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FREE ENERGY

Figure 1. Schematic sketch of the free energy (or en-
ergy) profile corresponding to the folded region in the
conformational space of a protein molecule. The sketch
is used to illustrate the content of the metastability hy-
pothesis. The various minima are separated by bottlenecks
of differing amplitude such that the transition from one
to another is unlikely to occur on the time scale of the
folding process. The typical time scale for the folding pro-
cess ranges from milliseconds to seconds. The particular
minimum into which the protein falls depends on the ini-
tial condition. For example, in this figure the initial con-
figurations of the protein marked by { xxx } map onto the
minimum labeled 6.
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Molecular Dynamics: Equations of Motion
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Coupled 2nd order
Diff. Eq.

How are they coupled?



INTERACTION TYPE
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FUNCTIONAL FORM

Vpa(r)= 4¢,[(o/r)'2-(o/r)®]

V()= 4g; [(0/r)124(0/r)8] “
€, =23¢, (a=LorB)

Vyo(r)= 48, (0/r)!2

V(0)=1/2k, (0-6,)?

kg= 20g,/ (rad)’; 0,= 105

(i,), k& N)

V(¢)=A (1+cos ¢) + B (1+cos 3¢)
A= B=1.2¢,

G,j,=N
k, 1,# N)
V(¢)= B (1+cos 39)
B= 0.2€h

; (1,5, k=N)

Figure 2. A sketch of the various interactions that are
allowed in our model. The associated functional form of
the potential and the parameters are also provided.
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(iv) Bond length potential



Pair Forces: Lennard-Jones Interactions
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‘Long-range interactions’
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Bond Angle Potential
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FIGURE 2 The variation of the N-C*C’ backbone

bond angle in ALA in ¢(N-C*)/¢(C*-C’) space. The val- _
ues plotted (in degrees) are relative to the value (105.6°) Fb
of N-C*-C’ at (¢ = —165°, ¥ = —165°). They were ob- Jj
tained by HF/4-21G ab initio geometry optimizations at

constant values of ¢ and ¢, forming a 30° grid in the re-

gion —180° < ¢ < +180°and —180° <y < +180°.
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Dihedral Angle Potential
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Bond Stretch Potential
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Equations of Motion
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Constant Energy vs. Constant Temperature
(velocity rescaling, Langevin/Nose-Hoover thermostats)



Collapsed Structure

T,=5¢,; fast quench; (R /0)*= 5.48
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Native State

Ty=¢,; slow quench; (R /0)*= 7.78
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Figure 3. Typical 8-barrel structure of the chain below
the unfolding-folding transition temperature. The con-
figurations were obtained by a process of slow cooling.
The nature of the various residues for this chain consisting
of 46 beads is shown by the various symbols.
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Total Potential Energy
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Simulated Annealing Slowly Cooled Quench from high T

Figure 4. Spectrum of energies of the various quench
structures obtained using several simulation techniques.
The explanation of the three columns is given in the text.
T is the temperature. 17



Radius of Gyration
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Figure 5. A plot of the radius of gyration ( Ri) as a
function of temperature for the n = 46 case. The solid line
is drawn by smoothly connecting all the points. The tran-
sition from an extended to a compact structure is at T¥

~ 0.65.
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Reliable Folding at Low Rate
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