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Next-‐Gen	  Sequencing	  as	  Signal	  Data	  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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ü  Map	  reads	  (red)	  to	  the	  genome.	  	  Whole	  pieces	  of	  DNA	  
are	  black.	  

ü  Count	  #	  of	  reads	  mapping	  to	  each	  DNA	  base	  à	  signal	  
Rozowsky	  et	  al.	  2009	  Nature	  Biotech	  
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Outline	  
•  Read	  mapping:	  CreaGng	  signal	  map	  
•  Finding	  enriched	  regions	  
–  CHIP-‐seq:	  peaks	  of	  protein	  binding	  

	  
•  RNA-‐seq:	  from	  enrichment	  to	  transcript	  
quanGficaGon	  

•  ApplicaGon:	  PredicHng	  gene	  expression	  from	  
transcripGon	  factor	  and	  histone	  modificaGon	  
binding	  
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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Read	  mapping	  

•  Problem:	  match	  up	  to	  a	  billion	  short	  sequence	  
reads	  to	  the	  genome	  

•  Need	  sequence	  alignment	  algorithm	  faster	  
than	  BLAST	  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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Read	  mapping	  (sequence	  alignment)	  

•  Dynamic	  programming	  
– OpGmal,	  but	  SLOW	  

•  BLAST	  
– Searches	  primarily	  for	  close	  matches,	  sGll	  too	  slow	  
for	  high	  throughput	  sequence	  read	  mapping	  

•  Read	  mapping	  
– Only	  want	  very	  close	  matches,	  must	  be	  super	  fast	  
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Index-‐based	  short	  read	  mappers	  

Trapnell	  and	  Salzberg	  2009,	  Slide	  adapted	  from	  Ray	  Auerbach	  

•  Similar	  to	  BLAST	  
•  Map	  all	  genomic	  
locaGons	  of	  all	  
possible	  short	  
sequences	  in	  a	  hash	  
table	  

•  Check	  if	  read	  
subsequences	  map	  to	  
adjacent	  locaGons	  in	  
the	  genome,	  allowing	  
for	  up	  to	  1	  or	  2	  
mismatches.	  

•  Very	  memory	  
intensive!	  
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Read	  Alignment	  using	  Burrows-‐
Wheeler	  Transform	  

•  Used	  in	  BowGe,	  the	  current	  most	  widely	  used	  read	  aligner	  
•  Described	  in	  Coursera	  course:	  BioinformaGcs	  Algorithms	  (part	  1,	  week	  10)	  

Trapnell	  and	  Salzberg	  2009,	  Slide	  adapted	  from	  Ray	  Auerbach	  
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Read	  mapping	  issues	  

•  MulGple	  mapping	  
•  Unmapped	  reads	  due	  to	  sequencing	  errors	  
•  VERY	  computaGonally	  expensive	  
– Remapping	  data	  from	  The	  Cancer	  Genome	  Atlas	  
consorGum	  would	  take	  6	  CPU	  years1	  

•  Current	  methods	  use	  heurisGcs,	  and	  are	  not	  
100%	  accurate	  

•  These	  are	  open	  problems	  

1hNps://twiNer.com/markgerstein/status/396658032169742336	  
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FINDING	  ENRICHED	  REGIONS:	  CHIP-‐
SEQ	  DATA	  ANALYSIS	  

Nature Reviews | Genetics
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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CHIP-‐seq	  Data	  

Basic	  interpretaGon:	  Signal	  map	  to	  represents	  binding	  profile	  
of	  protein	  to	  DNA	  

	  
How	  do	  we	  idenGfy	  binding	  sites	  from	  CHIP-‐seq	  signal	  

“peaks”?	  
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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“Naïve”	  CHIP-‐seq	  analysis	  

•  Background	  assumpGon:	  all	  sequence	  reads	  map	  to	  
random	  locaGons	  within	  the	  genome	  

•  Divide	  genome	  into	  bins,	  distribuGon	  of	  expected	  
frequencies	  of	  reads/bin	  is	  described	  by	  the	  
Poisson	  distribuGon.	  

•  Assign	  p-‐value	  based	  on	  Poisson	  distribuGon	  for	  
each	  bin	  based	  on	  #	  of	  reads	  

Rozowsky	  et	  al.	  2009	  Nature	  Biotech,	  Park	  2009	  Nature	  Reviews	  Gene4cs	  
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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Is	  a	  Poisson	  background	  reasonable	  for	  
CHIP-‐seq	  data?	  

•  “Input”	  is	  from	  a	  CHIP-‐seq	  experiment	  using	  an	  anGbody	  for	  a	  non-‐
DNA	  binding	  protein	  

ENCODE	  NF-‐Kb	  CHIP-‐seq	  data	  

Input	   Poisson	  DistribuHon	  

15	  



Is	  a	  Poisson	  background	  reasonable	  for	  
CHIP-‐seq	  data?	  

•  “Input”	  experiment:	  Do	  CHIP-‐seq	  using	  an	  
anGbody	  for	  a	  protein	  that	  doesn’t	  bind	  DNA	  

•  There	  are	  also	  “peaks”	  in	  the	  input!	  
Park	  2009	  Nature	  Reviews	  Gene4cs	  
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Peakseq	  

Rozowsky	  et	  al.	  2009	  Nature	  Biotech	  
Gerstein	  Lab	  
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Determining	  protein	  binding	  sites	  by	  
comparing	  CHIP-‐seq	  data	  with	  input	  

Input	  normalizaGon/	  
bias	  correcGon	  

Comparison	  of	  sample	  vs.	  input	  

Candidate	  binding	  site	  
	  idenGficaGon	  

18	  



Candidate	  binding	  site	  idenGficaGon	  

•  Use	  Poisson	  distribuGon	  as	  background,	  as	  in	  the	  
“naïve”	  analysis	  discussed	  earlier	  

•  Normalize	  read	  counts	  for	  mappability	  
(uniqueness)	  of	  genomic	  regions	  

•  Use	  large	  bin	  size,	  finer	  resoluGon	  analysis	  later	  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 
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Signal map

• Simulate each segment
• Determine a threshold 
satisfying the desired initial 
false discovery rate
• Use the threshold to 
identify potential target sites

2. First pass: determining potential binding regions by comparison to simulation
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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Input	  normalizaGon	  

ü Normalize	  based	  on	  slope	  of	  least	  squares	  regression	  line.	  
Normalized	  reads	  =	  CHIP-‐seq	  reads/(slope*input	  reads)	  

Rozowsky	  et	  al.	  2009	  Nature	  Biotech	  
20	  



Input	  normalizaGon	  
All	  data	  points	   Candidate	  peaks	  removed	  

ü Using	  regression	  based	  on	  all	  data	  points	  (including	  
candidate	  peaks)	  is	  overly	  conservaGve.	  

Rozowsky	  et	  al.	  2009	  Nature	  Biotech	  
21	  



Calling	  peaks	  vs.	  input	  

•  Binomial	  distribuGon	  	  
–  Each	  genomic	  region	  is	  like	  a	  coin	  
–  The	  combined	  number	  of	  reads	  is	  the	  #	  of	  Gmes	  that	  
the	  coin	  is	  flipped	  

–  Look	  for	  regions	  that	  are	  “weighted”	  toward	  sample,	  
not	  input	  

	  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 
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• Simulate each segment
• Determine a threshold 
satisfying the desired initial 
false discovery rate
• Use the threshold to 
identify potential target sites

2. First pass: determining potential binding regions by comparison to simulation
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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MulGple	  Hypothesis	  CorrecGon	  

•  Millions	  of	  genomic	  bins	  à	  expect	  many	  bins	  
with	  p-‐value	  <	  0.05!	  

•  How	  do	  we	  correct	  for	  this?	  

23	  



MulGple	  Hypothesis	  CorrecGon	  

•  Bonferroni	  CorrecGon	  
– MulGply	  p-‐value	  by	  number	  of	  observaGons	  
– Adjusts	  p-‐values	  à	  expect	  up	  to	  1	  false	  posiGve	  
– Very	  conservaGve	  

24	  



MulGple	  Hypothesis	  CorrecGon	  

•  False	  discovery	  rate	  (FDR)	  
– Expected	  number	  of	  false	  posiGves	  as	  a	  
percentage	  of	  the	  total	  rejected	  null	  hypotheses	  

– ExpectaGon[false	  posiGves/(false	  posiGves+true	  
posGves)]	  

•  q-‐value:	  maximum	  FDR	  at	  which	  null	  
hypothesis	  is	  rejected.	  

•  Benjamini-‐Hochberg	  CorrecGon	  
– q-‐value	  =	  p-‐value*#	  of	  tests/rank	  
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Is	  PeakSeq	  an	  opGmal	  algorithm?	  

26	  



Wilbanks	  EG,	  Facciou	  MT	  (2010)	  EvaluaGon	  of	  Algorithm	  Performance	  in	  ChIP-‐Seq	  Peak	  DetecGon.	  PLoS	  ONE	  5(7):	  e11471.	  doi:10.1371/
journal.pone.0011471	  
hNp://www.plosone.org/arGcle/info:doi/10.1371/journal.pone.0011471	  

Many	  other	  CHIP-‐seq	  “peak”-‐callers	  
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CHIP-‐seq	  summary	  

•  Method	  to	  determine	  DNA	  binding	  sites	  of	  
transcripHon	  factors	  or	  locaGons	  of	  histone	  
modificaHons	  

•  Must	  normalize	  sequence	  reads	  to	  
experimental	  input	  

•  Search	  for	  signal	  enrichment	  to	  find	  peaks	  
– Peakseq:	  binomial	  test	  +	  Benjamini-‐Hochberg	  
correcGon	  

– Many	  other	  methods	  
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RNA-‐SEQ:	  GOING	  BEYOND	  
ENRICHMENT	  

29	  



RNA-‐seq	  
•  Searching	  for	  “peaks”	  not	  enough:	  
	  

	  

•  Are	  these	  “peaks”	  part	  of	  the	  same	  RNA	  
molecule?	  

•  How	  much	  of	  the	  RNA	  is	  really	  there?	  
	  

Wang	  et	  al	  Nature	  Reviews	  Gene4cs	  	  2009	  
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Background:	  RNA	  splicing	  

•  pre-‐mRNA	  must	  have	  introns	  spliced	  out	  
before	  being	  translated	  into	  protein.	  

•  The	  components	  that	  are	  retained	  in	  the	  
mature	  mRNA	  are	  called	  exons	  

exon	  
intron	  
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Background:	  alternaGve	  splicing	  

•  Alterna4ve	  splicing	  leads	  to	  creaGon	  of	  mulGple	  
RNA	  isoforms,	  with	  different	  component	  exons.	  

•  SomeGmes,	  exons	  can	  be	  retained,	  or	  introns	  can	  
be	  skipped.	  

Isoform	  1	  

Isoform	  2	  

exon	  
intron	  
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Simple	  quanGficaGon	  

•  Count	  reads	  overlapping	  annotaGons	  of	  
known	  genes	  

•  Simplest	  method:	  Make	  composite	  model	  of	  
all	  isoforms	  of	  gene	  

•  QuanGficaGon:	  Reads	  per	  kilobase	  per	  million	  
reads	  (RPKM)	  
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Isoform	  QuanGficaGon	  

•  Map	  reads	  to	  genome	  
•  How	  do	  we	  assign	  reads	  to	  overlapping	  
transcripts?	  
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Isoform	  QuanGficaGon	  

•  Simple	  method:	  only	  consider	  unique	  reads	  
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Isoform	  QuanGficaGon	  

•  Simple	  method:	  only	  consider	  unique	  reads	  
•  Problem:	  what	  about	  the	  rest	  of	  the	  data?	  

36	  



ExpectaGon	  MaximizaGon	  Algorithm	  

Lior	  Pachter	  2011	  ArXiv	  

•  Assign	  reads	  to	  isoforms	  to	  maximize	  
likelihood	  of	  generaGng	  total	  paNern	  of	  
observed	  reads.	  

•  0.	  	  IniHalize	  (expectaGon):	  Assign	  reads	  
randomly	  to	  isoforms	  based	  on	  naïve	  (length	  
normalized)	  probability	  of	  the	  read	  coming	  
from	  that	  isoform	  (as	  opposed	  to	  other	  
overlapping	  isoforms)	  
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Lior	  Pachter	  2011	  ArXiv	  

•  1.	  	  MaximizaHon:	  Choose	  transcript	  
abundances	  that	  maximize	  likelihood	  of	  the	  
read	  distribuGon	  (MaximizaGon).	  

ExpectaGon	  MaximizaGon	  Algorithm	  
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Lior	  Pachter	  2011	  ArXiv	  

•  2.	  	  ExpectaHon:	  Reassign	  reads	  based	  on	  the	  
new	  values	  for	  the	  relaGve	  quanGGes	  of	  the	  
isoforms.	  
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Lior	  Pachter	  2011	  ArXiv	  

•  3.	  	  ConGnue	  expectaHon	  and	  maximizaHon	  
steps	  unGl	  isoform	  quanGficaGons	  converge	  (it	  
is	  a	  mathemaGcal	  fact	  that	  this	  will	  happen).	  

ExpectaGon	  MaximizaGon	  Algorithm	  
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RNA-‐Seq	  conclusions	  

•  RNA-‐Seq	  is	  a	  powerful	  tool	  to	  idenGfy	  new	  
transcribed	  regions	  of	  the	  genome	  and	  
compare	  the	  RNA	  complements	  of	  different	  
Gssues.	  

•  QuanGficaGon	  harder	  than	  CHIP-‐seq	  because	  
of	  RNA	  splicing	  

•  ExpectaGon	  maximizaGon	  algorithm	  can	  be	  
useful	  for	  quanGfying	  overlapping	  transcripts	  
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