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What are proteins!?
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Linear polymer \/ Folded state

*Proteins are important; e.g. for catalyzing and regulating biochemical reactions,
transporting molecules, ...

Linear polymer chain composed of tens (peptides) to thousands (proteins) of monomers

*Monomers are 20 naturally occurring amino acids

Different proteins have different amino acid sequences

oStructureless, extended unfolded state

*Compact, unique’ native folded state (with secondary and tertiary structure) required
for biological function

*Sequence determines protein structure (or lack thereof)

*Proteins unfold or denature with increasing temperature or chemical denaturants
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Amino Acids |

General structure of Amino Acids

H
Amino ._ (l:_. Carboxyl
Group ‘ group

Variable Group
N-terminal C, C-terminal
R
variable
side chain

*Side chains differentiate amino acid repeat units

*Peptide bonds link residues into polypeptides
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The Protein Folding Problem:

What is ‘unique’ folded 3D structure of a protein based on its amino acid
sequence? Sequence —  Structure

Lys—-Asn-Val-Arg-Ser-Lys-Val-Gly-Ser-Thr-Glu-Asn-lle-Lys- His-Gln-Pro- Gly-Gly-Gly-...




Driving Forces

*Folding: hydrophobicity, hydrogen bonding, van der
Waals interactions, ...

*Unfolding: increase in conformational entropy,
electric charge...

Hydrophobicity index

inside H (hydrophobic)

outside P (polar)




Higher-order Structure

Primary protein structure
is sequence of a chain of amino acids

Pleated sheet Alpha helix

occurs when the saquence of amino acids
are linked by hydrogen bonds

A\
‘ Secondary protein structure
N

Pleated sheet
Tertiary protein structure
occurs when cartain attractions are presant
batweean alpha helicas and pleatad sheats

Alpha helix

Quaternary protein structure
is a protein consisting of more than one
amino acid chain.




Secondary Structure: Loops, a-helices, p-strands/sheets
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o-helix
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*Right-handed; three turns

*Vertical hydrogen bonds between NH, (teal/white)
backbone group and C=0 (grey/red) backbone group
four residues earlier in sequence

*Side chains (R) on outside; point upwards toward NH,
*Each amino acid corresponds to 100°, 1.5A, 3.6

amino acids per turn

*5-10 residues; peptide backbones fully extended
*NH (blue/white) of one strand hydrogen-bonded
to C=0 (black/red) of another strand

*C,, ,side chains (yellow) on adjacent strands
aligned; side chains along single strand alternate
up and down

. =(-135°,135°)
e A e (O4)=(-135°,
(o 1P). (-60°,-45 .). . *p-strand propensities:Val, Thr, Tyr; Trp,
*o-helix propensities: Met, Ala, Leu, Glu 9 Phe. lle



Backbonde Dihedral Angles
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Ramachandran Plot: Determining Steric Clashes

Non-Gly

Backbone
dihedral angles
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Backbone dihedral angles from PDB
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Figure 1: Stick representation of an alanyl dipeptide
mimetic. Atom types are color-coded: carbon=pink,
nitrogen=Dblue, oxygen=red, hydrogen=white. A: The
backbone dihedral angles ¢ and @ and the bond an-
gle v are indicated. B: v = 1067, ¢ = -90°,
t = 0° (i.c. bridge region values of ¢ and v). Blue-
shaded spheres indicate steric overlap between main-
chain nitrogens for this value of 7. C: v = 115°,
@ = —90°, ¥ = 0° (i.e. bridge rcgion values of ¢
and ¢). Blue-shaded spheres indicate no steric over-
lap between main-chain nitrogens for this value of 7.

180 "

~ - =105 4
3 |
- .
’
he ol 9
v 0
> o ! .
----- ' 5
-180
180 "
( E t=110
L -
’ L)
\ "
\I’ 0:\--’ .
sm-
2 {
=
-150- -----
180 .
]\
' t=115
| ‘' -
- - v
; "
-~ A .\‘
v 0 \\ \“ 1
&
qBpE ===
!?m 0 160

0

Figure 2: Ramachandran plots of allowed ¢/ com-
binations for 3 values of 7 [2]. The solid red lines en-
close the ‘normally allowed’ ¢/t) combinations and
the dashed blue line indicates the “outer limit’.
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Side-Chain Dihedral Angles

Use NC,C,C C;C.N. to define ¥, X2, %3» X4
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Figure 2: (a) Stick represertation of a Leu dipephde shovang the side-chain dihedrals chul and chi2
(cabon=pink, mbrogen=bhie, oxygzen=1wd, hydmwgen=wlite). (b) Demity plot of chulichi2 vahie forevery
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Your model is oversimplified
and has nothing to do with
biology!

Your model is too complicated
and has no predictive power!

Molecular biologist Biological Physicist

21



Folding Transition

Oxygen: Red
Carbon: Cyan
Nitrogen: Dark Blue
Sulfur:Yellow

>T T<T



Possible Strategies for Understanding Protein Folding

*For all possible conformations, compute free energy
from atomic interactions within protein and protein-
solvent interactions; find conformation with lowest free

energy...e.g using all-atom molecular dynamics
simulations

Not possible?, limited time resolution

*Use coarse-grained models with effective interactions
between residues and residues and solvent

General, but qualitative
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Why do proteins fold (correctly & rapidly)??

Levinthal's paradox:

For a protein with N amino acids, number of backbone conformations/minima

2N |
N c -~ ‘Ll, u = # allowed dihedral angles

How does a protein find the global optimum w/o
global search? Proteins fold much faster.

Nc~ 3200 ~ | 095
r~ r~ 83 ~ -6_ -3
tfold Nc Tsample I O S VS Tfold I O I 0 S

~ |O|7S

Tuniverse 24



Energy Landscape

U, F =U-TS
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rVZU >0 minimum all atomic

V°U =0 saddle point coordinates;

dihedral angles
VU <0 maximum 23



Energy

Roughness

of Energy Landscape

smooth, funneled

(Wolynes et. al. 1997)
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Folding Pathways

Collapsed

structures

Native
fold

similarity to
native state




Folding Phase Diagram
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Open Questions

*\What differentiates the native state from other low-lying energy minima®?

How many low-lying energy minima are there? Can we calculate
landscape roughness from sequence?

*\What determines whether protein will fold to the native state or become
trapped in another minimum?

*WWhat are the pathways in the energy landscape that a given protein
follows to its native state?

NP Hard Problem!
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Digression---Number of Energy Minima for Sticky Spheres
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