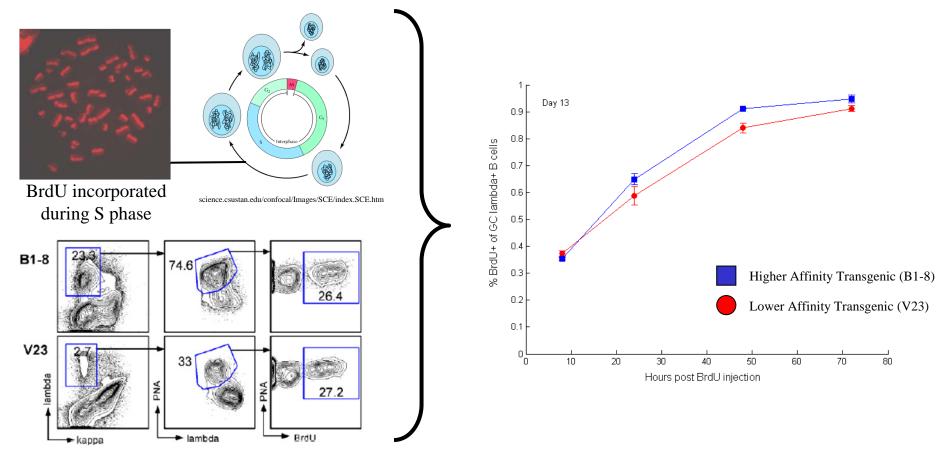
Inverse Model

- A mathematical model designed to fit experimental data so as to explicitly quantify physical or physiological parameters of interest
- Values of model elements are obtained using parameter estimation techniques aimed at providing a "best fit" to the data
- Generally involves an iterative process to minimize the average difference between the model and the data
- Evaluating the quality of an inverse model involves a combination of established mathematical techniques as well as intuition and creative insight

Understanding cell proliferation and death

BrdU (thymidine analog) incorporated into cell DNA during S-phase

Flow cytometry to quantify antigen-specific germinal center B cells...



Labeling curves look similar – suggests same proliferation rate?

Understanding cell proliferation and death

At steady-state, rate at which the fraction of BrdU labeled cells increases is indicative of the sum of the per cell proliferation and death rates

Quantification of Cell Turnover Kinetics Using 5-Bromo-2'-deoxyuridine¹

Sebastian Bonhoeffer,* Hiroshi Mohri,[†] David Ho,[†] and Alan S. Perelson²*[‡]

The Journal of Immunology, 2000, 164: 5049-5054.

Rapid Turnover of T Lymphocytes in SIV-Infected Rhesus Macaques

Hiroshi Mohri, Sebastian Bonhoeffer, Simon Monard, Alan S. Perelson, David D. Ho*

www.sciencemag.org • SCIENCE • VOL. 279 • 20 FEBRUARY 1998

The Journal of Immunology

Taking Advantage: High-Affinity B Cells in the Germinal Center Have Lower Death Rates, but Similar Rates of Division, Compared to Low-Affinity Cells¹

Shannon M. Anderson,* Ashraf Khalil,[↑] Mohamed Uduman,^{§§} Uri Hershberg,^{§§§} Yoram Louzoun,[¶] Ann M. Haberman,[†] Steven H. Kleinstein,^{§§} and Mark J. Shlomchik²*[†] International Immunology, Vol. 15, No. 3, pp. 301–312 doi:10.1093/intimm/dxg025, available online at www.intimm.oupjournals.org

Asynchronous differentiation models explain bone marrow labeling kinetics and predict reflux between the pre- and immature B cell pools

Ramit Mehr¹, Gitit Shahaf¹, Alex Sah² and Michael Cancro²

Oncogene (2005) 24, 7514–7523 © 2005 Nature Publishing Group All rights reserved 0950-9232/05 \$30.00 www.nature.com/onc

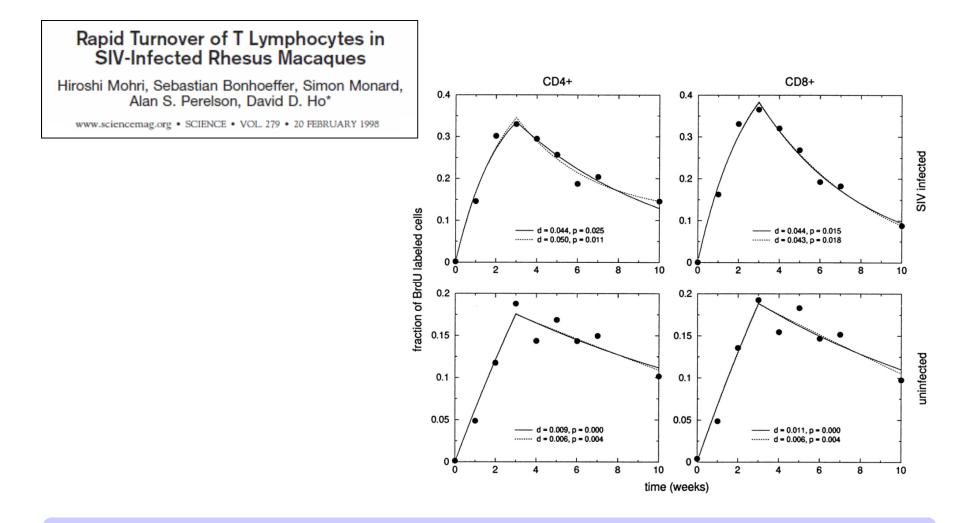
Reduced cell turnover in lymphocytic monkeys infected by human T-lymphotropic virus type 1

Christophe Debacq^{1,3}, Jean-Michel Héraud^{2,3}, Becca Asquith³, Charles Bangham³, Fabrice Merien², Vincent Moules⁴, Franck Mortreux⁴, Eric Wattel⁴, Arsène Burny¹, Richard Kettmann¹, Mirdad Kazanji² and Luc Willems^{*,1}

Models of BrdU incorporation integral part of many studies

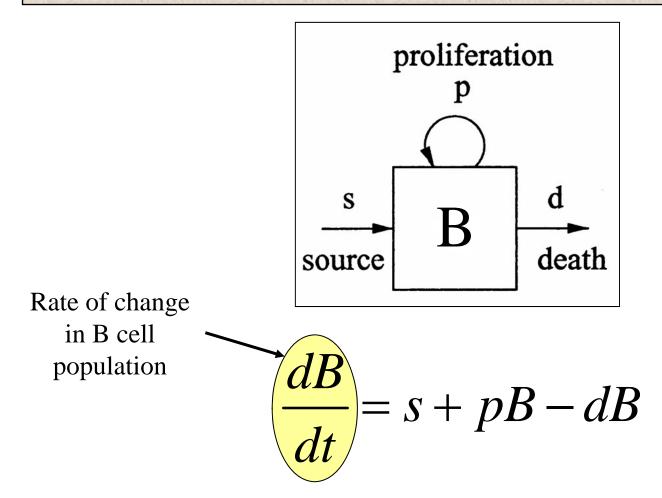
BrdU labeling of CD4+ and CD8+ T lymphocytes

SIV-infected and an uninfected macaque. Data are from Mohri et al., Science (1998)



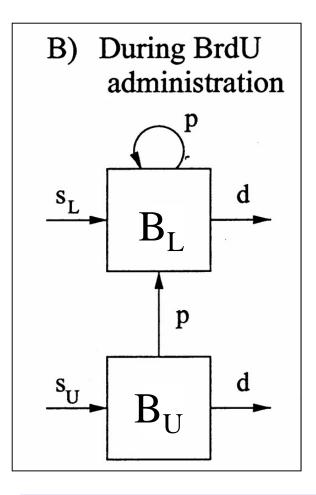
Is there a difference in cell turnover?

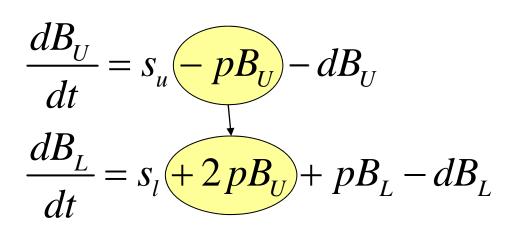
Start with a basic model of cell population dynamics...



Often can often assume population in steady-state (i.e., constant)

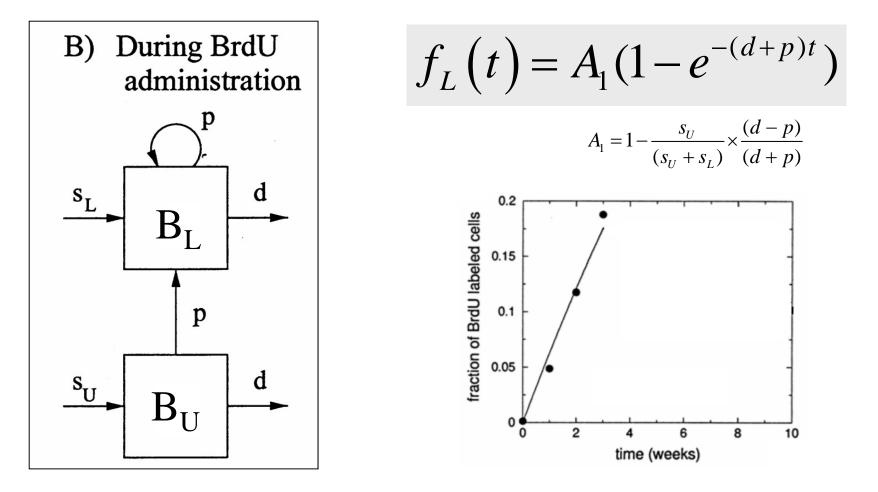
Split the B cell population into Labeled (B_L) and Unlabeled (B_U) subsets





Do data contain enough information to estimate parameters?

Label is administered continuously over some time-period



Labeling curve reflects both proliferation AND death

Model Identifiability

A model is identifiable if possible to learn true value of underlying parameter after obtaining enough observations

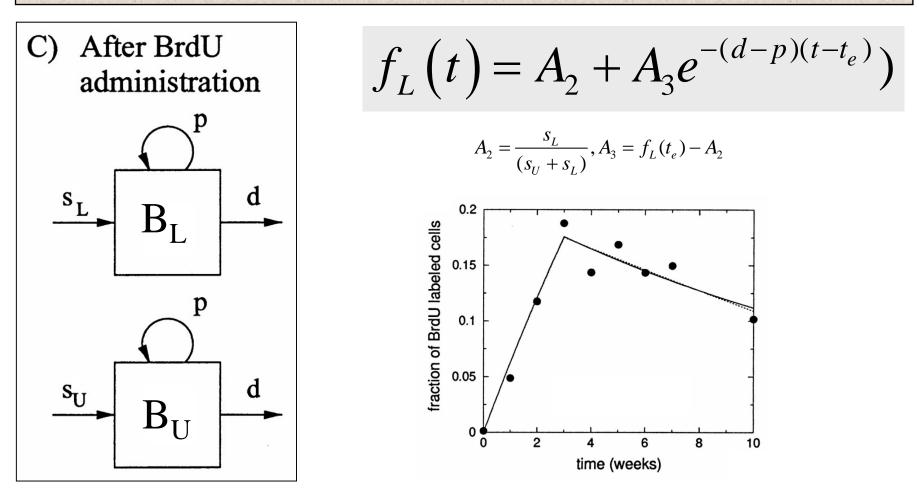
Identifiable parameters are those which effect the value of the data and can be estimated with some degree of certainty.

Non-identifiable parameters are those which effect the value of the data but which cannot be estimated accurately

Non-observable parameters are those which don't have an effect on the data.

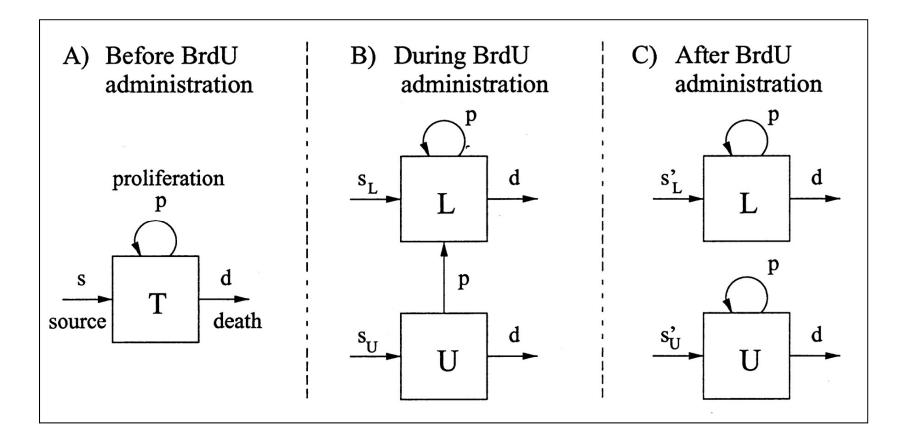
Cannot estimate both proliferation AND death

Stop administering label after some time (t_e)



Now, we can estimate BOTH proliferation AND death

Model changes with experiment



We can express these as sets of ordinary differential equations

Characteristics of a Good Inverse Model

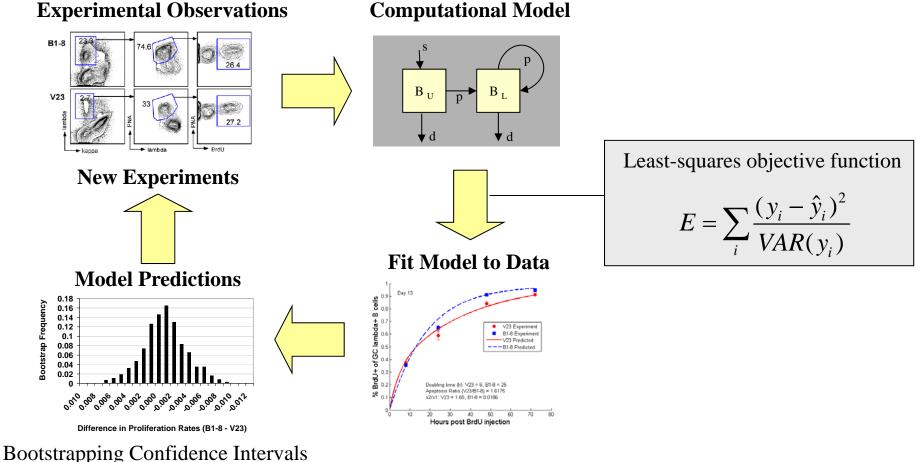
- Fit is good—model should be able to adequately describe a relatively noise-free data set (of course a poor fit provides some insight also)
- Model parameters are unique
 - Theoretically identifiable for noise-free data
 - Well-determined model parameters in presence of measurement noise
- Values of parameter estimates are consistent with hypothesized physical or physiologic meanings and change appropriately in response to alterations in the actual system

Six Steps for Inverse-Modeling of Data

- 1. Select an appropriate mathematical model
 - Polynomial or other functional form
 - Based on underlying theoretical equations
- 2. Define a "figure of merit" function
 - Measures agreement between data & model for given parameters
- 3. Adjust model parameters to get a "best fit"
 - Typically involves minimizing the figure of merit function
- 4. Examine "goodness of fit" to data
 - Never perfect due to measurement noise
- 5. Determine whether a much better fit is possible
 - Tricky due to possible local minima vs. global minimum
 - F-test for comparing models of different complexity
- 6. Evaluate accuracy of best-fit parameter values
 - Provide confidence limits and determine uniqueness
 - Assess physical reasonability of estimated parameter values

Interaction of Computation & Experiment

Compare simulation and experiment using least-squares objective

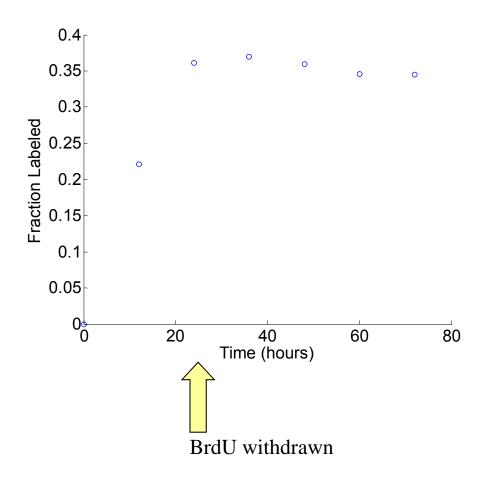


Computational Model

Continuous cycle of modeling and experimentation

Simulated Experiment

Demonstrate full cycle of fitting model to data to estimate parameters





Parameters used to create synthetic data

- s = 0.003 per hour
- p = 0.01 per hour
- d = p + s (to achieve steady state)

Random noise added to each data point

How can we estimate flow/proliferation/death rates?

Numerical solution to ODEs

Euler's Method

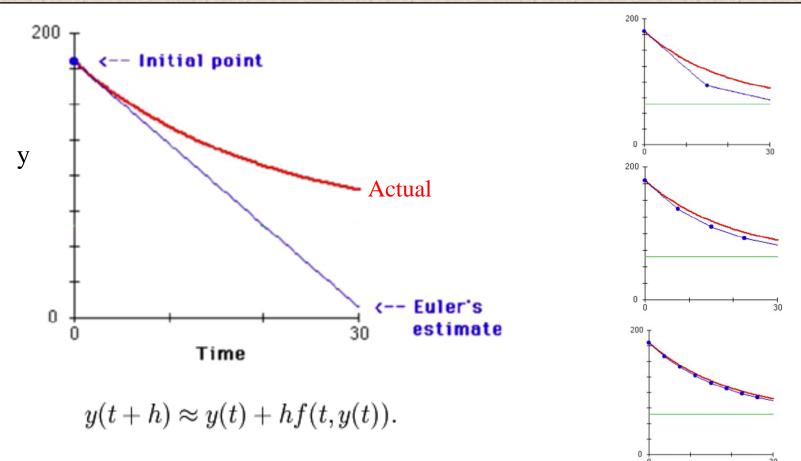
$$\begin{aligned} y'(t) &= f(t,y(t)), \qquad y(t_0) = y_0, \\ y'(t) &\approx \frac{y(t+h) - y(t)}{h}, \\ y(t+h) &\approx y(t) + hf(t,y(t)). \end{aligned}$$

Leonhard Euler (1707-1783)

From any point on curve, find approximation of nearby point on curve by moving a short distance along a line tangent to the curve

Numerical solution to ODEs: Euler Method

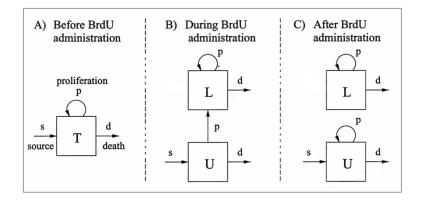
From any point on curve, find approximation of nearby point on curve by moving a short distance along a line tangent to the curve



Much better ways to do this in practice. Eg, Runge-Kutta

Simulating the BrdU Labeling Model

Use integration functions (e.g., ode45 in MATLAB)



Yin = [1 0]; % Initial Conditions [unlabeled labeled]
pr = [s p d tau]; % Model Parameters

t = [0,12,24,36,48,60,72]; % Times to evaluate

[T,Y] = ode45(@fode,t,Yin,opts,pr);

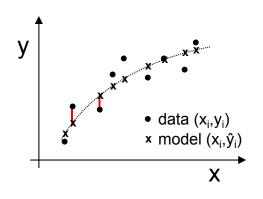
fl = **Y(:,2)** ./ **sum(Y,2)**; % Fraction labeled

function dy = fode(t, y, pr)s = pr(1); p = pr(2); d = pr(3); tau = pr(4);U = v(1); L = v(2);dv = zeros(2,1); % Vector of derivatives **if** (t<tau) % During BrdU Administration (B) dv(1) = s - p.*U - d.*U;% dbU/dt dv(2) = 2.*p.*U + p.*L - d.*L;% dbL/dt % After BrdU Administration (C) else dy(1) = s + p.*U - d.*U;%dbU/dt dy(2) =p.*L - d.*L; %dbL/dt end

Simple models can be solved analytically -- faster

Least-Squares Error Minimization

- Goal is to fit *N* data points (x_i, y_i) i=1..N
- The model is a function with *M* adjustable parameters a_k , k=1..M used to generate *N* model points (x_i, \hat{y}_i)
- The <u>residual</u> measures the difference between a data point and the corresponding model estimate
- Since residuals can be positive or negative, a sum of residuals is <u>not</u> a good measure of overall error in the fit
- A better measure is the sum of squared residuals, *E*, which is only zero if each and every residual is zero



$$\hat{y}_i = \hat{y}(x_i, a_1 \dots a_M)$$

$$y_i - \hat{y}(x_i, a_1 \dots a_M)$$

$$\sum_{i=1}^{N} [y_i - \hat{y}(x_i, a_1 ... a_M)]$$

$$E = \sum_{i=1}^{N} [y_i - \hat{y}(x_i, a_1 ... a_M)]^2$$

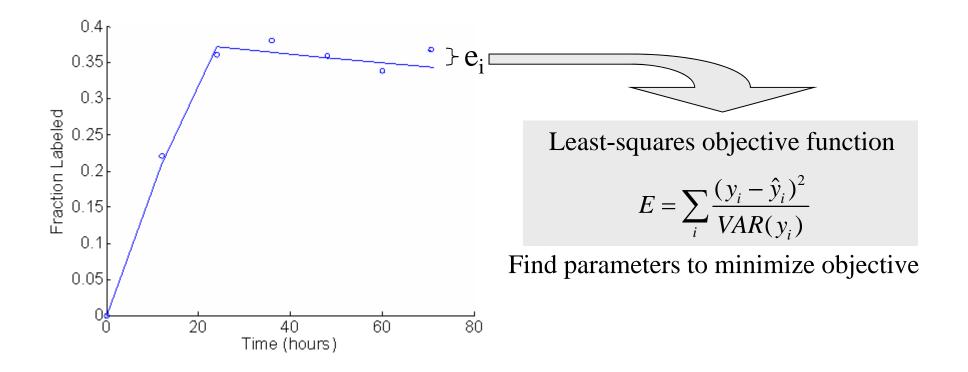
(Costa, Kleinstein and Hershberg, Sci Signal. 2011)

Maximum Likelihood Estimation

- Not meaningful to ask "What is the probability that my set of model parameters is correct?"
 - Only one correct parameter set \rightarrow Mother Nature!
- Better to ask "Given my set of model parameters, what is the probability that this data set could be obtained?"
 - What is the <u>likelihood</u> of the parameters given the data?
- Inverse modeling is also known as "maximum likelihood estimation".

Fitting the Model to Experimental Data

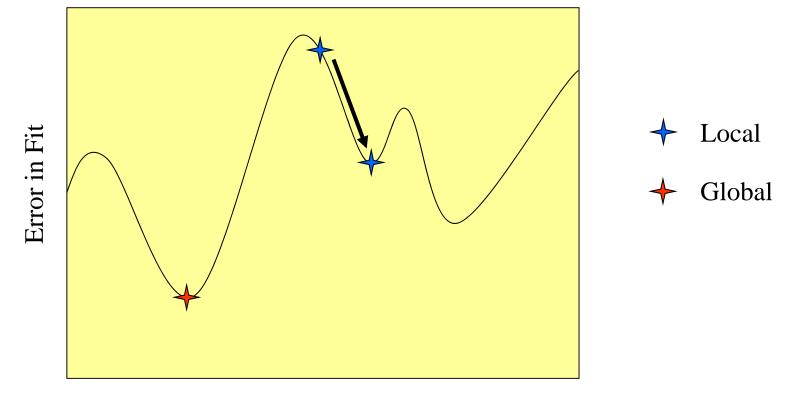
Compare simulation and experiment using least-squares objective



Many options for how to optimize the fit

Local and Global Optimization

The error function depends on M model parameters, and can be thought of as an M-dimensional "surface" of which we seek the minimum

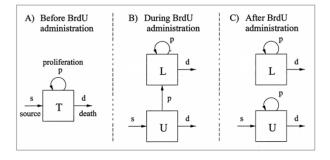


Parameter Value

Local optimization techniques find optimal fit around given starting point Global optimization attempts to avoid local minima

Fitting Models to Data in MATLAB

Several optimization functions available in many programming languages

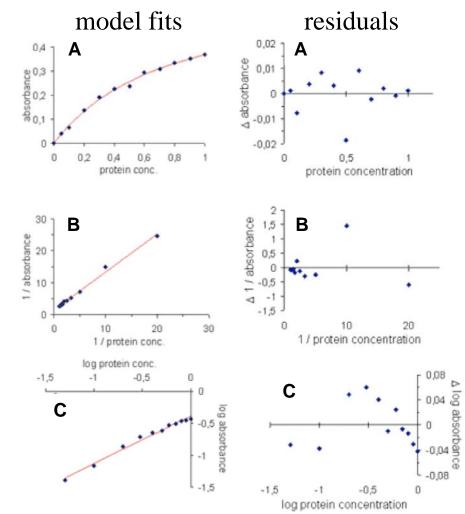


pri = [.01 .01]; %Initial guess for parameter values to be fitted [s p]
[pr,fval,exitflag] = lsqnonlin (@efun,pri,[],[],options,fl_observed,t,tau);
s = pr(1); p = pr(2); % Optimal parameter values
optional parameters
function error = efun (pr,fl_observed,t,tau)
s = pr(1); p = pr(2); d = s+p; % Assume steady-state
[fl_predicted] = labelBrdU(s,p,d,tau,t); % Function that simulates model
error = sum((fl_predicted-fl_observed).^2); % Least-squares objective

lsqnonlin, fminsearch, fmincon, fminbnd

Goodness of Fit and the Residuals Plot

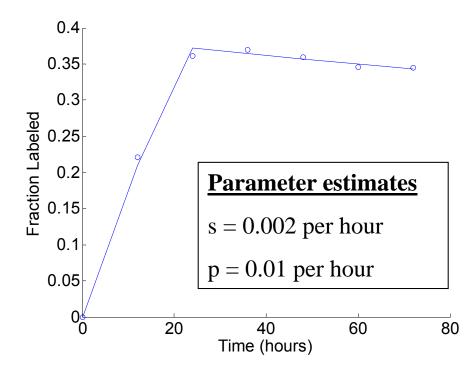
- A high correlation can exist even for a model that systematically differs from the data (all 3 examples have $r^2 > 0.99$)
- One must also examine the distribution of residuals—a good model fit should yield residuals equally distributed along *x* and normally distributed around zero with no systematic trends, as in A rather than B or C

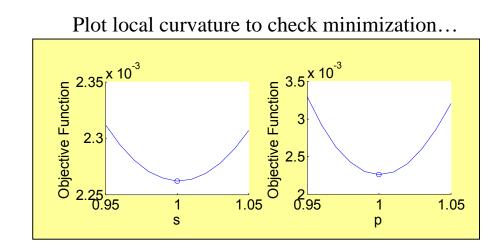


adapted from Lobemeier, 2000

Optimal Parameter Estimates

Least-squares fit using lsqnonlin in MATLAB

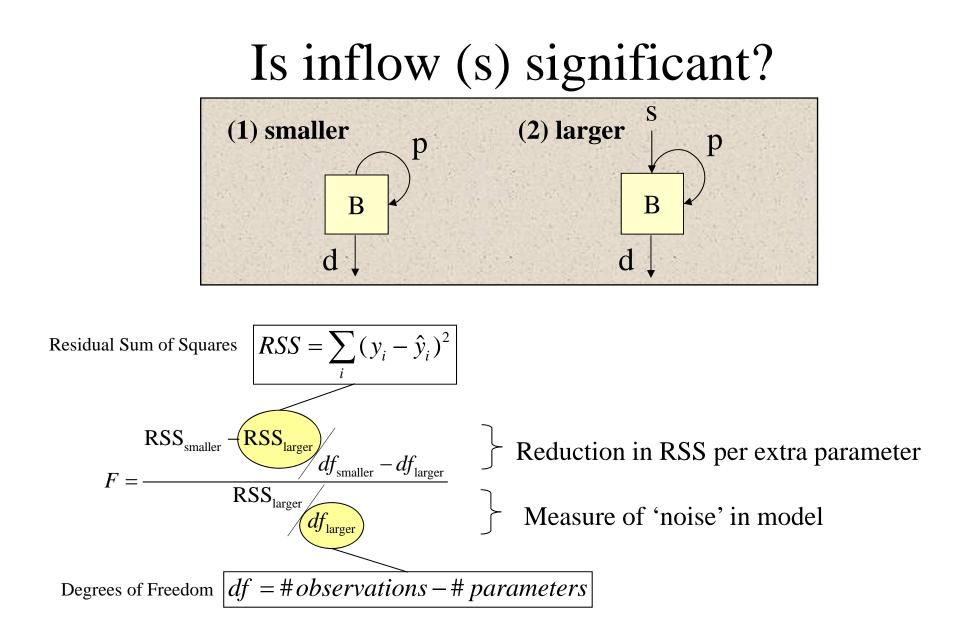




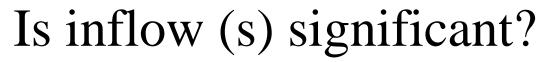
Recall, parameters used to create data:

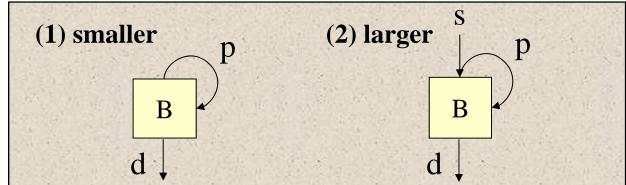
- s = 0.003 per hour
- p = 0.01 per hour
- d = p + s (to achieve steady state)

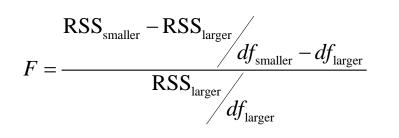
Is inflow necessary to fit the data? Can we use simpler model?



F distribution with $(df_{smaller}-df_{larger}, df_{larger})$ degrees of freedom







Reduction in RSS per extra parameter

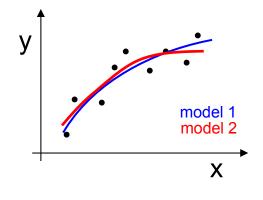
Measure of 'noise' in model

	Observations	Parameters	RSS	F test (1-fcdf in MATLAB)
(1) No flow (s=0)	6	1	9.38e-7	
(2) Including flow	6	2	0.95e-7	53.1 (p<0.0004)

Inflow (s) is important to explain observations

Comparing Two Model Fits

- The number of data points, *N*, must exceed the number of model parameters, *M*, yielding the degrees of freedom (*DOF* = *N*-*M*)
- Increasing *M* using a more complex model will generally improve the quality of fit and reduce RSS
- Increasing *MSE* with decreasing RSS can reveal an over-parameterized model
- An F-statistic can be computed to compare the results of two model fits
 - F ~ 1, the simpler model is adequate
 - F > 1, the more complex model is better, or random error led to a better fit with the complex model
 - P-value defines the probability of such a "false positive" result (lookup in F table)



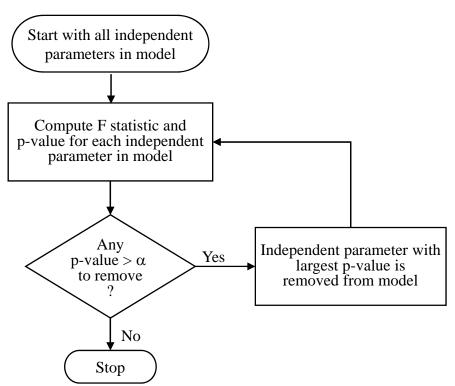
 $M \le N - 1$

$$MSE = \frac{RSS}{N - M} = \frac{RSS}{DOF}$$

Building models with variable selection

F statistic determines if variable added or deleted from model

Backward Elimination



Other Variations:

<u>Forward selection</u>: adds variables one at a time as long as significant F test.

<u>Stepwise procedure</u>: allows for removal of a parameter at each step

No guarantee that globally optimal model with be found (need all subsets, but prohibitive for large parameter space)