What are proteins?

•Proteins are important; e.g. for catalyzing and regulating biochemical reactions, transporting molecules, ...

•Linear polymer chain composed of tens (peptides) to thousands (proteins) of monomers

- •Monomers are 20 naturally occurring amino acids
- •Different proteins have different amino acid sequences
- •Structureless, extended unfolded state
- •Compact, 'unique' native folded state (with secondary and tertiary structure) required for biological function
- •Sequence determines protein structure (or lack thereof)
- •Proteins unfold or denature with increasing temperature or chemical denaturants

Amino Acids I

Side chains differentiate amino acid repeat units
Peptide bonds link residues into polypeptides

Amino Acids II

The Protein Folding Problem:

What is 'unique' folded 3D structure of a protein based on its amino acidsequence?Sequence \rightarrow Structure

Lys-Asn-Val-Arg-Ser-Lys-Val-Gly-Ser-Thr-Glu-Asn-Ile-Lys- His-Gln-Pro- Gly-Gly-Gly-...

Driving Forces

•Folding: hydrophobicity, hydrogen bonding, van der Waals interactions, ...

•Unfolding: increase in conformational entropy, electric charge... Hydrophobicity index

	1	At pH 2*		At pH 7'	
		Very Hydrophobic			
	H (hydrophobic)	Leu	100	Phe	100
		lle	100	lle	99
		Phe	92	Trp	97
		Trp	84	Leu	97
Inside		Val	79	Val	76
		Met	74	Met	74
		Hydrophobic			
		Cvs	52	Tvr	63
		Tyr	49	Cys	49
		Ála	47	Ala	41
	P (polar)	Neutral			
outside		Thr	13	Thr	13
		Glu	8	His	8
		Gly	0	Gly	0
		Ser	-7	Ser	-5
		Gln	-18	Gln	-10
		Asp	-18		
		Hydrophilic			
		Arg	-26	Arg	-14
		Lys	-37	Lys	-23
		Asn	-41	Asn	-28
		His	-42	Glu	-31
		Pro	-46	Pro	-46 (used pH 2)
				Asp	-55
		pH 2 values: Normalized	from Sereda et al., J. Chrom. 676:	139-153 (1994).	
	↓	pH 7 values: Monera et a	al., J. Pept. Sci. 1: 319-329 (1995).		

 k_bT 5-12 k_bT > 150 k_bT Van der Waals interactions – hydrogen bonds – covalent bonds

Secondary Structure: Loops, α -helices, β -strands/sheets

•Right-handed; three turns

•Vertical hydrogen bonds between NH₂ (teal/white) backbone group and C=O (grey/red) backbone group four residues earlier in sequence

Side chains (R) on outside; point upwards toward NH₂
Each amino acid corresponds to 100°, 1.5Å, 3.6

amino acids per turn

•(φ,ψ)=(-60°,-45°)

• α -helix propensities: Met, Ala, Leu, Glu

•5-10 residues; peptide backbones fully extended
•NH (blue/white) of one strand hydrogen-bonded to C=O (black/red) of another strand

 $\bullet C_{\alpha}$,side chains (yellow) on adjacent strands aligned; side chains along single strand alternate up and down

$$(\phi,\psi)=(-135^{\circ},135^{\circ})$$

•β-strand propensities:Val,Thr,Tyr,Trp,

Phe, lle

Bond Lengths and Angles

Leu

Backbonde Dihedral Angles

Ramachandran Plot: Determining Steric Clashes

G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, "Stereochemistry of polypeptide chain Configurations," J. Mol. Biol. 7 (1963) 95.

$$φ: C'^{i-1}NC_{\alpha}C'$$

$$\psi: NC_{\alpha}C'N^{i+1}$$

$$\omega_{i}:C^{i-1}{}_{\alpha}C'^{i-1}NC_{\alpha}$$

$$\omega_{2}:C_{\alpha}C'N^{i+1}C^{i+1}{}_{\alpha}$$

Backbone dihedral angles from PDB

Figure 1: Stick representation of an alanyl dipeptide mimetic. Atom types are color-coded: carbon=pink, nitrogen=blue, oxygen=red, hydrogen=white. A: The backbone dihedral angles ϕ and ψ and the bond angle τ are indicated. B: $\tau = 105^{\circ}$, $\phi = -90^{\circ}$, $\psi = 0^{\circ}$ (i.e. bridge region values of ϕ and ψ). Blue-shaded spheres indicate steric overlap between mainchain nitrogens for this value of τ . C: $\tau = 115^{\circ}$, $\phi = -90^{\circ}$, $\psi = 0^{\circ}$ (i.e. bridge region values of ϕ and ψ). Blue-shaded spheres indicate storic overlap between mainchain nitrogens for this value of τ .

Figure 2: Ramachandran plots of allowed ϕ/ψ combinations for 3 values of τ [2]. The solid red lines enclose the 'normally allowed' ϕ/ψ combinations and the dashed blue line indicates the 'outer limit'.

Side-Chain Dihedral Angles

χ₄: Lys, Arg

 χ_5 :Arg

Side chain: C_{α} -CH₂-CH₂-CH₂-CH₂-CH₂-NH₃ Use NC_{α}C_{β}C_{γ}C_{δ}C_{ϵ}N_{ζ} to define $\chi_1, \chi_2, \chi_3, \chi_4$

Side Chain Dihedral Angles

Sidechain Dihedral Angle Distributions for Leu

PDB

Folding Transition

T<T_m

 $T>T_m$

Why do proteins fold (correctly & rapidly)??

Levinthal's paradox:

For a protein with N amino acids, number of backbone conformations/minima

 $N_c \sim \mu^{2N}$ $\mu = \#$ allowed dihedral angles

How does a protein find the global optimum w/o global search? Proteins fold much faster.

$$\begin{split} N_c &\sim 3^{200} \sim 10^{95} \\ \tau_{fold} &\sim N_c \ \tau_{sample} \ \sim 10^{83} \ s \ vs \ \tau_{fold} \ \sim 10^{-6} - 10^{-3} \ s \\ \tau_{universe} \ \sim 10^{17} \ s \ 21 \end{split}$$

Roughness of Energy Landscape

23