
computed the expression level from probes lying within that gene, as well as probes similar in 
sequence, but elsewhere in the genome. For tiling arrays, we found these two values to be similar 
for many genes, indicating that the suggested expression could arise equally well from true 
expression or cross-hybridization. These values are similar for fewer genes when using RNA-seq 
data. Another analysis, using pseudogenes, also confirms cross-hybridization in arrays (1). We 
have used these analyses in formulating our fairly conservative criteria for transcribed 
pseudogenes (see main text and Fig. 4C).  
 
For determining gene expression values maximally compatible with RNA-seq, we used the 
following procedure: for 42 of the 44 experiments listed in Fig. 1 (without some of the infection 
samples), we obtained a signal track by applying pseudomedian smoothing over the three 
replicates, which provides an expression level for each probe. We then consider all probes 
overlapping, by at least 50%, the exonic regions of each transcript. We defined the expression 
level of this transcript as the median of the signal values for all such probes. Gene expression 
levels were then defined simply as equal to those of the longest isoform. For the inter-sample 
comparison, we normalized these expression levels by dividing the values by the slide median, 
i.e. the median of all probes on the array and obtained a large data matrix (42 samples x 20,085 
genes). Expression levels for each slide were next centered by subtracting the mean expression 
value for each slide from all expression values within the slide. 
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C. More Details on Transcriptome Analysis 

C.1. RNA-seq Saturation Analysis 
In order to understand the relationship between the robustness of gene expression measurements 
and the depth of sequencing, we devised the following in silico "experiments":  
1. We considered an RNA-seq experiment with ~36M mapped reads (mid-L2 25dC 14 hours 
post L1 - DCCid=2351);  
2. We selected fractions of the mapped reads: 1%, 5%, 10%, …, 90%, such that we generated 
sub-sets of ~300K, 1.6M, 3.3M, …, 30M mapped reads; 
3. We computed the expression levels for all 20,051 genes in WormBase190 as reads per 
kilobase of exonic region per million mapped reads (RPKM). As a gene model, we used the 
“composite”, i.e. the union of exonic nucleotides of all isoforms of a gene. 
 
Fig. S4 reports the density plots at the different sequencing depths. As expected, the low-
coverage case shows a higher fraction of non-expressed genes. Interestingly, genes which have a 
log2(RPKM+1) greater than 2 seem to be less affected by sequencing depth. Fig. S5 reports the 
comparison between the density plots at different levels of coverage, suggesting that, with a 
sequencing depth of ~13M mapped reads, most of the expressed genes are captured. This 
hypothesis is also supported by Fig. S6, which reports the number of non-expressed genes 
(RPKM=0) as a function of sequencing depth. Indeed, after ~13M mapped reads the number of 
“genes” with zero expression begins to plateau, although there remain small numbers of lowly-
expressed transcripts that can only be identified by further increases in depth. 

C.2. RNA-seq Read Mapping and Stage-Specific RNA-seq-Only 
Genelet Creation Methods 
Stage-specific genelets, based solely on stage-specific RNA-seq data were created using methods 
similar to those described (4), but with several additional refinements. Briefly, the Illumina reads 
were aligned against the genome, and an exhaustive coverage-based splice leader and splice 
junction database were created for each stage (4). Each read was assigned a unique genomic 
location. Thresholds for read coverage were set for a 0.05 false positive rate, based on a ROC 
analysis. Transcripts were created by seeding with the highest confidence splice sites and splice 
leaders in a region, and then extending from those sites and leaders, incorporating coverage and 
junctions into the model (Fig. 2B). The procedure was iterated until all confirmed splice 
junctions and leaders were incorporated into models. Instead of producing transcripts containing 
every possible combination of every splice junction/leader, each splice junction/leader was used 
in at least one model. We created alternative models, with merged neighboring exons, when 
above-threshold read coverage suggested the intron had been retained, and when frame was 
maintained across the merged region. We also generated genelets with alternative start/stop sites 
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within introns when the entire intron was not retained, but when there were at least 50 bases of 
above-threshold coverage which extended into the intron initiated by a TSS or terminated by a 
polyA site. 
 
The stage-specific polyA addition sites (including those generated by this project, as well as 
those from (5)) were clustered (keeping only a single polyA addition site when there are multiple 
polyA sites within a 10 bp window). While all splice leaders were incorporated into at least one 
prediction, polyA sites were only incorporated when a genelet model extended to the polyA site. 
Because overlapping UTRs can cause neighboring same strand predictions to merge if there is no 
splice leader or no polyA site, whenever a single exon overlapped two separate neighboring 
WormBase gene predictions, we broke the corresponding transcript into two separate transcripts. 
We also broke transcripts whenever they overlapped more than one WormBase gene prediction, 
and three or more neighboring exons were not included in the CDS portion of the transcript. The 
CDS region was defined by identifying the longest open reading frame. Single exon transcripts 
from WormBase were incorporated if at least 75 bases had above-threshold coverage. 
Additionally, single exon transcripts were created when a single block of coverage was at least 
75 bases long and extended from an SL to a polyA site, or if it began with an SL and extended at 
least 250 bases (even if without a polyA site). 

C.3. Aggregate Integrated Transcript Set Methods 
To create the aggregate integrated transcript set, all of the reads (from all stages) were combined 
as if they were from a "single project". Splice junctions, splice leaders, and polyA addition sites 
were identified as they would be in the stage-specific methods. Transcripts were then built in the 
way described above, seeding with splice junctions and extending using "experimentally 
confirmed" bases (see below). However, additional evidence from mRNAs/ESTs, WormBase, 
and modENCODE data was incorporated as described here. 
 
The following splice junctions were included in the aggregate integrated set: (1) splice junctions 
confirmed in the individual RNA-seq stages or by aggregate read coverage, (2) all mRNA/EST 
(WormBase209), RT-PCR/RACE(6), and mass-spec-confirmed splice junctions (7), and (3) 
WormBase-predicted splice junctions which were supported by RNA-seq data (including those 
after allowing an RNA-seq read to be placed in all positions at which it had an identical match). 
Note that, for the splice junction counts in Fig. 2A, we counted any splice junction beginning 
“before” the 5’ end of an existing WormBase (WS170) transcript prediction as 5’. Similarly, any 
splice junction extending “past” the 3’ end of an existing WormBase transcript prediction was 
annotated as 3’. Any splice junction internal to a WormBase transcript prediction was labeled as 
internal. 
 
In the aggregate transcript set, a base was considered experimentally confirmed when any one of 
the following criteria were met: (a) above-threshold coverage in the individual stage or aggregate 
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RNA-seq data set, (b) coverage by an mRNA/EST, RT-PCR/RACE, or mass-spec alignment, (c) 
coverage by WormBase predictions, as long as the bounding splice junctions are confirmed 
splice junctions (i.e. holes in coverage within exons which already have evidence based on RT-
PCR, RNA-seq, EST/mRNA, etc. can be "filled in" using WormBase coverage), or (d) coverage 
by a genelet created in the individual stage-specific sets. In addition to the “integrated transcript 
set,” we also created an “integrated genelet set” where evidence “(c)”, filling with WormBase 
predictions, is not included.  
 
For the aggregate set, splice leader and polyA addition site data were included when (a) they 
were defined by coverage in individual stages (novel splice leaders or polyA sites defined by the 
RNA-seq-only analyses were required to appear in more than one of the individual stages to be 
included) and/or in the aggregate set, (b) they were identified by WormBase (WS209) as SLs or 
polyAs, (c) they were identified in other studies generated from deep 3' RACE sequencing (5, 8), 
or (d) splice leaders were identified by RT-PCR/RACE experiments (6). 
 
Transcripts are named after the overlapping WormBase transcript. For instance, the alternative 
transcripts/isoforms associated with WormBase C10H11.1 would have names such as 
C10H11.1.T1, C10H11.1.T2, C10H11.1.T3, etc. Those transcripts which do not overlap a 
WormBase transcript have names beginning with "RIT*" (for RNA-seq Integrated Transcript). 
The number following "RIT" is the chromosome (1=I, 2=II, etc. 6=X). The number after the first 
period is a unique number assigned to that transcript. The T1, T2, etc. are used for the alternative 
versions of that transcript. Currently, the naming does not allow one to know which transcript 
versions have the same CDS. 
 
For the aggregate transcript set described here, we included all of the 19 stages for which RNA-
seq data was available (Fig. S3). 

C.4. Differential Splice Junction Usage 
We created a non-redundant set of all splice junctions, noting the number of reads which 
confirmed that intron in each stage. We converted that number into reads per million (RPM) by 
multiplying 1,000,000, and dividing by the number of aligned reads in that stage. We further 
tracked the depth of coverage per million reads (DCPM) of a transcript which contained that 
splice junction. To identify alternative isoforms, we sorted the splice junctions by strand and by 
intron start position (donor), looked at the coordinates of one intron, and asked if the next intron 
in the list had a start which was equal to the preceding one (same donor, different acceptor), or if 
it came after the previous but before the next acceptor, etc. For the splice junctions with 
alternative forms, we looked at how the ratio of the RPM of the two (or more) forms varies over 
the stages. In this way the control was internal, the path through the region must use one of the 
splice junctions, and a change in the ratio means differential splice junction usage. To identify 
examples we performed pairwise comparisons by stage (e.g. comparing the early embryo to the 
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young adult) looking for intron pairs where the transcripts involved both had a DCPM of at least 
one, where one splice junction in the pair was used at least 5 times more frequently in one stage 
and less frequently in the other stage, and where at least one splice junction in each pair had an 
RPM of at least 2 (corresponding to ~5 or more reads for the stages with 25M reads aligned). 
After identifying candidates in this way, we viewed the change in splice junction usage across 
stages using a normalized read count for each intron in each stage, calculated by dividing the 
RPM for that intron by the DCPM of a transcript containing that intron. 

C.5. Detection of Differentially Expressed Transcripts on Tiling Arrays  
This section describes tiling array processing related to detection of differentially expressed 
genes. More details are in a companion paper (9). 
 
RNA was isolated from 25 different embryonic and larval cell types and from all cells derived 
from 5 selected developmental stages to generate a total of 30 tiling array data sets (10-12). 
Additional 7 tiling array data sets were generated from RNA extracted from synchronized 
populations of whole animals at 7 different developmental stages. The C. elegans Affymetrix 
1.0R tiling array was used for all experiments.  Non-redundant Transcriptionally Active Regions 
(nrTARs) were determined by a machine learning approach (13, 14). (Note nrTARs were defined 
slightly different than conventional TARs.) nrTARs with > 20 nt overlap with WormBase coding 
exons or exons of integrated transcript models were counted as hits. For quantification of 
transcript levels for annotated genes, unique tiling array PM probes wholly contained within 
exons of gene models were selected to generate a probe set for each gene listed in WormBase 
version WS199. (obtained from ftp://ftp.wormbase.org as a gff3 format file). Tiling array data 
sets were quantile normalized and probe sets were median polished using RMA (15-17). 
Significantly expressed (< 5% FDR) gene models were determined by comparison to an 
empirical null model of background expression from intergenic probes for each microarray data 
set (18). The total number of detected genes was calculated from the union of tiling array data 
sets for cells (30 data sets) stages (7 data sets) and for the combination of cells and stages (37 
data sets). As a conservative measure to correct for the accumulation of potential type 1 (false 
positive) errors, we adjusted the q-value of each detected gene by dividing by the cumulative 
number of independent samples used for each of these estimates (i.e., 37 for cells and stages, 30 
for cells, and 7 for stages). This adjustment applied a similar reasoning as Bonferroni correction 
of p-values by assuming that in the least favorable case, false positives, but not true positives, 
were independent (19). To define genes differentially expressed in cells, tiling array results 
obtained from specific cell types were compared to corresponding developmentally matched 
reference data sets obtained from all cells. Similarly, to define genes differentially expressed by 
stage,  the 7 tiling array data sets obtained from staged whole animals were compared to each 
other. Differentially expressed gene models were estimated with a linear model and moderated t-
statistic (20, 21).  Gene models with a FDR < 0.05 and fold change > 2 were called significant. 
Differentially expressed genes detected in cells or stages or in cells and stages were tabulated 
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from the union of the corresponding comparisons. The estimates were adjusted with a 
Bonferroni-type correction in which the FDR threshold was divided by the number of 
comparisons between samples. For differentially expressed genes detected in the 25 cell types, 
the FDR was corrected by the total number of independent comparisons (total of 25). For stages, 
the FDR threshold was corrected by the total number of pairwise comparisons between data sets 
derived from seven stages (total of 21) (see Table S3 footnotes 4, 5 and 6, 7). The fraction of 
genes differentially expressed was determined by dividing the number of differentially expressed 
genes for each category by the number of genes detected as expressed in the same category (e.g., 
11,229 genes differentially expressed in cells and stages divided by 14,279 genes expressed in 
cells and stages = 79%).  

C.6. Over-Represented Transcripts at Particular Stages 
We identified a set of transcripts which are over-expressed in each of the seven main 
developmental stages (EE, LE, L1, L2, L3, L4, and YA) relative to other stages (Fig. S12 and 
Fig. S13). The stage specific transcripts were defined as those highly expressed in a particular 
stage (>90%) but lowly expressed in at least 4 other stages (<70%). Promoter sequences (-1kb to 
0 upstream of TSS) for each group were retrieved and searched for enriched motifs using the 
MEME algorithm (22, 23). To remove generic motifs which are present in promoters of all 
transcripts, we scanned and compared the occurrences of these candidate motifs in specific 
transcripts of all the 7 stages. As an example, MEME identified 24 candidate motifs that were 
enriched in EE-specific transcripts, 12 of which were over-represented in the promoters of EE- 
or LE-specific transcripts but not in other stage-specific transcripts or ubiquitous transcripts (Fig. 
S14). 

C.7. Determining a List of 8,428 Non-overlapping Transcripts to Study 
the Dynamics of Transcription and Binding 
In this section we describe how we derived a high-quality list of non-redundant TSSs for 
studying expression and binding dynamics in Fig. 3A and 3B. This restrictive list has no 
transcripts that overlap and for each transcript the closest TSS is farther than 0.5 kb away. To 
derive the list we started with a list of transcripts obtained from WormBase. For each set of 
potentially overlapping transcripts at a given locus, we kept the longest one and discarded the 
rest. Then for each kept transcript, we defined a promoter region as a 1 kb window centered on 
the TSS. In some cases, promoter regions selected in this manner will overlap with other 
regulatory regions or transcripts, and cause RNA Pol II signal from potentially unrelated 
promoter regions to enter the window. To minimize this side effect and to reduce double-
counting of signal, we found all TSSs less than 500 bp (i.e. half the window size)  apart and 
picked one from each set. Using this approach, we obtained a final set of 8,428 TSSs (and 
associated transcripts) used for our analyses.  



 9 

C.8. Using PCA for Analyzing Expression Changes across Tissues  
This section describes how we performed the principal components analysis (PCA) on the tissue 
samples in Fig. 3C and related it to the overall correlations in the RNA-seq data shown in Fig. 
3A. The idea was analyze the overall variation in the RNA-seq and tiling arrays samples in a 
consistent fashion and then show how the tiling arrays of specific matched embryo-larval pairs 
related to this overall variation. 

First, we used gene-expression values for each of the tiling array samples determined in a way as 
to maximize compatibility with the RNA-seq DCPM values (see description above in 
supplement sect. B.2.). This gave rise to a large 42 sample x 20,085 gene data matrix. We then 
applied PCA to this to reduce dimensionality and to identify sources of variance, generating a 
42x42 matrix of principal components. Rows corresponding to matched tissue samples from 
mixed embryo (MxE) and L2 were then extracted from this matrix and corresponding data points 
plotted along the first two principal components to produce Fig. 3C. In this manner, we are able 
to obtain a view of the matched tissue samples in the context of the entire microarray data set 
across all time points/tissue types queried by the microarray experiments. Note the principal 
coordinates for this matrix were those of the overall compendium of experiments (and hence 
were fairly robust to noise). The main component described the overall difference in expression 
programs between larval and embryo stages. As described in the caption to Fig. 3, this 
component was particularly enriched in genes having GO terms associated with "nematode larval 
development, larval development, post-embryonic development, and growth." We compared the 
overall PCA of all the tiling-array experiments to that of the RNA-seq experiments (obtained 
from the correlation matrix in Fig. 3A). Both PCAs shared similar top components, with the 
main axis representing embryo to larval differences.  

C.9. Expression Analysis of Alternative Transcripts   
We developed two alternative methods to resolve the expression level of individual isoforms for 
the same gene, using either expectation-maximization (EM) or a Bayesian approach with Gibbs 
sampling to distribute RNA-seq reads among a set of alternative transcripts in a probabilistic 
manner. We compared relative and absolute expression of alternative transcripts, as identified by 
either method, between paired samples and across the entire time course of development. We 
describe each of these analyses separately below. 

C.9.a. IQSeq Analysis 
The first method, which we call "IQSeq", uses an expectation-maximization (EM) algorithm to 
resolve the expression level of individual isoforms. Details on this are available in a companion 
paper (24) and we summarize the main points here. All aligned reads compatible with a 
transcript cluster are used to build an indicator matrix, in which the entry is 1 if a read is 
compatible with an isoform or 0 for all other cases. This matrix is then plugged into a likelihood 
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function, representing the probability of observed read alignment given a set of isoform 
structures. The EM calculation then produces the most probable expression levels of each 
transcript in a gene cluster. 
 
Detection of Differential Expression During Development with IQSeq 
We applied IQSeq to RNA-seq data of 7 developmental stages (EE, LE, L1, L2, L3, L4, YA) and 
derived both the relative and absolute RPKMs for all transcripts. These RPKMs values were 
used to derive an abundance vector �(i,S,k) for each gene i in stage S for isoform k. Then for 
each gene, we computed the average of squared differences for relative RPKMs of the isoforms 
of each gene between two stages -- i.e. D(i,R,S) for gene i between stages R and S (See caption to 
Fig. 2C for more detail). We computed similar quantities for absolute differences. Genes are then 
classified based on their scores in these two statistics in pairwise comparisons, revealing the 
subsets which show only dramatic isoform composition change, only dramatic absolute 
expression level change, neither, or both. Further analysis on these subsets may reveal key gene 
players or pathways in dictating worm development. 
 
 

C.9.b. Deepseq9 Analysis 
The second method, which we call "deepseq9", uses a Bayesian approach to estimate the relative 
expression of alternative transcripts for the same gene. An implementation of the algorithm, 
including documented source code, is available at SourceForge (25). Deepseq9 was developed 
by B. Carpenter (LingPipe, Inc.) and M. Morris (CGSB, NYU). 
   
Computing transcript-level expression using a joint model of read alignment and 
expression with deepseq9 
Given a data set of sequence reads, our goal is to estimate the expression of each alternative 
transcript for a gene based on the abundance of reads which map to sequences contained within 
each isoform. The method effectively distributes all of the observed reads among the possible 
isoforms using a probabilistic logic. Briefly, expression is inferred from the following data:  
K ∈ N+ (the number of variant isoforms), N ∈ N+ (the number of reads), and y1,...,yN (the 
reads).We assume two model hyperparameters: φ (the expected variation from the reference 
sequence), and α1,...,αK ∈ R+ (the prior read count per sequence plus one (to avoid zero division 
errors)). The general-purpose parameter vector φ reflects deviation of the sample sequence from 
the reference sequence for the given read distribution due to factors such as SNPs, amplification 
errors during sample preparation, and the sequencing platform's error profile. We infer two 
model parameters: t1,...,tN  ∈ 1:K (the mapping of read to splice variant), and θ1,..., θK ∈ [0,1] 

such that  (the read expression probabilities, where expression levels θ are based on 
prior counts). In sampling notation, the model structure is: 
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● θ ~ Dirichlet(α) 
● tn ~ Discrete(θ) for n ∈ 1:N 
● yn ~ Channel(tn,φ) for n ∈ 1:N 

 
To estimate expression levels, we must calculate the posterior probability of reads mapping to all 
possible alternative transcripts. The model uses Gibbs sampling to draw samples from the full 
posterior distribution p(θ,t|y,α, φ) computed over read mappings tn  and read expression levels θ 
given the reads y, resulting in a discrete sampling of the mappings tn onto all annotated isoform 
variants based on the parameter θ (effectively a beta-binomial model of expression level). The 
read channel model assigns the probability of a given read yn being observed, given that it arose 
from the splice variant tn under the model parameterized by φ. 
  
Analysis of the aggregate integrated transcript set 
The analysis was initiated using pre-computed exon-level coverage for the annotated aggregate 
integrated transcript models, expressed in DCPM (depth of coverage per base per million reads), 
and a count of mappable reads for each exon (DCPM_bases), as determined from initial mapping 
of the RNA-seq data to the C. elegans genome (WS190) as described above (see sections above 
entitled, "RNA-seq Read Mapping and Stage-Specific RNA-seq-Only Genelet Creation 
Methods" and "Aggregate Integrated Transcript Set Methods"). For each exon, we generated a 
set of putative alignments to all parent transcripts, and then used our Bayesian model to jointly 
compute the read assignment and transcript-level expression. The alignment score is the 
probability of the read given the exon, which is proportional to the exon length (counting only 
mappable bases): P(read|exon) = log2(ExonLength/TranscriptLength). We multiplied DCPM by 
1000 to obtain pseudo-reads which align to the exon, and then generated mappings between each 
pseudo-read and each possible parent transcript. The average number of mappings to distinct 
transcripts per read was 3.1 (i.e., on average, reads for each exon could map to one or more of 
three alternative transcripts). For the deepseq9 expression program, the Gibbs sampler was run 
for 1000 epochs, with a burn-in parameter of 500 (i.e., the first 500 iterations were discarded to 
allow the model to reach a stationary distribution); thereafter, we took one sample every 10 
epochs (thinning of samples in this way reduces the effect of auto-correlation on samples and 
produces better variance estimates with fewer samples). Expression was computed as the average 
number of reads per transcript across all the samples. We compared our estimates with 
extrapolated transcript DCPM counts from the initial mapping described above, and found good 
overall correlation between the two approaches (median R2=0.82 across the 15 samples; data not 
shown). 
     
Clustering expression by developmental stage using Self-Organizing Maps 
(SOMs) 
We combined the transcript-level expression calculated by deepseq9 for all transcripts in ag1003 
across the 15 stages into a single data table. To identify alternative transcripts which show a 
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relative change in expression (i.e., transcript A > transcript B in stage 1; transcript A < transcript 
B in stage 2), we applied filtering criteria requiring that: (a) transcripts differ by at least 30% in 
opposite directions in at least two stages, and (b) the more highly expressed transcript has at least 
5 pseudo-reads (corresponding to a DCPM of 0.005). (We note that ~800 of transcript pairs 
which passed these filters displayed borderline expression levels due to the low minimum read 
threshold, thus resulting in lower confidence estimates of differential expression.) 
     
The set of transcripts that passed these filters (15,064 transcripts for 3,428 genes) was run 
through an SOM clustering algorithm (R 2.11 - library(class), function "SOM") that generated 44 
clusters, each with at least 5 members. Clusters with similar profiles (based on visual inspection) 
were merged, resulting in a final set of 25 clusters (Fig. S15). 
    
Identification of alternative transcripts with different developmental profiles 
We found that 43% of all genes subjected to clustering showed alternative overlapping 
transcripts which fell into two or more different SOM clusters (corresponding to 8,077 
transcripts for 1,475 genes) (Fig. S16). From a total of 2,107 pairs of clusters containing 
alternative overlapping transcripts for the same gene, we further examined 1,742 cases in which 
precisely one isoform fell into a distinct cluster from other isoforms for the same gene. Among 
these we were able to discern several distinct classes of alterations in features at the 5' end, 
within the CDS, or at the 3' end of transcripts (Fig. S17and (26)). 
  
Individual examples from these different classes are shown in Fig. S18. We observed that while 
most cluster pairs shared fewer than 4 genes, those pairs with the largest number (proportion) of 
genes in common also tended to show  similar developmental profiles. Thus, for follow-up of 
individual genes, examples from cluster pairs with fewer genes in common are more likely to 
reveal alternative transcripts with more obviously divergent developmental expression profiles. 

C.10. Pseudogene Identification and Analysis 
In order to identify a list of possible C. elegans pseudogenes, we looked at a number of features 
including: amino acid sequence identity, how much the pseudogene covers the parental gene, 
modifications such as insertions, deletions, and frameshifts, as well as other criteria. This was 
performed both by using the automated pipeline PseudoPipe as well as by hand annotating the C. 
elegans genome with the help of data available in the WormBase database. Comparing the 
coordinates from the 2,343 candidate pseudogenes identified by PseudoPipe and 1,541 identified 
by WormBase, there were 1,025 pseudogenes which had a nucleotide overlap of at least 50 bp 
between the candidates in each data set. The remaining sequences were reviewed manually, and 
it was determined that 173 pseudogenes from PseudoPipe, and 95 pseudogenes from WormBase, 
should also be included in the list, for a final total of 1,293 (Fig. S19). The remaining sequences 
were found to either overlap with annotated genes, be too small and fragmented to be considered 
a pseudogene, or should have been curated as part of a functioning gene. To determine if a 
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pseudogene was abundantly expressed, it had to have a DCPM value of >0.04 in at least one 
sample. This threshold is 100-fold higher than the minimal DCPM in this set. (DCPM is the 
Depth of Coverage Per Million reads calculated from the mapped RNA reads).   
 
C.11. Identification of Canonical miRNAs and Mirtrons 
Canonical miRNAs are produced by sequential cleavage of inverted repeat transcripts by the 
Drosha and Dicer RNAse III enzymes. We annotated novel canonical miRNAs using the 
miRDeep algorithm (27, 28), and for confident annotation, required that the cloning of miRNA 
and star reads mapped to a precursor hairpin with 3' overhangs at both ends of the inferred small 
RNA duplex. A subset of loci were confirmed to be dependent on the Argonaute encoded by alg-
1 (29). In total, 24 confident novel miRNAs were deposited in the miRBase database. 
          
For mirtrons, we built an SVM model based on features of the 14 intially reported D. 
melanogaster mirtrons (30, 31) and ran this on the C. elegans genome as an independent test of 
its performance (32). Three of the four known nematode mirtrons (mir-1018, mir-62 and mir-
1020) ranked within the first 15 candidates genomewide; the fourth (mir-1019) presents a highly 
atypical 2:5 hairpin overhang and scored much lower (440th). We validated high-scoring 
predictions using publicly available small RNA data (29, 33-41), yielding 12 novel mitrons that 
produced at least 5 small RNA reads with a dominant 5' end and extending to the intron 
terminus; 10 of these also generated star reads with appropriate duplex overhangs. 
NM_075944_in2 and NM_071513_in8 did not have star reads, but the recovery of >40 reads 
from both loci with precise 5' ends provided strong evidence of specific miRNA production. We 
also reclassified the previously annotated mir-2220 as a mirtron and recognized NM_075943_in1 
to produce a mirtron from an unannotated splice site, for a total of 18 confident mirtrons in C. 
elegans at present; Several additional high-scoring predictions yielded <5 intron terminal reads 
and were classifed as candidates. Full analysis of worm mirtrons is available at (42). 

C.12. Predicting Long Non-Coding Transcripts from Tiling Array 
TARs: Building the 21k-set of ncRNAs 
We describe below how we construct the 21k-set of ncRNAs. The building of the 7k-set is 
described in (43). The construction of the 21k-set is consistent with this, following similar 
principles. However, it does not include DNA conservation and RNA secondary structure 
information.  
 
The tiling array signals were segmented into TARs using the maxgap/minrun algorithm (2, 3). 
Briefly, a contiguous sequence of probes exceeding a signal threshold (selected as described 
below) was connected to form a TAR. To account for noise, a total of 30 bp (about 1 probe) were 
allowed to fall below this threshold within a single TAR. Finally, TARs shorter than 100 bp (the 
total length of 4 probes) were discarded. The signal threshold was optimally selected according 
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to the criteria of attaining an FPR of 0.05 when compared to a high confidence subset of the 
annotation. Details are provided in (1). 
 
In total, 95,069 TARs (37,026,882 nt in total) were collected from the union of 41 tiling array 
experiments (Supplement Table 2), of which the minimum length is 100 nt. 1,331 overlap with 
known ncRNA, and 22,487 include transcribed regions which are not overlapped with any 
annotated (confirmed or predicted) exons or known ncRNA. The reads from sequencing data 
from small RNA and polyA-selected RNA were also averaged for each tiling array TAR. 
Subsequently, different types of expression values were combined to classify each TAR as 
ncRNA, CDS, or UTR, using machine learning methods. Known ncRNAs, CDSs, and UTRs 
were selected as a gold-standard set for machine learning (Supplement Table 4 and 5). Before 
classification, the 95,069 TARs were fragmented into 448,746 small windows (using sliding 
windows of 150 nt with a 75 nt step size ) (Fig. S20). Because of the sample preparation method, 
the tiling array TAR cannot inform as to which strand the transcript came from. 
 
Although lacking conservation and secondary structure information, the accuracy of the 
classification model for the gold-standard set in terms of AUC (area under the ROC curve) is still 
as high as 94.2% for ncRNA prediction from TARs (Supplement Table 6). When applying the 
classification model to the 49,648 novel transcribed windows (from 22,487 TARs), 45,913 were 
found to most likely be ncRNA, 3,294 were most likely to be UTR, and 441 were most likely to 
be CDS (Supplement Table 7). These 45,913 "windows" originated from 21,521 TARs out of the 
original set of 95,069 TARs. This gave rise to the 21,521 predicted ncRNAs in the 21k-set. 
Please note that the prediction accuracy of the 21k-set is not as high as the 7k-set, and many of 
them could come from the UTRs or unprocessed introns. Therefore, we only use the 7k-set for 
the following novel ncRNA analysis. The genome locations of the 21k-set are available at (26). 
  
Subsequently, 1,259 of  the predictions in this set were found to overlap the predicted ncRNAs in 
the 7k-set. The 7k-set includes 7,237 ncRNA fragments (1,045,795 nt) predicted from an 
integrative method (43), where other features, such as RNA secondary structure and protein 
sequence conservation, are used in addition to the expression features used in generating the 21k-
set.  

D. More Details on Analysis of Regulation  
D.1. Validation of TF Binding Sites 
We performed a series of analyses to examine the quality of our ChIP-seq experiments. Much of 
these are discussed in detail in (44) and summarized here.  Firstly, we selected several factors 
(for which primary antibodies are available) to compare our transcription factor (TF) tagging 
strategy for ChIP to native protein ChIP. We found that: (1) GFP-tagged AMA-1 has the same 
binding pattern as does native AMA-1 (the correlation coefficient between samples is 0.934, (2) 
the binding sites of GFP-tagged PHA-4 from embryos and starved L1s are verified by comparing 
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our list of genes to the list of known pharynx developmental genes ( 90/238, p<1.7e-13), and (3) 
the binding sites of GFP-tagged HLH-1 are validated by comparing our result to an unpublished 
data set of binding sites for endogenous HLH-1 (45). Overall, these analyses (to date) are 
consistent with the conclusion that the tagged factor has binding and regulatory properties 
similar to those of the native protein, and that differences between tagged factor and native 
protein ChIPs are well within the expected levels of variation which are commonly observed 
between replicate ChIP samples using the native protein. Secondly, many PHA-4 binding sites 
from embryos and starved L1s identified by ChIP-seq were verified through an independent 
method: ChIP-qPCR (76% of the embryonic sites and 74% of starved L1 sites with two-fold or 
higher enrichments). Lastly, we examined the functional enrichments of protein-coding genes 
targeted by each of 23 factors. Many Gene Ontology (GO) terms related to developmental 
processes are found to be enriched for genes bound by many factors, suggesting the general roles 
of these factors during C. elegans developmental processes. More importantly, for factors with 
known functional roles we identify specific enrichment of GO terms that match these functional 
roles (46). In conclusion, these analyses demonstrate the high quality of our ChIP-seq 
experiments. 

D.2. Identification of Target Coding and Non-Coding Genes for TFs 
 
 
The details of data sets for 23 factors (22 TFs and one dosage compensation factor) are listed in 
supplement Table 8. The determination of the target gene associated with a particular TF is 
described in more detail in (47). We used a very simple and straightforward approach: Genes 
were targeted by TF binding peaks if they were within 500 bp upstream or 300 bp downstream of 
the TSS. This is a fairly conservative threshold; it is possible to take significantly larger values 
for the upstream threshold without greatly affecting the results. We obtained the annotations of 
worm genes from WormBase. Although the TSSes for the majority of worm miRNAs has not 
been mapped, it has been shown that DNA regions upstream of the pre-miRNA are sufficient to 
initiate the transcription of miRNAs (48). We thereby identified the target miRNAs by 
examining the existence of TF binding peaks around the start position of pre-miRNA transcripts.  

D.3. HOT Regions 
Using the 23 factors' ChIP-seq data sets, we determined the number of factors bound at each base 
in the C. elegans genome. Out of the 16,707 genomic regions identified as having significant 
enrichment in at least one of the ChIP-seq data sets, 304 Highly Occupied Target (HOT) regions 
were significantly enriched in 15 or more factors (26). We combined overlapping peak regions 
across the 23 factors to annotate each of the 16,707 regions based on the maximum number of 
factors associated at any point within the region. To determine whether this would be expected 
by chance, we randomly re-assigned peak regions within the 16,707 regions bound by at least 1 
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factor. Using 1,000 iterations of random re-assignments, no regions associated with 15 or more 
factors were observed (Fig. S24). 
 
We used multiple experimental and computational approaches in order to confirm that 
enrichment for these regions was not simply an artifact of the ChIP-seq procedure. HOT regions 
were not significantly enriched when IgG antibody was used on transgenic worms, nor when 
GFP antibody was used on N2 worms lacking a GFP-tagged TF. These negative controls 
demonstrate that these regions are not simply a chromatin or GFP-antibody artifact (Fig. S25). 
As an additional negative control, we observed that DPY-27, which is known to bind 
preferentially to the X chromosome (49), is almost exclusively enriched at regions (including 
HOT regions) on the X chromosome and is not enriched at HOT regions on the autosomes (Fig. 
S26). As a positive control, we immunoprecipitated endogenous LIN-15B from wild-type worms 
using anti-LIN-15B antibody, and observed binding peaks in HOT regions similar to those 
observed using the GFP antibody on lin-15B::GFP worms (Fig. S25).  

Expression of Genes Associated with HOT Regions 
We used a stringent range to associated genes with HOT regions. Genes were associated with 
peak regions if they were within 1kb upstream or 500nt downstream of the TSS. For staged 
worm populations, gene expression levels for all C. elegans WS190 transcripts were measured 
by DCPM in RNA-seq data as described previously (4), and for genes with multiple annotated 
alternative transcripts, the average expression level of all transcripts was used. We additionally 
made use of two different types of tiling array data sets described in (9): tissue-specific 
embryonic expression measurements, performed by expression of GFP under tissue-specific 
promoters followed by FACS sorting, and tissue-enriched measurements, performed by tissue-
specific promoter-driven expression of epitope-tagged polyA binding protein followed by 
purification of RNA bound by the tagged polyA binding protein (the mRNA tagging method 
described in (50)). Tiling array data were analyzed by first computing the PM - MM value for 
each probe. Experiments were conducted in triplicate and quantile normalization was used to 
assure values from the three replicates are comparable. Data from the three replicates were 
combined using pseudomedian smoothing (2) over a window size of 110 bp, and transcript 
expression levels were calculated as the median signal value for all probes overlapping the 
transcript’s exonic regions by at least 50%. Only the longest isoform was used for genes with 
multiple transcripts. For inter-sample comparison, we normalized these expression levels by 
dividing the values by the slide median, i.e. the median of all probes on the array. In the staged 
population RNA-seq experiments (Fig. S27 for L1 stage worms; other stages not shown) as well 
as every tissue for both tissue-specific and tissue-enriched tiling array data (Fig. S28), HOT 
genes had significantly higher levels of expression than genes bound by 1-4 factors (all p<10-15 
by Kolmogorov-Smirnov test). 

Specific vs. HOT Target Comparison 
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HLH-1 is a muscle-specific TF with a known binding motif (CAGCTG) (51).  Motif enrichment 
was calculated by simple hexamer frequency counts, and p-values were calculated using a chi-
square test. Genes with muscle-enriched expression were obtained from (50). To compare all 
TFs, we made use of L2 intestine-enriched transcripts (52), adult germ-line enriched transcripts 
(53) and embryonic tissue-specific tiling arrays described above (9). To identify embryonic 
tissue-specific genes, each embryonic tissue-specific array was first linearly normalized to the 
embryonic reference array to correct for array-specific scaling effects. Next, for each gene in 
each tissue, we calculated a z-score for specificity: 
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Genes with ztissue>2 were deemed “tissue-specific”. In addition to HLH-1, we considered 
previously identified binding motifs for ELT-3 (GATAA (54)), MDL-1 (CACGTG (51)), and 
PHA-4 (T[AG]TT[TG][AG][CT] (55)). In all three cases, we observed a similar drop in motif 
enrichment between specific targets and HOT regions (data not shown). 

Essential Genes Comparison 
Essential genes were defined as genes having an RNAi phenotype of 100% larval arrest, 
embryonic lethality, or sterility in a genome-wide screen for RNAi knockdown phenotypes (56). 
Significance was calculated by a chi-square test.    

D.4. Identification of Conserved miRNA Binding Sites in 3’UTRs 
We used the PicTar algorithm (57) to identify conserved microRNA target sites within annotated 
3'UTRs from the aggregate transcript models (ag1003) (Supplement Table 11 
and (26). We applied the version of PicTar described in (58) with the slight modification that a 
perfect seed site if covering the first 5' base of the miRNA was required to match an adenosine at 
this positon. We used a non-redundant subset of 3'UTRs, considering only those which do not 
overlap any CDS in an alternative transcript isoform for the same gene, and excluding a small 
subset of transcripts (~4,500) for which we identified more than one putative ORF in different 
reading frames. We used 183 miRNAs, either annotated in miRBase14 (59) or newly identified 
from C. elegans embryos (40) using miRDeep version 2 (27, 28), and genome alignments 
between three (C. elegans, C. briggsae, and C. remanei) or five (also including C. brenneri and 
C. japonica) species. This set of predictions for the ag1003 transcript models are an alternative to 
our recently published predictions for the worm 3'UTRome (8), which use 3'UTRs for AceView 
(60) gene models. 
 
We also independently searched for perfect Watson-Crick complementary seed sites covering the 
first or second 5' miRNA heptamer which are prefectly conserved. These predictions should be 
identical to the 'TargetscanS' predictions (61) and, by definition, identical to the vast majority of 
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PicTar predictions. Indeed, a comparison of the results between the two algorithms revealed that 
PicTar identified 99% of seed sites predicted by TargetScan, and conversely, TargetScan 
identified 89% of seed sites predicted by PicTar (data not shown). The reasons for the additional 
PicTar predictions are (a) PicTar uses a more general definition of 'conserved seed site', allowing 
for evolutionary changes between the different heptamers in the same alignment, (b) PicTar also 
effectively locally realigns target site candidates to overcome alignment problems, and (c) PicTar 
also predicts imperfect, conserved seed sites if very significantly compensated by additional 
basepairings between the remainder of the miRNA and the mRNA. Previous independent 
comparisons of miRNA target prediction algorithms using other data sets have shown that 
TargetScan and PicTar are top performers in the field, and generally produce the highest overlap 
with experimentally determined sites ((62); reviewed in (63, 64). Compared to our earlier 
analysis of C. elegans 3'UTRs (58), our new prediction sets ((8) and this study) show a higher 
signal-to-noise ratio compared to synthetic miRNAs of similar composition (1.8-2.4 and 2.1-3.4 
for 3-way and 5-way alignments, respectively, using the method described in (57)). We attribute 
this to a combination of better multi-species genome alignments and exclusion of genomic 
sequence regions which are not supported by experimental evidence (previous predictions used 
up to 500nt downstream of the CDS when no annotated 3'UTR was available). 

D.5. Calculation of Tissue Specificity Score for TFs in the Hierarchical 
network 
Expression levels of all C. elegans genes at 8 different tissues at L2 stage were measured using 
tiling arrays. The tissues are defined as in Supplement Table 2. Tissue specificity score for a 
gene is calculate as follows:  

, 

where  is the ratio of the gene expression level in tissue i to its sum total expression level 

across all tissues, and is 1/8,  the fractional expression of a gene under a null model assuming 
uniform expression across tissues.  A higher tissue specificity score suggests more specific 
expression in a single or multiple tissues, whereas a score of zero suggests uniform expression.   

D.6. Calculation of Overrepresented Network Motifs 
In order to identify the patterns that are present in the integrated network with significantly 
higher frequency than expected by chance, we enumerated all the possible patterns with 3 nodes. 
The frequencies of these patterns in the real network were compared with those in 1,000 random 
networks. The random networks were generated by rewiring the real network, while keeping its 
topological statistics constant; i.e., keeping the same number of coding gene targets and the 
number of miRNA targets for a TF node, the number of regulatory TFs and targets for a miRNA 
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node, and the number of regulatory TFs and miRNAs for a gene node. For each pattern, a z-score 
was calculated as follows: 

 ,  
where Nreal and Nrand are the number of  corresponding patterns in the real network and in the 
random networks, respectively. A significant positive z-score indicates over-representation, 
whereas a significant negative one indicates under-representation of a pattern in the integrated 
network. The p-value for a z-score was calculated by referring to a standard normal distribution. 
For the network motif analysis, we only used the proximal targets (500bp upstream to 300bp 
downstream).  

E. More Details on Chromatin Organization  

E.1. Correlating Chromatin Features and TF Binding Signals 
The worm genome was divided into bins of 100 bp. For each bin, the average signal was 
computed for each chromatin feature and for each TF binding experiment. Consequently, each 
experiment is associated with a vector of signals. Correlations were computed as the pairwise 
Pearson correlations between these vectors. We also computed Spearman correlations and 
normal-score correlations between the vectors. The correlation patterns are similar for the three 
correlation functions, and we include only the results based on Pearson correlations.  

E.2. Machine Learning 
For each TF binding experiment, the bins which overlap with the binding peaks form the positive 
set. The same number of other bins were randomly sampled from the whole genome as the 
negative set. Half of the bins in the positive and negative sets were used as training examples to 
train support vector machine (SVM) models using default parameters in Weka (65). The other 
half was used to test the performance of the SVM models. Model accuracy was evaluted using 
ROCs, as well as the area under the ROC curves (AUROC). We also used precision-recall (PR) 
curves as a secondary measure, and arrived at the same general conclusions. Different feature 
sets were used in different configurations. Each of the single-feature models involves only one 
feature. The integrative model involves all features, and the stage-specific models involve only 
features from one development stage. 

Figure Legends for Supplement 
 

Fig. S1: ChIP-chip and ChIP-seq comparision  
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A. 2D distributions and pairwise correlations between Pol II ChIP-chip and ChIP-seq replicates 
with combined profiles at two developmental stages (early embryo, left and L4, right). The 
sample names are shown on the diagonal. In the lower triangular part of the panel, each blue dot 
represents the median signal levels of ChIP-chip (MA2C score) and ChIP-seq (sequence read 
count) within a 1kb-segment on the genome. The upper triangular part provides the correlation 
coefficient of each pair. 
B. The heatmap image represents pairwise correlations between ChIP-chip and ChIP-seq 
combined profiles at early embryo and L4 stages, and is hierarchically clustered by both rows 
and columns. It is shown that the variation between the two platforms at the same stage 
(correlation coefficient of about 0.7) is smaller than that between the two different stages of the 
same platform (correlation coefficient of 0.4-0.53). 
C. The venn diagrams show the overlap of the top 3000 Pol II binding sites identified by ChIP-
chip (blue circle) and ChIP-seq (red circle) in early embryo (left) and L4 (right). It can be seen 
that more than 2/3 of Pol II binding sites were commonly identified by the two platforms. 

Fig. S2: Correlation of RNA expression levels for Young Adult 
between RNA-seq and tiling array platforms   
Each point represents a gene. To account for multiple isoforms, a gene is here defined as the 
union of all exonic nucleotides. RNA-seq expression levels per gene were measured using 
RPKM, and tiling array levels were measured using the mean intensity of probes falling within 
exons. The genes in the upper left likely represent cross-hybridization. 

Fig. S3: Numbers of RNA-seq Reads  
Total reads along with numbers of uniquely and multiply aligned non-rDNA reads for each of 
the 19 C. elegans stages and samples. 

Fig. S4: Density plots of 20,051 genes in WormBase190  
Each line corresponds to a sequencing depth. The legend reports the number of mapped reads (in 
millions). The two peaks represent genes not expressed (left) and expressed (right) at each 
sequencing depth. Note that the number of non-expressed genes drops sharply at first as 
sequencing depth increases, then reaches a plateau. 

Fig. S5: Pair-wise comparison of the density plots 
Y-axis reports p-values of the Kolmogorov-Smirnov test as a function of depth of sequencing (x-
axis). The dotted line shows a p-value of 0.01. Higher p-values indicate no difference between 
the distributions. The plot shows that a sequencing depth between 13.4 and 16.8 million reads is 
sufficient to capture most expressed genes in whole animal samples. 

Fig. S6: Rate of gene discovery 



 21 

The number of genes with RPKM=0 are reported as a function of sequencing coverage. The 
equation reports the coefficients and the R2 of the best fitting exponential curve. The fitted curve 
is: Number of non-expressed genes = 8.5 x (depth of sequencing) -0.88 (R2=0.9044). 

Fig. S7: Number of features identified 
Number of features identified by stage as compared to features in WormBase (WS170) when the 
project began. The two right most bars represent the RNA-seq-only aggregate set and the 
aggregate integrated transcript set created from all available C. elegans transcriptome data. All 
features were clustered when within 25 bases of one another, e.g. if there were three different 
polyA sites within 25 bases of one another, they were counted as a single polyA site. 

Fig. S8: Number of confirmed splice junction over time  
This figure indicates the significant contribution of RNA-seq to annotating the worm genome. 
There were 11,467 splice junctions confirmed when the C. elegans full genomic sequence was 
first published (66). The first rise in 2003 was a result of the OST Project (67) and the remaining 
increases were a result of the modENCODE project (e.g. (4)). 

Fig. S9: Proportion of splice junctions confirmed by various methods 
The large overlap in splice junctions confirmed between RNA-seq, RT-PCR/RACE and mass-
spec (7) provide confidence in the methods used for identifying confirmed junctions by RNA-
seq.  

Fig. S10: Saturation of discovery of non-coding and coding RNAs with 
additional RNA-seq data sets 
We are presently utilizing a number of approaches to ncRNA discovery, and our initial efforts 
have revealed thousands of new ncRNAs from the C. elegans genome. As assays are performed 
under additional conditions, and as we develop and refine our computational methods of 
analysis, we expect to discover many thousands more non-coding RNAs. The saturation plot for 
novel ncRNAs (left) illustrates this point. In each experimental condition, the total length of 
ncRNAs expressed in the condition was determined using a combination of experimental and 
computational methods. When multiple conditions are considered together, the total length of 
ncRNAs depends on the set of conditions involved. The saturation plot displays that total length 
(y-axis) at different number of conditions (x-axis). At each point along the x-axis, all possible 
combinations of conditions are considered, and the distribution of total lengths is summarized by 
a box plot. The black line shows the slope of the curve connecting the averages at the end of the 
curve. The steepness of the curve suggests that more ncRNAs are expected to be discovered if 
additional conditions are considered. We also made the same saturation plot (on the right) for 
coding exonic regions. The detection of expressed exons tend to be saturated when additional 
experiments are added. 
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Fig. S11: Number of stages/samples where a given gene or splice 
junction is observed 
Most genes and splice junctions are represented in all 19 stages, with smaller peaks for those 
found in only one or two stages and samples. The peak at 2 for stages per splice junction in part 
results from the requirement that all novel splice junctions (novel is defined as not a part of 
WormBase170 predictions, which included WormBase, Twinscan and Genefinder predictions) 
occur in at least two different stages.  

Fig. S12: Expression profiles of developmental stage-specific genes  
High and low expression levels (normalized DCPMs) are shown in red and blue, respectively. 
Expression levels of each gene are normalized across the 7 developmental stages by subtracting 
the mean then dividing the standard deviation.  

Fig. S13: Expression profiles of the meta-genes for developmental 
stage-specific transcripts 
The expression level for a meta-gene was calculated by averaging the expression levels of all 
genes which are specific to a given developmental stage.   

Fig. S14: Enrichment of promoter motifs 
Enrichment of 24 EE-specific candidate motifs identified by the MEME algorithm in promoters 
of stage-specific genes. The –log(p-value) was calculated by comparing the occurrences of a 
motif in stage-specific transcripts relative to all the other transcripts, and then color-coded with 
red (indicating over-representation) or blue (indicating under-representation).  

Fig. S15: SOM clusters 
Reduced set of 25 SOM clusters displaying different developmental expression profiles, based 
on probabilistic inference of individual transcript levels using deepseq9. The X-axis is the 
following 15 stages in order: EmMalesHIM8, EE, LE, L1, LIN35, L2, L3, DauerEntryDAF2, 
DauerDAF2, DauerExitDAF2, L4, L4MALE, L4JK1107soma, YA, and AdultSPE9.  The Y-axis 
is the log2 of probabilistic read counts from deepSeq9. Solid lines represent mean transcript 
expression in each of 15 staged samples; dashed lines represent one standard deviation from the 
mean.  

Fig. S16: Number of genes and transcripts shared between pairs of 
SOM clusters 
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The size of each cluster is indicated in terms of genes (yellow, g=XX) or transcripts (green, 
t=XX). Cells are shaded by the Pearson Correlation Coefficient (PCC) between developmental 
expression profiles for each pair of clusters, calculated from their mean expression across the 15 
staged samples.  

Fig. S17: Isoform classes 
Classes of distinguishable isoform features within alternative transcripts for the same gene that 
fall into different SOM clusters with distinct developmental expression profiles. Numbers 
correspond to cases in which a single isoform falls into one SOM cluster, and one or more 
alternative isoforms fall into another cluster (see text for details).  

Fig. S18: Examples of different classes of alternate isoform 
expression identified from SOM clustering 
Ag1003 transcript models are displayed with wiggle plots from relevant stages using the 
Integrative Genomics Viewer (68). These plots represent 36-mer reads aligned without mismatch 
(trimmed up to 2 bases) and were calculated by the SHRiMP aligner v1.3 (69). 
A. Unique 5' UTRs of C23H3.7.T3 and C23H3.7.T4. C23H3.7.T3 is absent in early embryo and 
is co-expressed with C23H3.7.T4 in young adult. 
B. An alternative CDS exon is skipped in F26B1.2.T8 and included in F26B1.2.T9. F26B1.2.T9 
is more highly expressed in L4 than L2.   
C. Overlapping 3' UTR of F28C6.3.T2 and F28C6.3.T4.  F28C6.3.T4 is expressed at a much 
higher level in L4 than in young adult. 

Fig. S19: A Breakdown on How the Updated List of Worm 
Pseudogenes was Created  
The figure schematizes the workflow in updating the pseudogenes in WormBase, to arrive at 
current total of 1293 worm pseudogenes. Pseudogenes came from two sources: those already in 
WormBase annotations (right) and those identified by Pseudopipe (left). The initial overlap of 
1025 pseudogenes from these two sources was kept. The remaining subsets also kept are shown 
in red. These include 83 additional duplicated (DUP) and 90 additional processed (PSSD) 
pseudogenes identified by pseudopipe. They also include 95 pre-existing WormBase annotation 
not found by pseudopipe that were double-checked by the WormBase curators.  

Fig. S20: Binning of long TARs built from tiling arrays  
The TARs from tiling array data were built from the union of 41 samples (1). The minimum 
length of TAR is 100nt. Since long TARs could cover more than one type of sequence element, 
such as exons, introns, and UTRs, they were spliced into small windows of at most 150nt each, 
with adjacent windows having a 75nt overlap. Each bin was defined as intronic TAR, exonic 
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TAR or UTR depending on which annotation it overlaps (WormBase170 was used). Those small 
TARs which are less than 150nt are not spliced. 

Fig. S21: Transcription factor motif discovery  
A. Recovered motifs. Transcription factor ChIP-seq peak data sets were searched for enriched 
motifs as described in the text . Of the 23 data sets analyzed, enriched motifs were found in 22; 
however, only 8 transcription factors showed sufficient specificity to be accepted (see panels B 
and C for example).  
1- Also enriched in HOT regions. The fact that the CEH-14 motif is enriched in HOT regions 
either means that this TF binds specifically to HOT regions, or that this TF has a weak motif and 
that the observed motif is derived from another protein co-binding in HOT regions. Additional 
experiments will be necessary to decide between these two cases.  
2- Consistent with a previously published motif for the given TF.  

B. Example motif distribution analysis (BLMP-1)- Distribution of BLMP-1 motif 
“TTTCACTTT” was plotted relative to SPP-point-binding positions (single-base-pair genomic 
coordinates with highest likelihood for binding (70)) for BLMP-1. The motif occurrence 
distribution is Gaussian-like around BLMP-1 point binding positions  (black and yellow lines) 
while relatively evenly distributed over random upstream regions (red line). Black indicates high 
confidence peaks with SPP assigned FDR <0.01. Yellow indicates low confidence peaks with 
SPP assigned FDR >0.01 and <0.05. Red indicates random upstream regions. 
C. Example motif density analysis for BLMP-1. 200 base pairs flanking point binding positions 
for BLMP-1 were analyzed for density of BLMP-1 motif “TTTCACTTT” in occurrences per 
base pair. BLMP-1 peaks have significantly higher occurrences of the motif than any other 
transcription factor. Random upstream regions and HOT regions were also analyzed on a motif-
per-nucleotide scale and similarly show much lower motif density than what is found in BLMP-1 
peaks. 

Fig. S22: An example showing GEI-11 binding near three ncRNAs  
Four other factors (MAB-5, LIN-39, EGL-27, and PES-1) are also shown as controls. The signal 
for each TF, as well as for Pol II and input, plots the ChIP-seq raw read counts scaled based on 
total mapped reads. Pol II and input samples were from N2 worms; TF samples were from 
worms expressing the factor tagged with GFP. The value of tiling array ChIP-chip signal for 
H3K27ac and H3K4me are also shown in green. Raw reads of polyA-plus RNA-seq and small 
RNA-seq, as well as expression (log2 of signal) from total RNA tiling array signal are also 
shown.  The ncRNA annotations and protein annotations are from Refseq. 

Fig. S23: Co-occurrence of transcription factors 
Co-occurrence is counted if two TFs bind to the promoter region of same gene (2000 bp 
upstream to 300bp downstream of TSS), without considering the strength of binding. Genes 
targeted by HOT regions were removed before calculating the co-occurrence. The heat map 
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reflects the co-bound correlation of each pair of TFs at targeted gene loci, with red indicating 
more co-bound genes than would be expected by chance and blue, indicating less. TFs have been 
clustered along both axes based on the similarity of their bound targets with other factors. The 
same stage is annotated with the same color. The HOX genes are highlighted with orange color. 
A. Co-occupancy of transcription factor pairs at targeted coding genes. 
B. Co-occupancy of transcription factor pairs at targeted miRNAs.  

Fig. S24: Distribution of TF binding numbers 
Many regions show overlap of ChIP-seq binding sites for 23 factors. Red indicates the number of 
regions bound by 1 to 23 factors in ChIP-seq data. There are 16,707 genomic regions bound by 
at least 1 TF, and 304 regions bound by at least 15 factors. Black indicates the average number of 
regions bound in 1,000 randomized controls, with error bars indicating standard deviation. In 
randomized controls, an average of less than 1 region was bound by 12 or more factors, and no 
regions bound by 15 or more factors were observed. 

Fig. S25: Control experiments for HOT regions 
The x-axis plots the percentage of the 304 HOT regions which are significantly enriched in the 
various ChIP-seq controls. In order to verify that antibodies do not bind non-specifically to GFP-
tagged proteins, IgG negative control experiments were performed in two different transgenic 
worm lines expressing LIN-15B::GFP or EGL-27::GFP. In order to verify that GFP-specific 
antibody does not pull down any other proteins in C. elegans, GFP antibody negative controls 
were performed in wild-type worms at embryonic and L3 stages. As a positive control, LIN-15B 
antibody was used in wild-type N2 worms to immunoprecipitate endogenous LIN-15B. 

Fig. S26: DPY-27 only binds to HOT regions on the X chromosome  
The y-axis shows the number of HOT regions found on each chromosome. The set of all 304 
HOT regions and the 298 HOT regions that are bound by LIN-15B are evenly distributed across 
all 6 chromosomes (with chromosomes separated by color). In contrast, all 29 HOT regions 
bound by DPY-27 are on the X chromosome. DPY-27 regulates gene expression specifically on 
the X chromosome for dosage compensation (49) 

Fig. S27: Higher gene expression level in HOT regions in RNA-seq  
Genes adjacent to HOT regions have significantly (p < 10-30 by Kolmogorov-Smirnov test) 
higher expression in late embryonic (LE) worms than do genes located near just 1-4 bound 
factors. In red, expression level of genes with a HOT region within 1kb upstream or 500nt 
downstream of the TSS; in blue, expression level of genes proximal only to regions bound by 1-4 
factors. The histogram plots the frequency (y-axis) of genes with the listed RNA-seq expression 
levels in late embryonic worms (x-axis, measured as log10(depth of coverage per million reads)). 
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Fig. S28: Higher gene expression level in HOT regions in tiling arrays 
Genes adjacent to HOT regions have higher expression levels in tissue-enriched tiling arrays 
across all tissues assayed. In red, expression level of genes with a HOT region within 1kb 
upstream or 500nt downstream of the transcription start site; in blue, expression level of genes 
proximal only to regions bound by 1-4 factors. The histogram plots the median of normalized 
gene expression measurements (y-axis) of genes on the listed tiling array experiment (x-axis), 
with error bars indicating standard error of the mean. Data is further described in (9). For 
embryonic experiments (left), tissue-specific gene expression measurements were obtained from 
tiling arrays performed on FACS sorted cells expressing a tissue-specific GFP labeling. For post-
embryonic experiments (right), gene expression measurements were obtained from tiling arrays 
performed on samples that were tissue-enriched using the mRNA tagging method. In all 
experiments shown, genes adjacent to HOT regions are significantly shifted towards higher 
expression (p < 10-15 by Kolmogorov-Smirnov test). 

Fig. S29: HOT regions are broadly expressed 
Single-cell gene expression measurement of promoter transcriptional reporter constructs in L1 
worms from 3D confocal data stacks (data from (71)). The x-axis represents 363 specific cells 
present in the L1 worm, and the y-axis shows expression of 93 mCherry reporters, with the 
expression level of the mCherry reporter shown by the red scale bar. Promoters containing HOT 
regions (bound by 15 or more factors), and even promoters containing regions bound by 10-14 
factors, show broad expression across 363 cells in the L1 worm, whereas promoters lacking these 
regions show a variety of diverse tissue-specific expression patterns. Data is presented 
identically to Fig. 6C, and gene names are provided in addition to row label codes from Fig. 6C.  

Fig. S30: Pair-wise correlations of PHA-4 binding signal across 
different stages 
The union of all PHA-4 binding sites were merged together and then binned into 100nt windows. 
The raw reads of ChIP-seq data for each window were calculated and normalized over the 
respective input for each ChIP-seq experiment. The correlation coefficient of each pair of stages 
was then calculated. HOT regions were removed before merging the binding sites. 

Fig. S31: Examples of Pol II binding and expression   
Heatmap showing percentage of RNA Pol II binding and expression for isl-1 and pgp-2 and 
C15F1.2, during seven stages of the worm life cycle. For each transcript, RNA Pol II binding 
levels and gene expression levels increase in concert until the stage where both reach maximum 
levels.  In the following stages, the expression levels tend to drop at a faster rate than RNA Pol II 
binding.  These examples illustrate one scenario in which a change in gene expression in earlier 
stages can be predictive of a similar change in Pol II binding levels during later stages. The 
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heatmap is normalized independently along the columns, with the values representing the ratio of 
signal in a stage to the maximum signal observed. 

Fig. S32: Histone marks distribution over repetitive elements  
Five repetitive element classes were extracted from WormBase190. The region of the genome 
underneath each element was subdivided into 10 equal sized bins centered on the element. In 
addition, the 1 kb regions flanking each element were subdivided into an additional 20 100 bp 
bins. The mean z-scores for ChIP-chip chromatin marks from L3 larvae were then graphed 
across each bin. The histone marks from top to bottom are: H3K27ac, H3K36me2, H3K36me3, 
H3K4me2, H3K4me3, H3K27me3, H3K9me1, H3K9me2 and H3K9me3. 

Fig. S33: Promoters of chromosome X genes have higher GC content 
compared to autosomes 
A. Average GC content is plotted for chromosome X and autosomal genes centered at their 
transcription start sites(GC content is calculated within 25 bp upstream and downstream of each 
coordinate). A region between -250 to -50 shows a spike in GC content on chromsome X.  
B. Distribution of average GC content within this region is plotted. Chromosome X gene 
promoters have significantly higher GC content, as determined by a Wilcoxon rank sum test (p 
<2.2e-16). 

Fig. S34: Correlations between whole-genome transcription factor 
binding signals and chromatin features 
The Pearson correlation between the signals from each of the 27 transcription factor ChIP-seq 
experiments (rows) and 22 chromatin features (columns) across the whole genome are shown in 
a heatmap. 

Fig. S35: Machine learning procedure for modeling transcription 
factor binding peaks  
The C. elegans genome was divided into bins of 100 bp. Histone methylation and binding signals 
of RNA Pol II were used as features to distinguish between bins which intersect with the binding 
peaks from those which do not, using the machine learning method support vector machines 
(SVMs). Models were learned from the training portion of the data sets and evaluated on a 
separate testing portion. 

Fig. S36: Modeling accuracy of integrative models 
Each curve represents the accuracy of an integrative model involving all features together used to 
predict either the binding peaks from a TF binding experiment or HOT regions. 
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Fig. S37: Modeling accuracy of models involving either all features or 
individual features 
Each column corresponds to the feature(s) involved in constructing statistical models for either 
the binding peaks of the transcription factors or the HOT regions (represented by the rows). 
The receiver operator characteristic is a plot of true positive rate against false positive rate of a 
set of ranked predictions. If all the ground truth positives are ranked higher than the ground true 
negatives, the curve goes from the origin vertically up to the point (0, 1), and then horizontally to 
(1, 1). In this case, the area under the curve has the maximum value of 1. If all the ground truth 
negatives are ranked higher than the ground true positives, the area under the curve has the 
minimum value of 0. A random ranking has an expected area under the curve of 0.5. In general, a 
larger area under the curve indicates a higher consistency between the predictions and the ground 
truth. 

Fig. S38: Distinguishing binding peaks of different TFs  
Each bar shows the accuracy with which a model distinguishes the binding bins of a TF 
experiment from random binding bins of other TF experiments. The last column shows that the 
HOT regions can be accurately separated from other TF binding sites using the chromatin 
features. 

Fig. S39: Developmental stage-specific models 
The accuracy of models specific for individual develpmental stages (involving predictors only 
from that stage) are shown. For each TF, the heights of the three bars correspond to the 
accuracies of the models, involving predictors measured in (from left to right) embryos only, L3 
only, and both stages.  

Fig. S40: Combination of chromatin and sequence features  
Potential binding sites of HLH-1 were identified by using two known sequence motifs in Jaspar 
(72). Chromatin features were used to model general binding active regions (BAR+) which are 
not specific to any DNA-binding proteins. The prediction model assigns a probability value for 
each region to indicate its likelihood of being in BAR+. By varying the probability threshold, 
different sets of BAR+ regions were identified. At each threshold, three sets of regions were 
compared: all general binding active regions (BAR+), all regions with high motif scores 
(PWM+), and binding active regions with high motif scores (BAR+PWM+). 

Fig. S41: Coverage of evolutionarily constrained regions by genomic 
features 
From the six-way alignment of C. elegans, C. briggsae, C. brenneri, C. japonica, and P. 
pacificus, we identified the portion of the genome under evolutionary constraint as described in 
the main text. From this, we calculated the overlap with pre- and post-modENCODE functional 
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elements in order to determine the proportion of constrained regions that can be "explained" by 
known functional elements. The columns indicate the coverage of constrained regions (measured 
as a proportion of base pairs) for each type of functional element, and the blue line indicates the 
cumulative coverage. All WormBase annotations are taken from WS190, a database release that 
preceded importation of modENCODE data.  Element sets are as follows: WB-Conf-CDS: 
WormBase CDS annotations that are fully supported by experimental evidence; WB-3UTR: 
WormBase 3' UTRs; WB-5UTR: WormBase 5' UTRs; WB-Partial-CDS: WormBase CDS 
annotations that are partially supported by experimental evidence; ME-CDS: modENCODE CDS 
annotations; ME-3UTR: modENCODE 3' UTR annotations; ME-5UTR: modENCODE 5' UTR 
annotations; WB-Pred-CDS: predicted WormBase CDS (no experimental support); ncRNA: 
modENCODE noncoding RNA annotations; Pseudogene: modENCODE pseudogene 
annotations; ChIP-TF: modENCODE binding sites for 23 transcription factors; ChIP-Other: the 
union of modENCODE binding site peaks for chromatin modification factors HCP-3, LEM-2, 
MES-4 and HRG-1; ChIP-dosage-comp: the union of modENCODE binding site peaks for DPY-
27, DPY-28, MIX-1, SDC-2 and SDC-3. Because some TF factor binding sites are broad, such 
peaks were trimmed to be no wider than 250 bp when calculating their coverage. 

Fig. S42: Saturation of TF binding 
Saturation of the binding sites of 22 C. elegans transcription factors (including 6 stages for PHA-
4) over the WS190 genome with coding sequence bases and Pol II binding site bases removed. 
No more than 9% of the bases are covered by these factors. These experiments include: ALR1 
L2, BLMP L1, CEH14 L2, CEH30 LE, EGL5 L3, EGL27 L1, ELT3 L1, EOR1 L3, GEI11 L4, 
HLH1 EMB, LIN11 L2, LIN13 EMB, LIN15B L3, LIN39 L3, MAB5 L3, MDL1 L1, MEP1 
EMB, PES1 L4, PHA4 EMB, PHA4 L1, PHA4 L2, PHA4 LE, PHA4 stvL1, PHA4 YA, PQM1 
L3, SKN1 L1, and UNC130 L1.  

Supplement Files 
All the supplement files can be found at 
http://www.modencode.org/publications/integrative_worm_2010.  
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Supplement Tables  
Supplement Table 1 : C. elegans genes not identified as “transcribed” in 19 polyA 
RNA-seq samples 

Type Genome total Not covered % not found 

nuclear hormone receptors 85 21 24.7 

7TM/G-protein coupled receptor 1454 323 22.2 
math-(meprin-associated Traf 
homology) 62 9 14.5 

F-box 238 12 5 

Zinc Finger 236 4 1.7 
Stages and strains of worm RNA (polyA) sequenced include: embryonic him-8(e1489) (50% 
males), early embryos, late embryos, lin-35(n1745), L1, L1, L2, L3, dauer entry daf-
2(e1370), dauer daf-2(e1370), dauer exit daf-2(e1370), L4, L4 males, JK1107 L4 (no 
gonad) glp-1(q224),  young adults, aged adults (spe-9(hc88 )), adults exposed to 
Harposporium spp (tentative assignment), and adults exposed to S. marcescens 
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Supplement Table 2 : Develpmental stages and tissue samples of small RNA-seq and 
tiling array experiments.  

Developmental stages of small RNA-seq experiments 
Young adult males (23dC) 
Mixed Embryo 
mid-L1 20dC 4hrs post-L1 stage larvae 
mid-L2 20dC 14hrs post-L1 stage larvae 
mid-L3 20dC 25 hrs post-L1 stage larvae 
mid-L4 20dC 36hrs post-L1 stage larvae 
Young adult 20dC 48hrs post-L1 stage larvae 
Young adult (23dC DAY 0 post-L4 molt) 
Adult 23dC 12 days post-L4 stage larvae 
Adult 23dC 5 days post-L4 stage larvae 
Adult spe-9(hc88) 23dC 8 days post-L4 molt 
Developmental stages of tiling array experiments 
embryo A-class motor neurons 
embryo all cells reference 
embryo AVA neurons 
embryo body wall muscle  (v2) 
embryo coelomocytes 
embryo dopaminergic neurons 
embryo GABA motor neurons 
embryo germline precursor cells 
embryo hypodermal cells 
embryo intestine 
embryo panneural 
gonad from young adult 20dC 42hrs post-L1 N2 
L1 20dC 0hrs post-L1 N2 
L2 25dC 14hrs post-L1 N2 
L2 A-class neuron 
L2 body wall muscle 
L2 coelomocytes 
L2 excretory cell 
L2 GABA neurons 
L2 glutamate receptor expressing neurons 
L2 intestine 
L2 panneural 
L2 polyA enriched 20dC 14hrs post-L1 N2 
L2 reference (mockIP) 
L3 25dC 25hrs post-L1 N2 
L3-L4 dopaminergic neuron 
L3-L4 hypodermal cells 
L3-L4 PVD & OLL neurons 
L3-L4 reference (mockIP) 
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L4 25dC 36hrs post-L1 N2 
late embryo 20dC 6-12hrs post-fertilization N2 
male L4 25dC 36hrs post-L1 CB4689 
soma-only mid-L4 25dC 36hrs post-L1 JK1107 
young adult 25dC 42hrs post-L1 N2 
Young Adult Cephalic sheath (CEPsh) 
Young Adult reference (mockIP) 
embryo BAG neurons* 
embryo PVC neurons* 
embryo pharyngeal muscle* 
early embryo 20dC 0-4hrs post-fertilization* 
pathogen S marcescens 25dC 24hr exposure post-adulthood 
pathogen S marcescens 25dC 48hr exposure post-adulthood 
pathogen E faecalis 25dC 24hr exposure post-adulthood 
non-pathogen control 25dC 24hr exposure post-adulthood 
non-pathogen control 25dC 48hr exposure post-adulthood 
pathogen P luminscens 25dC 24hr exposure post-adulthood 
* Four samples were not included in ncRNA prediction and further 
analysis of ncRNAs because they were released after the ncRNA 
companion paper were submitted. 
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Supplement Table 3 : Summary of cell and stage specific tiling array results  
 

Feature class FDR Samples # of features 
 WS1991 

% of features 
WS1992 

Annotated exons (unique) of coding genes 
overlapping with nrTARs3 

 

cells & 
stages 

119,521 exons 87.1% (137,193) 

  

cells 116,929 exons 
 

  

stages 100,658 exons 
 

Annotated coding genes with exons overlapping 
with nrTARs 

 

cells & 
stages 

18,183 genes 91.3% (19,912) 

  

cells 18,049 genes 
 

  

stages 15,400 genes 
 

Exons of integrated transcript models (unique) 
overlapping with nrTARs 

 

cells & 
stages 

138,433 exons 87.8% (157,612) 

  

cells 135,654 exons 
 

  

stages 116,799 exons 
 

Integrated transcript models with exons 
overlapping with nrTARs 

 

cells & 
stages 

19,325 genes 88.8% (21,774) 

  

cells 19,173 genes 
 

  

stages 16,152 genes 
 

Gene models detected4   5% cells & 
stages 

17,452 genes 87.7% (19,912) 

 

5% cells 17,075 genes 
 

 

5% stages 15,822 genes 
 

Gene models detected (FDR-corrected)5 0.14% cells & 
stages 

14,279 genes 71.7% (19,912) 

 

0.17% cells 13,149 genes 
 

 

0.71% stages 13,713 genes 
 

Gene models differentially expressed (at least 2 
fold)6 

5% cells & 
stages 

13,320 genes 66.9 % (19,912) 

 

5% cells 10,598 genes 
 

 

5% stages 9,552 genes 
 

Gene models differentially expressed (at least 2 
fold) (FDR-corrected)7 

0.11% cells & 
stages 

11,299 genes 56.7 % (19,912) 

 

0.20% cells 7,983 genes 
 

 

0.24% stages 8,606 genes 
 

 
 



 34 

1 Protein-coding gene models are as described in WS199. Overlapping features were merged to produce a total of 
19,912 gene models. 
2 Experimental results were calculated for 19,181 genes on the Affymetrix C. elegans  1.0R Tiling Array with > 3 
nonrepetitve exon probes. % of features is based on the total # of genes in WS199 (19,912) which is substantially 
similar to WS190 (20,121). 
3 non-redundant Transcriptionally Active Regions (nrTARs): Contiguous stretch of nucleotides all of which are 
inclusive to a TAR detected in > 1 of the samples. 
4 The False Discovery Rate (FDR) of 5% was calculated for each sample independently and the total number of 
genes tabulated from the union of these results. 
5 Correction for potential accumulation of false positives arising from multiple testing. The FDR of each sample 
(5%) was divided by the cumulative number of samples for each category considered: cells & stages = 37; cells = 
30; stages = 7. 
6 The False Discovery Rate (FDR) of 5% was calculated for each independent comparison and the total number of 
genes tabulated from the union of these results. 
7 Correction for accumulation of false positives arising from multiple testing. The FDR of each sample (5%) was 
divided by the cumulative number of comparisons for each category considered: cells & stages = 46; cells = 25; 
stages = 21. (see supplemental methods for this table) 
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Supplement Table 4 : Different types of known ncRNAs in the gold standard set  

Type  Number  
rRNA  19  
scRNA  1  
snRNA  94  
snlRNA  4  
snoRNA  139  
tRNA*  630  
miRNA  174  
Total  1061  
 The miRNAs are collected from miRBase 14, 
and other ncRNAs are collected from 
WormBase 200.  
*24 tRNAs are from Mitochondria. 
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Supplement Table 5 : Annotated regions used for the training of machine learning 
methods – tiling array TARs  

   Transcribed regions overlapped with confirmed annotations  

(Training Set)  
   CDS  

97.4%a  

UTR  

86.7%a  

known ncRNAd  

58.9%a  

Total number of bases  
5,117,511  

(9,714,480)b  

2,682,448  

(7,498,856)b  

51,928  

(181,034)b  
Total number of 
windows  

51,721  

(14,230) b  

27,084  

(9,854) b  

489  

(225) b  
Number of windows with 
known 2” structurec  

318  

(183) b  

320  

(201) b  

305  

(160) b  
a Fraction of annotated elements overlapped with tiling array TARs  

b Values in the parenthesis are counted for the TARs, from which the fragmented windows are derived.  

c Predicted with RNA secondary structure models from Rfam  

d This is just the gold standard set and doesn't include any unconfirmed ones. Only 10% of known 
ncRNA were sampled because of large number of annotated tRNAs in the gold standard set.  
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Supplement Table 6 : Performance of our integrated method on tiling array TARsa with 
three different ways to define element classes in the gold-standard set  

Class definition 1  Class definition 2  Class definition 3  
 Element class  AUC  Element class  AUC  Element class  AUC  
ncRNA  0.9718  ncRNA  0.9246  ncRNA  0.9418  
Coding exon  0.9718  Coding exon  0.7485  Coding exon  0.7361  
      3’ UTR  0.7448  5’ and 3’ UTR  0.7315  
aThe minimum length of a TAR is 100nt. Large TARs are binned into 
100nt windows with a step size of 75nt.  
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Supplement Table 7 : Annotated and novel tiling array TARs going into 21K-set of 
ncRNAs  

   Transcribed regions overlapped with  

annotated exons or known ncRNA  

(Confirmed and predicted)  

Novel transcribed regions  

   Exon  

(81.3%) a  

known ncRNA  

(13.1%) a  
CDS-like b  UTR-like b  ncRNA-like b  

Total number of bases  
32,744,074  

(33,532,732) c  

265,250  

(640,719) c  

45,208  

(134,041) c  

368,771  

(1,048,017) c  

4,352,048  

(6,503,326) c  

Total number of windows  
396,551  

(77,131) c  

2,547  

(1,331) c  

441  

(194) c  

3,294  

(1,983) c  

45,913  

(21,521) c  
Number of windows  

with known secondary 
structure) d  

7,314  

(3,988) c  

961  

(519) c  

26  

(19) c  

152  

(113) c  

3,537  

(2,083) c  
a Fraction of annotated elements overlapped with tiling array TARs.  

b In the prediction, if the probability of being ncRNA is larger than 0.009 but less than 0.297, it is ncRNA-like; if the 
probability of being a UTR is larger than 0.297 or less than 0.692, it is UTR-like; otherwise, if the probability of 
being CDS is larger than 0.692, it is CDS-like. The cut-offs are determined from the ROC curves.  

c The long TARs are fragmented into small windows, and values in the parenthesis are counted for the original 
TARs.  

d Secondary structure is predicted from Rfam/INFERNAL.  
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Supplement Table 8 : Total mapped reads, numbers of peaks bound by each of 23 
factors (22 TFs and one dosage compensation factor, 28 experiments in total) from 
ChIP-seq, and numbers of targeted coding and non-coding genes.  

   # of Peaks # of Targeted 
Coding Genes 

# of Targeted 
ncRNAs # of Total Mapped Reads 

   Proximal 
to TSS  

Distal to 
TSS  Unassigned  Targets  Targets 

(extended)  Targets  Targets 
(extended) GFP  Input  

ALR-1_L2  737  470  940  908  468  23  21   3,746,542   2,506,542  
BLMP-1_L1  2254  1485  2361  2493  1218  80  34   13,699,035   7,832,710  
CEH-14_L2  719  211  240  852  234  56  9   4,369,374   1,124,270  
CEH-30_LE  895  320  325  989  358  153  12   6,915,024   6,288,570  
EGL-27_L1  401  222  302  394  231  92  6   3,402,816   2,862,812  
EGL-5_L3  607  375  735  698  392  58  10   2,970,537   1,861,526  
ELT-3_L1  1158  629  953  1309  580  49  21   5,558,439   6,612,443  
EOR-1_L3  1956  834  1095  2210  767  205  22   2,386,942   3,327,484  
GEI1-1_L4  230  75  184  167  73  116  6   2,744,559   4,498,845  
HLH-1_MxE  436  329  449  449  343  61  15   4,052,296   2,488,302  
LIN1-1_L2  365  110  117  423  117  52  6   2,942,539   4,563,448  
LIN1-3_MxE  1018  306  285  1193  324  132  10   5,108,200   9,056,899  
LIN-15B_L3  1827  506  519  2236  514  156  20   2,024,367   6,045,335  
LIN-39_L3  1197  709  1362  1290  656  147  19   3,399,898   1,993,494  
MAB-5_L3  675  307  478  762  333  74  8   3,517,148   3,568,848  
MDL-1_L1  2501  1058  1393  2686  918  330  18   4,134,371   4,264,998  
MEP-1_MxE  1716  519  629  1985  525  210  17   4,239,180   5,082,534  
PES-1_L4  1718  628  914  1990  607  217  28   3,417,784   2,630,081  
PHA-4_MxE  2185  920  1259  2439  824  253  32   7,719,682   9,994,939  
PHA-4_L1  2333  1264  1866  2592  1111  179  39   15,222,883   11,556,011  
PHA-4_L2  1927  924  1300  2210  823  139  30   4,593,131   2,284,558  
PHA-4_LE  2609  1169  1655  2907  1003  278  45   4,574,629   6,295,331  
PHA-4_StvL1  1263  726  1112  1438  684  78  28   17,845,198   26,819,222  
PHA-4_YA  233  111  207  259  114  37  9   5,123,545   10,555,219  
PQM-1_L3  1242  724  1001  1253  616  86  28   2,626,971   6,505,184  
SKN-1_L1  1751  586  719  1987  598  232  19   4,517,511   2,474,805  
UNC-130_L1  284  117  206  333  125  36  3   3,174,776   5,312,775  
DPY-27_MxE*  123  -  -  - -  - 2,074,238 7,578,449 
The peaks are overlapped from two replicas, and determined by Peakseq (q value <= 0.001). A proximal peak is defined 
as 500 bp upstream or 300 bp downstream of transcription start site (TSS) of a gene. This is used by default for the 
following analysis of TF targets. If a binding peak is located within 501-2000 bp upstream of the TSS sites, it is a distal 
peak. The numbers of extended targets bound by distal peaks are also reported here. The rest of the peaks are not assigned 
to any genes, because it is more than 2000 nt away from any TSS sites.The promoter and start regions of 20,069 protein-
coding genes (derived from 27,310 coding transcripts) were used to map the targeted genes. 1,061 annotated ncRNAs 
were collected from Wormbase 200 and miRBase 14. 
*Dosage compensation factor. No distance to TSS is calculated. 
MxE: mixed embryo; LE: late embryo; StvL1: starved L1 YA: young adult  
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Supplement Table 9 : GO analysis of genes associated with HOT regions  

 
GO ID Name P-value Sample 

frequency 
Background 

frequency 
Genes 

0040007 growth 1.49E-19 82/153 (53.6%) 2845/15340 
(18.5%) 

rps-22 rps-12 Y87G2A.1 hsp-1 
rps-25 lin-54 rps-28 F36A2.7 

rps-24 pfd-1 dpy-23 Y82E9BR.3 
glit-1 vps-32.1xbx-5 sys-1 rpl-5 

wrt-5 rpl-43 R11D1.9 
Y65B4BR.5 K12H4.5 

Y49A3A.1 Y71H2AM.5 rps-1 
K10D2.5 puf-9 taf-4rpl-3 hsr-9 

eif-3.B epc-1 F17C11.9 
W04A4.5 mei-2 K04G7.1 rps-30 

ash-2 wip-1 H28O16.1 
Y48A6B.3 ZK550.3cco-2 rpl-13 
his-37 mbk-1 set-16 vha-8 kbp-4 
cap-2 nipi-3 C34C12.2 F48C1.4 
pbs-2 sor-1 dpm-3 T23F11.1eft-
4 rpl-6 rpl-7 ekl-4 rpl-32 rpl-22 
E02D9.1 emo-1 atad-3 nuo-1 

LLC1.3 cct-1 Y51H4A.15 cco-1 
rpn-3 rps-26rpl-24.1 rpl-14 prp-8 
mdt-19 rpl-35 rfc-4 mdt-26 htz-1 

eft-2 

0009792 

embryo 
development 

ending in birth 
or egg 

hatching 

1.67E-17 82/153 (53.6%) 3054/15340 
(19.9%) 

rps-22 rps-12 cbp-1 atx-2 hsp-
1 rps-25 lin-

54 F36A2.7 F40F11.2 pfd-
1 dpy-23 Y82E9BR.3 vps-

32.1 sys-1 rpl-5rpl-
43 R11D1.9 Y65B4BR.5 K12H
4.5 Y49A3A.1 T08B2.11 Y71H

2AM.5 rps-1 taf-4 rpl-3 eif-
3.B epc-

1 F17C11.9W04A4.5 mei-
2 K04G7.1 ile-2 daf-21 wwp-
1 ash-2 wip-1 H28O16.1 hsp-
60 ZK550.3 klc-1 mdl-1 vig-

1 cco-2rpl-13 his-37 pqn-51 set-
16 cls-2 tre-1 vha-8 kbp-4 cap-

2 F25E2.2 cpt-2 nipi-
3 F48C1.4 let-268 pbs-2 eft-
4rpl-6 rpl-7 ekl-4 rpl-22 dnj-

11 emo-1 atad-3 nuo-
1 LLC1.3 cct-1 Y51H4A.15 cco-

1 rpn-3 rps-26 rpl-24.1 rpl-
14 prp-8 mdt-19 rpl-35 rfc-

4 mdt-26 htz-1 eft-2 

0005737 cytoplasm 7.43E-15 47/153 (30.7%) 1130/15340 
(7.4%) 

rps-22 rps-12 cbp-1 atx-2 hsp-
1 egl-30 trap-3 rps-28 rps-

24 ddp-1 pfd-1 dpy-23 sys-1 rpl-
5 rpl-

43 R11D1.9Y71H2AM.5 rps-
1 puf-9 rpl-3 ain-

1 F17C11.9 rps-30 daf-21 wwp-
1 hsp-60 eat-16 deb-1 rpl-13 cls-
2 vha-8 tra-4cap-2 unc-108 let-
268 eft-4 rpl-6 rpl-7 rpl-32 rpl-

22 nuo-1 LLC1.3 cco-1 rps-
26 rpl-24.1 rpl-14 rpl-35 

0005840 ribosome 1.65E-13 19/153 (12.4%) 141/15340 
(0.9%) 

rps-22 rps-12 rps-28 rps-24 rpl-
5 rpl-43 R11D1.9 rps-1 rpl-

3 rps-30 rpl-13 rpl-6 rpl-7 rpl-
32 rpl-22 rps-26 rpl-24.1 rpl-

14 rpl-35 
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 Supplement Table 10 : Expression correlation of tanscription factors with target genes 
and non-target genes. 

TF Target non-Target Z-score P-value 
ALR-1 -0.007457 -0.008889 0.129717 0.896799 
BLMP-1 -0.066699 -0.041505 -2.489284 0.012836 
CEH-14 -0.096922 0.006595 -11.395537 0 
EGL-27 0.128903 -0.034187 12.274861 0 
EGL-5 0.0441 0.007088 5.185788 0 
ELT-3 0.014695 -0.019066 3.251677 0.001165 
EOR-1 0.133573 -0.042516 21.571089 0 
GEI-11 0.068925 -0.005121 2.314903 0.021352 
LIN-11 -0.081399 -0.048996 -2.416469 0.015807 
LIN-15B 0.132488 -0.047239 21.460631 0 
LIN-39 0.072205 -0.013786 11.372508 0 
MAB-5 0.026751 0.009732 1.416596 0.156752 
MDL-1 -0.0611 0.037063 -17.003577 0 
PES-1 0.195083 -0.037515 20.789856 0 
PHA-4 0.016003 -0.052655 16.739494 0 
PQM-1 0.312876 0.016214 32.681676 0 
SKN-1 0.090011 -0.017028 29.322469 0 
UNC-130 -0.080614 -0.028788 -1.698375 0.090283 
For each TF, the Pearson correlation coefficents of the expression level of the TF with those of its target 
genes and non-target genes were calculated across the 7 developmental stage time aourse. The 
significance of difference between target and non-target genes were calculated using t-test.   
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Supplement Table 11 : Overview of PicTar-predicted miRNA target sites within 3'UTRs 
of the ag1003 transcript set (see text for details).  

 3 species conservation  5 species conservation  
Number of miRNAs analyzed  183  183  
Number of 3'UTRs analyzed  25,539  25,539  
Number of genes analyzed  14,519  14,519  
Number of target sites detected  20,427  8,810  
Number of 3'UTRs with target sites  4,866  2,406  
Number of genes with target sites  2,349  1,162  
Number of miRNAs that target a 3'UTR  182  178  
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Supplement Table 12 : Overlap of 3.4 Mb of residual constrained blocks with various 
genomic elements. 
 
 
Genomic elements observed base pair 

overlap 
expected by GSC 
simulation 

p-value 

Introns 0.49 0.35 1e-34 
Intra-genic regions 0.26 0.16 1e-34 
1000 bp upstream of 
gene TSS 

0.19 0.18 1e-6 

1000 bp 
downstream genic 
regions 

0.19 0.25 1e-15 
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