Bioinformatics: Practical Application of Simulation and Data Mining

Protein Folding I

Prof. Corey O'Hern Department of Mechanical Engineering & Materials Science Department of Physics Department of Applied Physics Program in Computation Biology & Bioinformatics Integrated Graduate Program in Physical & Engineering Biology Yale University

What are proteins?

•Proteins are important; e.g. for catalyzing and regulating biochemical reactions, transporting molecules, …

•Linear polymer chain composed of tens (peptides) to thousands (proteins) of monomers

- •Monomers are 20 naturally occurring amino acids
- •Different proteins have different amino acid sequences
- •*Structureless*, extended unfolded state
- •Compact, ʻunique' native folded state (with secondary and tertiary structure) required for biological function

3

•Sequence determines protein structure (or lack thereof)

•Proteins unfold or denature with increasing temperature or chemical denaturants

Amino Acids I

•Side chains differentiate amino acid repeat units •Peptide bonds link residues into polypeptides

Amino Acids II

The Protein Folding Problem:

What is ʻunique' folded 3D structure of a protein based on its amino acid $sequence?$ Sequence \rightarrow Structure

Lys-Asn-Val-Arg-Ser-Lys-Val-Gly-Ser-Thr-Glu-Asn-Ile-Lys- His-Gln-Pro- Gly-Gly-Gly-…

Driving Forces

•Folding: hydrophobicity, hydrogen bonding, van der Waals interactions, …

•Unfolding: increase in conformational entropy, electric charge… Hydrophobicity index

7

 \downarrow

pH 7 values: Monera et al., J. Pept. Sci. 1: 319-329 (1995)

Higher-order Structure

Secondary Structure: Loops, α-helices, β-strands/sheets

9

β-sheet β-strand 5Å

•Right-handed; three turns

•Vertical hydrogen bonds between $NH₂$ (teal/white) backbone group and C=O (grey/red) backbone group four residues earlier in sequence

•Side chains (R) on outside; point upwards toward NH₂ •Each amino acid corresponds to 100°, 1.5Å, 3.6

amino acids per turn

•(φ,ψ)=(-60°,-45°)

•α-helix propensities: Met, Ala, Leu, Glu

•5-10 residues; peptide backbones fully extended •NH (blue/white) of one strand hydrogen-bonded to C=O (black/red) of another strand $\bullet C_{\alpha}$, side chains (yellow) on adjacent strands aligned; side chains along single strand alternate up and down •(φ,ψ)=($-135^\circ, 135^\circ$) •β-strand propensities: Val, Thr, Tyr, Trp, Phe, Ile

Backbonde Dihedral Angles

Ramachandran Plot: Determining Steric Clashes

Backbone dihedral angles from PDB

Figure 1: Stick representation of an alanyl dipeptide mimetic. Atom types are color-coded: carbon=pink, nitrogen=blue, oxygen=red, hydrogen=white. A: The backbone dihedral angles ϕ and ψ and the bond angle τ are indicated. B: $\tau = 105^{\circ}$, $\phi = -90^{\circ}$, $\psi = 0^{\circ}$ (i.e. bridge region values of ϕ and ψ). Blueshaded spheres indicate steric overlap between mainchain nitrogens for this value of τ . C: $\tau = 115^{\circ}$, $\phi = -90^{\circ}$, $\psi = 0^{\circ}$ (i.e. bridge region values of ϕ and ψ). Blue-shaded spheres indicate no steric overlap between main-chain nitrogens for this value of τ .

Figure 2: Ramachandran plots of allowed ϕ/ψ combinations for 3 values of τ [2]. The solid red lines enclose the 'normally allowed' ϕ/ψ combinations and the dashed blue line indicates the 'outer limit'.

Prof. Fred Richards, Yale

Side-Chain Dihedral Angles

 χ_4 : Lys, Arg

 χ_5 : Arg

Side chain: C_{α} -CH₂-CH₂-CH₂-CH₂-NH₃ Use $NC_{\alpha}C_{\beta}C_{\gamma}C_{\delta}C_{\epsilon}N_{\epsilon}$ to define $\chi_1, \chi_2, \chi_3, \chi_4$

Figure 2: (a) Stick representation of a Leu dipeptide showing the side-chain dihedrals chil and chi2 (carbon=pink, nitrogen=blue, oxygen=red, hydrogen=white). (b) Dersity plot of chil/chi2 value for every Leu in the Durb rack database $[S]$. (c) My calculated energy landscape for the Leu dipeptide using the repulsive Lermand-Jones interaction potential overlaid on the Durb rack probability distribution (grey scale). White regions correspond to low-energy minima with energy increasing from yellow to black.

Sidechain Dihedral Angle Distributions for Leu

Your model is oversimplified and has nothing to do with biology!

Molecular biologist Biological Physicist

Folding Transition

 $T>T_m$ $T < T_m$

Possible Strategies for Understanding Protein Folding

•For all possible conformations, compute free energy from atomic interactions within protein and proteinsolvent interactions; find conformation with lowest free energy…e.g using all-atom molecular dynamics simulations

Not possible?, limited time resolution

•Use coarse-grained models with effective interactions between residues and residues and solvent

General, but qualitative

Why do proteins fold (correctly & rapidly)??

Levinthal's paradox:

For a protein with N amino acids, number of backbone conformations/minima

 $N_{c} \sim \mu^{2N}$ $\mu = \text{\# allowed dihedral angles}$

How does a protein find the global optimum w/o global search? Proteins fold much faster.

$$
N_c \sim 3^{200} \sim 10^{95}
$$

\n
$$
\tau_{\text{fold}} \sim N_c \tau_{\text{sample}} \sim 10^{83} \text{ s}
$$
 vs $\tau_{\text{fold}} \sim 10^{-6} \text{ - } 10^{-3} \text{ s}$
\n
$$
\tau_{\text{universe}} \sim 10^{17} \text{ s}
$$
 24

Roughness of Energy Landscape

Folding Pathways

Folding Phase Diagram

Open Questions

•What differentiates the native state from other low-lying energy minima?

•How many low-lying energy minima are there? Can we calculate landscape roughness from sequence?

•What determines whether protein will fold to the native state or become trapped in another minimum?

•What are the pathways in the energy landscape that a given protein follows to its native state?

NP Hard Problem!

Digression---Number of Energy Minima for Sticky Spheres

