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background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 1 | Overview of a ChIP–seq experiment. Using chromatin immunoprecipitation 
(ChIP) followed by massively parallel sequencing, the specific DNA sites that interact 
with transcription factors or other chromatin-associated proteins (non-histone ChIP) 
and sites that correspond to modified nucleosomes (histone ChIP) can be profiled. The 
ChIP process enriches the crosslinked proteins or modified nucleosomes of interest 
using an antibody specific to the protein or the histone modification. Purified DNA can 
be sequenced on any of the next-generation platforms12. The basic concepts are similar 
for different platforms: common adaptors are ligated to the ChIP DNA and clonally 
clustered amplicons are generated. The sequencing step involves the enzyme-driven 
extension of all templates in parallel. After each extension, the fluorescent labels that 
have been incorporated are detected through high-resolution imaging. On the 
Illumina Solexa Genome Analyzer (bottom left), clusters of clonal sequences are 
generated by bridge PCR, and sequencing is performed by sequencing-by-synthesis. 
On the Roche 454 and Applied Biosystems (ABI) SOLiD platforms (bottom middle), 
clonal sequencing features are generated by emulsion PCR and amplicons are 
captured on the surface of micrometre-scale beads. Beads with amplicons are then 
recovered and immobilized to a planar substrate to be sequenced by pyrosequencing 
(for the 454 platform) or by DNA ligase-driven synthesis (for the SOLiD platform). On 
single-molecule sequencing platforms such as the HeliScope by Helicos (bottom right), 
fluorescent nucleotides incorporated into templates can be imaged at the level of 
single molecules, which makes clonal amplification unnecessary.

Heterochromatin
A region of highly compact 
chromatin. Constitutive 
heterochromatin is largely 
composed of repetitive DNA.

ChIP–seq the genome coverage is not limited by the rep-
ertoire of probe sequences fixed on the array. This is par-
ticularly important for the analysis of repetitive regions 
of the genome, which are typically masked out on arrays. 
Studies involving heterochromatin or microsatellites, for 

instance, can be done much more effectively by ChIP–seq.  
Sequence variations within repeat elements can be 
captured by sequencing and used to map reads to the 
genome; unique sequences that flank repeats are also 
helpful in aligning the reads to the genome. For exam-
ple, only 48% of the human genome is non-repetitive, but 
80% is mappable with 30 bp reads and 89% is mappable 
with 70 bp reads38.

All profiling technologies produce unwanted  
artefacts, and ChIP–seq is no exception. Although 
sequencing errors have been reduced substantially as 
the technology has improved, they are still present, 
especially towards the end of each read. This problem 
can be ameliorated by improvements in alignment algo-
rithms (see below) and computational analysis. There is 
also bias towards GC-rich content in fragment selection, 
both in library preparation and in amplification before 
and during sequencing14,39, although notable improve-
ments have been made recently. In addition, when an 
insufficient number of reads is generated, there is loss of 
sensitivity or specificity in detection of enriched regions. 
There are also technical issues in performing the experi-
ment, such as loading the correct amount of sample: too 
little sample will result in too few tags; too much sample 
will result in fluorescent labels that are too close to one 
another, and therefore lower quality data.

However, the main disadvantage with ChIP–seq 
is its current cost and availability. Several groups have 
successfully developed and applied their own proto-
cols for library construction, which has lowered that 
cost substantially. But the overall cost of ChIP–seq, 
which includes machine depreciation and reagent cost, 
will have to be lowered further for it to be comparable 
with the cost of ChIP–chip in every case. For high- 
resolution profiling of an entire large genome, ChIP–seq 
is already less expensive than ChIP–chip, but depend-
ing on the genome size and the depth of sequencing 
needed, a ChIP–chip experiment on carefully selected 
regions using a customized microarray may yield as 
much biological understanding. The recent decrease in 
sequencing cost per base pair has not affected ChIP–seq 
as substantially as other applications, as the decrease 
has come as much from increased read lengths as 
from the number of sequenced fragments. The gain in  
the fraction of reads that can be uniquely aligned to the 
genome decreases noticeably after ~25–35 bp and is 
marginal beyond 70–100 nucleotides40. However, as the 
cost of sequencing continues to decline and institutional 
support for sequencing platforms continues to grow,  
ChIP–seq is likely to become the method of choice for 
nearly all ChIP experiments in the near future.

Issues in experimental design
Antibody quality. The value of any ChIP data, includ-
ing ChIP–seq data, depends crucially on the quality of 
the antibody used. A sensitive and specific antibody will 
give a high level of enrichment compared with the back-
ground, which makes it easier to detect binding events. 
Many antibodies are commercially available, and some 
are noted as ChIP grade, but the quality of different anti-
bodies is highly variable and can also vary among batches 
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Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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frequencies	
  of	
  reads/bin	
  is	
  described	
  by	
  the	
  
Poisson	
  distribuGon.	
  

•  Assign	
  p-­‐value	
  based	
  on	
  Poisson	
  distribuGon	
  for	
  
each	
  bin	
  based	
  on	
  #	
  of	
  reads	
  

Rozowsky	
  et	
  al.	
  2009	
  Nature	
  Biotech,	
  Park	
  2009	
  Nature	
  Reviews	
  Gene4cs	
  

Chromosomal	
  region	
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of
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qu
en

ce
	
  re

ad
s	
  

10,220,000 10,225,000 10,230,000

31,200,000 31,220,000 31,240,000 31,260,000
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CTCF
b

a

RNA polymerase II

H3K36me3

H3K27me3

FBXO7

BPIL2 SYN3

ChIP–seq input DNA

ChIP–chip

ChIP–seq

NPC1 CG5708 CG5694

Pros35 CG4908 eEF1

Figure 2 | ChIP profiles. a | Examples of the profiles generated by chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) or by microarray (ChIP–chip). Shown is a 
section of the binding profiles of the chromodomain protein Chromator, as measured  
by ChIP–chip (unlogged intensity ratio; blue) and ChIP–seq (tag density; red) in the 
Drosophila melanogaster S2 cell line. The tag density profile obtained by ChIP–seq 
reveals specific positions of Chromator binding with higher spatial resolution and 
sensitivity. The ChIP–seq input DNA (control experiment) tag density is shown in grey for 
comparison. b | Examples of different types of ChIP–seq tag density profiles in human T 
cells. Profiles for different types of proteins and histone marks can have different types of 
features, such as: sharp binding sites, as shown for the insulator binding protein CTCF 
(CCCTC-binding factor; red); a mixture of shapes, as shown for RNA polymerase II 
(orange), which has a sharp peak followed by a broad region of enrichment; medium size 
broad peaks, as shown for histone H3 trimethylated at lysine 36 (H3K36me3; green), 
which is associated with transcription elongation over the gene; or large domains, as 
shown for histone H3 trimethylated at lysine 27 (H3K27me3; blue), which is a repressive 
mark that is indicative of Polycomb-mediated silencing. BPIL2, bactericidal/permeability-
increasing protein-like 2; FBXO7, F box only 7; NPC1, Niemann-Pick disease, type C1; 
Pros35, proteasome 35 kDa subunit; SYN3, synapsin III. Data for part b are from REF. 25.

also informative, as this ratio corresponds to the fraction 
of nucleosomes with the particular modification at that 
location, averaged over all the cells assayed.

One of the difficulties in conducting a ChIP–seq con-
trol experiment is the large amount of sequencing that 
may be necessary. For input DNA and bulk nucleosomes, 
many of the sequenced tags are spread evenly across the  
genome. To obtain accurate estimates throughout  
the genome, sufficient numbers of tags are needed at 
each point; otherwise fold enrichment at the peaks will 
result in large errors due to sampling bias. Therefore, the 
total number of tags to be sequenced is potentially very 
large. Alternatively, it is possible to avoid sequencing a 
control sample if one is only interested in differential 
binding patterns between conditions or time points and 
if the variation in chromatin preparations is small.

Depth of sequencing. One crucial difference between 
ChIP–chip and ChIP–seq is that the number of tiling 
arrays that is used in a ChIP–chip experiment is fixed 
regardless of the protein or modification of interest, 
whereas the number of fragments that is sequenced in 
a ChIP–seq experiment is determined by the investiga-
tor. In published ChIP–seq experiments, a single lane 
of the Illumina Genome Analyzer was the basic unit of 
sequencing. When it was introduced, a single lane gen-
erated 4–6 million reads before alignment but, owing to 
improvements in the system, a single lane now gener-
ates 8–15 million reads or more. Given the cost of each 
experiment, many early data sets contained reads from 
a single lane regardless of what the specific experiment 
was. Intuitively, one expects that when a large number 
of binding sites are present in the genome for a DNA-
binding protein or when a histone modification covers 
a large fraction of the genome, a correspondingly large 
number of tags will be needed to cover each bound 
region at the same tag density. One reasonable crite-
rion for determining sufficient sequencing depth would 
be that the results of a given analysis do not change 
when more reads are obtained. In terms of the number  
of binding sites, this criterion translates to the presence of  
a ‘saturation point’ after which no further binding sites 
are discovered with additional reads.

The issue of saturation points has been examined 
in a recent paper through simulation studies48. In three 
example data sets, a reference set of sites was generated 
based on the full set of sequencing reads in each case. 
Then, a wide range of different read counts was sampled 
from the complete data set, with multiple random selec-
tions for each sample size. Binding sites were determined 
for each sample with a threshold probability (p value), 
and the results for each sample size were averaged. The 
fraction of the reference set that was recovered as a func-
tion of the number of reads is shown in FIG. 3A. If there 
was a saturation point, the number of sites found would 
increase up to a certain point and then plateau, which 
would indicate that the rate at which new sites were 
being discovered had slowed down to the point where 
any further increase in the number of reads would be 
inefficient at yielding new sites. When the simulation 
was performed, however, the results indicated that 
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Is	
  a	
  Poisson	
  background	
  reasonable	
  for	
  
CHIP-­‐seq	
  data?	
  

•  “Input”	
  is	
  from	
  a	
  CHIP-­‐seq	
  experiment	
  using	
  an	
  anGbody	
  for	
  a	
  non-­‐
DNA	
  binding	
  protein	
  

ENCODE	
  NF-­‐Kb	
  CHIP-­‐seq	
  data	
  

Input	
   Poisson	
  DistribuHon	
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Is	
  a	
  Poisson	
  background	
  reasonable	
  for	
  
CHIP-­‐seq	
  data?	
  

•  “Input”	
  experiment:	
  Do	
  CHIP-­‐seq	
  using	
  an	
  
anGbody	
  for	
  a	
  protein	
  that	
  doesn’t	
  bind	
  DNA	
  

•  There	
  are	
  also	
  “peaks”	
  in	
  the	
  input!	
  
Park	
  2009	
  Nature	
  Reviews	
  Gene4cs	
  

16	
  



Peakseq	
  

Rozowsky	
  et	
  al.	
  2009	
  Nature	
  Biotech	
  
Gerstein	
  Lab	
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Determining	
  protein	
  binding	
  sites	
  by	
  
comparing	
  CHIP-­‐seq	
  data	
  with	
  input	
  

Input	
  normalizaGon/	
  
bias	
  correcGon	
  

Comparison	
  of	
  sample	
  vs.	
  input	
  

Candidate	
  binding	
  site	
  
	
  idenGficaGon	
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Candidate	
  binding	
  site	
  idenGficaGon	
  

•  Use	
  Poisson	
  distribuGon	
  as	
  background,	
  as	
  in	
  the	
  
“naïve”	
  analysis	
  discussed	
  earlier	
  

•  Normalize	
  read	
  counts	
  for	
  mappability	
  
(uniqueness)	
  of	
  genomic	
  regions	
  

•  Use	
  large	
  bin	
  size,	
  finer	
  resoluGon	
  analysis	
  later	
  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 

Tags

Signal map

• Simulate each segment
• Determine a threshold 
satisfying the desired initial 
false discovery rate
• Use the threshold to 
identify potential target sites

2. First pass: determining potential binding regions by comparison to simulation

f
Mappability map 

Threshold

Potential target sites

4. Second pass: scoring enriched target regions relative to control
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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Input	
  normalizaGon	
  

ü Normalize	
  based	
  on	
  slope	
  of	
  least	
  squares	
  regression	
  line.	
  
Normalized	
  reads	
  =	
  CHIP-­‐seq	
  reads/(slope*input	
  reads)	
  

Rozowsky	
  et	
  al.	
  2009	
  Nature	
  Biotech	
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Input	
  normalizaGon	
  
All	
  data	
  points	
   Candidate	
  peaks	
  removed	
  

ü Using	
  regression	
  based	
  on	
  all	
  data	
  points	
  (including	
  
candidate	
  peaks)	
  is	
  overly	
  conservaGve.	
  

Rozowsky	
  et	
  al.	
  2009	
  Nature	
  Biotech	
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Calling	
  peaks	
  vs.	
  input	
  

•  Binomial	
  distribuGon	
  	
  
–  Each	
  genomic	
  region	
  is	
  like	
  a	
  coin	
  
–  The	
  combined	
  number	
  of	
  reads	
  is	
  the	
  #	
  of	
  Gmes	
  that	
  
the	
  coin	
  is	
  flipped	
  

–  Look	
  for	
  regions	
  that	
  are	
  “weighted”	
  toward	
  sample,	
  
not	
  input	
  

	
  

background of the sample to the control by linear regression of the
counts of tags from the control against the sample for windows
(B10 Kb) along each chromosome. The slope of the linear regression
a is used to scale tag counts from the control in the comparison with
the ChIP-seq sample. Because windows that contain enriched peaks
will increase the slope (conservatively overestimating the tag counts
from the control), we introduce Pf —a parameter denoting the
fraction of potential target regions that we exclude from the normal-
ization procedure (windows that overlap excluded target regions are
not used in the linear regression). We show the effect of the normal-
ization procedure for two settings of this parameter (Pf ¼ 0 and
Pf ¼ 1; Fig. 2 (3) and Supplementary Fig. 1).

In the second pass of the procedure (Fig. 2 (4), the ChIP-seq signals
for putative binding sites are then compared against the normalized
input-DNA control. Only regions that are enriched in the counts of
the number of mapped sequence tags in the ChIP-seq sample relative
to the input-DNA control are called binding sites. This comparison is
analogous to the way enrichment is determined when validating
ChIP ‘hits’ using quantitative (q)PCR. We compute the statistical

significance using the binomial distribution. We also correct for
multiple hypothesis testing by applying a Benjamini-Hochberg correc-
tion17. We report a ranked target list sorted by Q-value that also lists
fold-enrichment values for each binding site. Comparison of
potential target binding sites in the ChIP-seq sample against the
input-DNA control accounts for the nonuniform background of a
ChIP-seq experiment10.

Application of PeakSeq to Pol II and STAT1 ChIP-seq data
We applied the PeakSeq procedure to the Pol II and STAT1 ChIP-seq
data sets (we conservatively set Pf ¼ 0 in the following analysis). We
initially identified 73,562 and 123,321 potential binding sites for Pol II
and STAT1, respectively. These represent the potential targets that are
found to be enriched in the Pol II and STAT1 signal density maps
compared to a simulated null random background. After comparing
these target regions with the normalized input-DNA controls (unsti-
mulated and interferon-g–stimulated HeLa S3 cells), we found that
only 24,739 and 36,998 of these regions are significantly enriched for
Pol II and STAT1, respectively (using a false-discovery rate threshold

• Extend mapped tags to DNA fragment
• Map of number of DNA fragments at each nucleotide position

• For potential binding sites calculate the fold enrichment
• Compute a P-value from the binomial distribution
• Correct for multiple hypothesis testing and determine enriched target sites

• Select fraction of potential peaks to exclude (parameter Pf)
• Count tags in bins along chromosome for ChIP-seq sample and control
• Determine slope of least squares linear regression

1. Constructing signal maps 

Tags

Signal map

• Simulate each segment
• Determine a threshold 
satisfying the desired initial 
false discovery rate
• Use the threshold to 
identify potential target sites

2. First pass: determining potential binding regions by comparison to simulation

f
Mappability map 

Threshold

Potential target sites

4. Second pass: scoring enriched target regions relative to control
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Figure 2 PeakSeq scoring procedure. (1) Mapped reads are extended to have the average DNA fragment length (reads on either strand are extended in the
3¢ direction relative to that strand) and then accumulated to form a fragment density signal map. (2) Potential binding sites are determined in the first pass
of the PeakSeq scoring procedure. The threshold is determined by comparison of putative peaks with a simulated segment with the same number of mapped
reads. The length of the simulated segment is scaled by the fraction of uniquely mappable starting bases. (3) After selecting the fraction of potential target
sites that should be excluded from the normalization, the scaling factor Pf is determined by linear regression of the ChIP-seq sample against the input-DNA
control in 10-Kb bins. Bins that overlap the potential targets regions selected for exclusion are not used for regression. The fitted slopes as well as the
Pearson correlations are displayed for Pf set to either 0 or 1. (4) Enrichment and significance are computed for putative binding regions.
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MulGple	
  Hypothesis	
  CorrecGon	
  

•  Millions	
  of	
  genomic	
  bins	
  à	
  expect	
  many	
  bins	
  
with	
  p-­‐value	
  <	
  0.05!	
  

•  How	
  do	
  we	
  correct	
  for	
  this?	
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MulGple	
  Hypothesis	
  CorrecGon	
  

•  Bonferroni	
  CorrecGon	
  
– MulGply	
  p-­‐value	
  by	
  number	
  of	
  observaGons	
  
– Adjusts	
  p-­‐values	
  à	
  expect	
  up	
  to	
  1	
  false	
  posiGve	
  
– Very	
  conservaGve	
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MulGple	
  Hypothesis	
  CorrecGon	
  

•  False	
  discovery	
  rate	
  (FDR)	
  
– Expected	
  number	
  of	
  false	
  posiGves	
  as	
  a	
  
percentage	
  of	
  the	
  total	
  rejected	
  null	
  hypotheses	
  

– ExpectaGon[false	
  posiGves/(false	
  posiGves+true	
  
posGves)]	
  

•  q-­‐value:	
  maximum	
  FDR	
  at	
  which	
  null	
  
hypothesis	
  is	
  rejected.	
  

•  Benjamini-­‐Hochberg	
  CorrecGon	
  
– q-­‐value	
  =	
  p-­‐value*#	
  of	
  tests/rank	
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Is	
  PeakSeq	
  an	
  opGmal	
  algorithm?	
  

26	
  



Wilbanks	
  EG,	
  Facciou	
  MT	
  (2010)	
  EvaluaGon	
  of	
  Algorithm	
  Performance	
  in	
  ChIP-­‐Seq	
  Peak	
  DetecGon.	
  PLoS	
  ONE	
  5(7):	
  e11471.	
  doi:10.1371/
journal.pone.0011471	
  
hNp://www.plosone.org/arGcle/info:doi/10.1371/journal.pone.0011471	
  

Many	
  other	
  CHIP-­‐seq	
  “peak”-­‐callers	
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CHIP-­‐seq	
  summary	
  

•  Method	
  to	
  determine	
  DNA	
  binding	
  sites	
  of	
  
transcripHon	
  factors	
  or	
  locaGons	
  of	
  histone	
  
modificaHons	
  

•  Must	
  normalize	
  sequence	
  reads	
  to	
  
experimental	
  input	
  

•  Search	
  for	
  signal	
  enrichment	
  to	
  find	
  peaks	
  
– Peakseq:	
  binomial	
  test	
  +	
  Benjamini-­‐Hochberg	
  
correcGon	
  

– Many	
  other	
  methods	
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RNA-­‐SEQ:	
  GOING	
  BEYOND	
  
ENRICHMENT	
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RNA-­‐seq	
  
•  Searching	
  for	
  “peaks”	
  not	
  enough:	
  
	
  

	
  

•  Are	
  these	
  “peaks”	
  part	
  of	
  the	
  same	
  RNA	
  
molecule?	
  

•  How	
  much	
  of	
  the	
  RNA	
  is	
  really	
  there?	
  
	
  

Wang	
  et	
  al	
  Nature	
  Reviews	
  Gene4cs	
  	
  2009	
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Background:	
  RNA	
  splicing	
  

•  pre-­‐mRNA	
  must	
  have	
  introns	
  spliced	
  out	
  
before	
  being	
  translated	
  into	
  protein.	
  

•  The	
  components	
  that	
  are	
  retained	
  in	
  the	
  
mature	
  mRNA	
  are	
  called	
  exons	
  

exon	
  
intron	
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Background:	
  alternaGve	
  splicing	
  

•  Alterna4ve	
  splicing	
  leads	
  to	
  creaGon	
  of	
  mulGple	
  
RNA	
  isoforms,	
  with	
  different	
  component	
  exons.	
  

•  SomeGmes,	
  exons	
  can	
  be	
  retained,	
  or	
  introns	
  can	
  
be	
  skipped.	
  

Isoform	
  1	
  

Isoform	
  2	
  

exon	
  
intron	
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Simple	
  quanGficaGon	
  

•  Count	
  reads	
  overlapping	
  annotaGons	
  of	
  
known	
  genes	
  

•  Simplest	
  method:	
  Make	
  composite	
  model	
  of	
  
all	
  isoforms	
  of	
  gene	
  

•  QuanGficaGon:	
  Reads	
  per	
  kilobase	
  per	
  million	
  
reads	
  (RPKM)	
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Isoform	
  QuanGficaGon	
  

•  Map	
  reads	
  to	
  genome	
  
•  How	
  do	
  we	
  assign	
  reads	
  to	
  overlapping	
  
transcripts?	
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Isoform	
  QuanGficaGon	
  

•  Simple	
  method:	
  only	
  consider	
  unique	
  reads	
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Isoform	
  QuanGficaGon	
  

•  Simple	
  method:	
  only	
  consider	
  unique	
  reads	
  
•  Problem:	
  what	
  about	
  the	
  rest	
  of	
  the	
  data?	
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ExpectaGon	
  MaximizaGon	
  Algorithm	
  

Lior	
  Pachter	
  2011	
  ArXiv	
  

•  Assign	
  reads	
  to	
  isoforms	
  to	
  maximize	
  
likelihood	
  of	
  generaGng	
  total	
  paNern	
  of	
  
observed	
  reads.	
  

•  0.	
  	
  IniHalize	
  (expectaGon):	
  Assign	
  reads	
  
randomly	
  to	
  isoforms	
  based	
  on	
  naïve	
  (length	
  
normalized)	
  probability	
  of	
  the	
  read	
  coming	
  
from	
  that	
  isoform	
  (as	
  opposed	
  to	
  other	
  
overlapping	
  isoforms)	
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Lior	
  Pachter	
  2011	
  ArXiv	
  

•  1.	
  	
  MaximizaHon:	
  Choose	
  transcript	
  
abundances	
  that	
  maximize	
  likelihood	
  of	
  the	
  
read	
  distribuGon	
  (MaximizaGon).	
  

ExpectaGon	
  MaximizaGon	
  Algorithm	
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Lior	
  Pachter	
  2011	
  ArXiv	
  

•  2.	
  	
  ExpectaHon:	
  Reassign	
  reads	
  based	
  on	
  the	
  
new	
  values	
  for	
  the	
  relaGve	
  quanGGes	
  of	
  the	
  
isoforms.	
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Lior	
  Pachter	
  2011	
  ArXiv	
  

•  3.	
  	
  ConGnue	
  expectaHon	
  and	
  maximizaHon	
  
steps	
  unGl	
  isoform	
  quanGficaGons	
  converge	
  (it	
  
is	
  a	
  mathemaGcal	
  fact	
  that	
  this	
  will	
  happen).	
  

ExpectaGon	
  MaximizaGon	
  Algorithm	
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RNA-­‐Seq	
  conclusions	
  

•  RNA-­‐Seq	
  is	
  a	
  powerful	
  tool	
  to	
  idenGfy	
  new	
  
transcribed	
  regions	
  of	
  the	
  genome	
  and	
  
compare	
  the	
  RNA	
  complements	
  of	
  different	
  
Gssues.	
  

•  QuanGficaGon	
  harder	
  than	
  CHIP-­‐seq	
  because	
  
of	
  RNA	
  splicing	
  

•  ExpectaGon	
  maximizaGon	
  algorithm	
  can	
  be	
  
useful	
  for	
  quanGfying	
  overlapping	
  transcripts	
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