Problem 1:

For the BLN model protein discussed in class (see J. D. Honeycutt and D. Thirumalai, "The nature of folded states of globular proteins," Biopolymers 32 (1992) 695 \& T. Veitshans, D. Klimov and D.Thirumalai, "Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties", Folding and Design 2 (1997) 1-22) which includes Lennard-Jones-like long-range (V_{lr}), bond length (V_{bl}), bond angle $\left(\mathrm{V}_{\mathrm{ba}}\right)$, and dihedral angle $\left(\mathrm{V}_{\mathrm{da}}\right)$ interactions, calculate the total potential energy, given by

$$
V_{\text {tot }}=\sum_{i=1}^{N} \sum_{j=1}^{i-2} V_{l r}\left(r_{i, j}\right)+\sum_{i=1}^{N-1} V_{b l}\left(r_{i, i+1}\right)+\sum_{i=1}^{N-2} V_{b a}\left(\theta_{i, i+1, i+2}\right)+\sum_{i=1}^{N-3} V_{d a}\left(\phi_{i, i+1, i+2, i+3}\right) \text {, where } r_{i, j}=\left|\vec{r}_{i}-\vec{r}_{j}\right|, \vec{r}_{i} \text { locates the }
$$

center of monomer i, σ is the diameter of the monomer, $V_{l r}\left(r_{i, j}\right)=4 \varepsilon_{h}\left[\left(\frac{\sigma}{r_{i, j}}\right)^{12}+C\left(\frac{\sigma}{r_{i, j}}\right)^{6}\right]$ with $\mathrm{C}=-1$ and $\varepsilon=\varepsilon_{\mathrm{h}}$ when $\mathrm{i}, \mathrm{j}=\mathrm{B}, \mathrm{B}, \mathrm{C}=1$ and $\varepsilon=\varepsilon_{\mathrm{L}}=2 / 3 \varepsilon_{\mathrm{h}}$ when $\mathrm{i}, \mathrm{j}=\mathrm{LL}, \mathrm{LB}$, and $\mathrm{C}=0$ and $\varepsilon=\varepsilon_{\mathrm{h}}$ when $\mathrm{i}, \mathrm{j}=\mathrm{NN}, \mathrm{NL}, \mathrm{NB}$, and ε_{h} is the Lennard-Jones energy scale, $V_{b l}\left(r_{i, j}\right)=\frac{k_{b}}{2}\left(r_{i, j}-\sigma\right)^{2}, \mathrm{k}_{\mathrm{b}}$ is the spring constant, $V_{b a}\left(\theta_{i, j, k}\right)=\frac{k_{\theta}}{2}\left(\theta_{i, j, k}-\theta_{0}\right)^{2}, \mathrm{k}_{\mathrm{b}}$ is the bend spring constant, $\theta_{i, j, k}=\cos ^{-1}\left(\frac{\vec{r}_{i, j} \cdot \vec{r}_{k, j}}{r_{i, j} r_{k, j}}\right)$, and θ_{0} is the equilibrium bend angle, $V_{d a}\left(\phi_{i, j, k, l}\right)=A\left(1+\cos \left(\phi_{i, j, k, l}\right)\right)+B\left(1+\cos \left(3 \phi_{i, j, k, l}\right)\right)$, where A and B constants and where $\phi_{\mathrm{I}, \mathrm{j}, \mathrm{k},}$ is defined by $\cos \left(\phi_{i, j, k, l}\right)=\left(\vec{r}_{i, j} \times \vec{r}_{k, j}\right) \cdot\left(\vec{r}_{j, k} \times \vec{r}_{l, k}\right) /\left(\left|\left(\vec{r}_{i, j} \times \vec{r}_{k, j}\right) \|\left(\vec{r}_{j, k} \times \vec{r}_{l, k}\right)\right|\right)$ and $\sin \left(\phi_{i, j, k, l}\right)=\vec{r}_{j, k} \cdot\left[\left(\vec{r}_{i, j} \times \vec{r}_{k, j}\right) \times\left(\vec{r}_{j, k} \times \vec{r}_{l, k}\right)\right] /\left(\left(\vec{r}_{i, j} \times \vec{r}_{k, j}\right) \|\left(\vec{r}_{j, k} \times \vec{r}_{l, k}\right)\right)$.

Calculate the total potential energy $\mathrm{V}_{\text {tot }}$ for the configuration of the $(\mathrm{N}=46)$ polymer $\mathrm{B}_{9} \mathrm{~N}_{3}(\mathrm{LB})_{4} \mathrm{~N}_{3} \mathrm{~B}_{9} \mathrm{~N}_{3}(\mathrm{LB})_{5} \mathrm{~L}$ in the file config.dat.

Download the file config.dat from the course website, which lists the positions of the 46 monomers corresponding to the ground state of the BLN model $\mathrm{B}_{9} \mathrm{~N}_{3}(\mathrm{LB})_{4} \mathrm{~N}_{3} \mathrm{~B}_{9} \mathrm{~N}_{3}(\mathrm{LB})_{5} \mathrm{~L}$ in the following format:
$\mathrm{r}_{\mathrm{x} 1} \mathrm{r}_{\mathrm{y} 1} \mathrm{r}_{\mathrm{z} 1}$
$\mathrm{r}_{\mathrm{x} 2} \mathrm{r}_{\mathrm{y} 2} \mathrm{r}_{\mathrm{z} 2}$
$\mathrm{r}_{\mathrm{xN}} \mathrm{r}_{\mathrm{yN}} \mathrm{r}_{\mathrm{zN}}$
All above constants can be found in Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties", Folding and Design 2 (1997) 1-22). The final energy value should be in terms of ε_{h}.

Note: The long range energetic interaction $V_{l r}\left(r_{i, j}\right)=4 \varepsilon_{h}\left[\left(\frac{\sigma}{r_{i, j}}\right)^{12}+C\left(\frac{\sigma}{r_{i, j}}\right)^{6}\right]$ applies only to non-adjacent amino acids.

