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The Power of Next-Gen Sequencing

Chromosome Conformation Capture

m + More
Experiments
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CLIP, RIP
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For more Seq technologies, see: http://liorpachter.wordpress.com/seq/




Next-Gen Sequencing as Signal Data
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v' Map reads (red) to the genome. Whole pieces of DNA
are black.
v' Count # of reads mapping to each DNA base - signal
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Outline

Read mapping: Creating signal map
Finding enriched regions
— CHIP-seq: peaks of protein binding

Lol

RNA-seq: from enrichment to transcript
guantification

i — |

i — | |
Application: Predicting gene expression from

transcription factor and histone modification
binding




Read mapping

* Problem: match up to a billion short sequence
reads to the genome

* Need sequence alignment algorithm faster
than BLAST -

I
Tags —
I

I_ _—

|
|
|
|
: Signal map |
I
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Read mapping (sequence alignment)

* Dynamic programming
— Optimal, but SLOW
* BLAST

— Searches primarily for close matches, still too slow
for high throughput sequence read mapping

* Read mapping
— Only want very close matches, must be super fast



Index-based short read mappers

Similar to BLAST

Map all genomic
locations of all
possible short
sequences in a hash
table

Check if read
subsequences map to
adjacent locations in
the genome, allowing
forupto1or?2
mismatches.

Very memory
intensive!

Spaced seeds

Reference genome
(> 3 gigabases)

Short read

Chr1 ACTCCCGTACTCTAAT
Chr2
Chr3m===
Chr4
Extract seeds
Position N
Position 2
CTGC CGTA AACT AATG
Position 1 \ 4
:CLG CCGT AAAC TAAT ACTC CCGT ACTC TAAT
ACTG sses AAAC soss i l_1]
ssss CCGT s+ss TAAT Six seed L2
BTG anen  oeee TAAT pairs per - { 3
........ AAAC TAAT read/ l 4
ACTG CCGT sess soss fragment 5
sess CCGT AAAC seee | 6 |

llndex seed pairs

Seed index
(tens of gigabytes) Look up each pair
of seeds in index
ACTG #see AAAC soee
Hits identify positions
in genome where
spaced seed pair
is found
s CCGT weee TAAT
ACTG +ses sass TAAT Confirm hits
*+ CCGT AMC +ess by checking

“s+4+" positions

=)

7
Trapnell and Salzberg 2009, Slide adapted from Ray Auerbach



Read Alignment using Burrows-
Wheeler Transform ..........

ATAGTCGAGGCTTTAS

1. All possible rotations

ATAGTCGAGGCTTTAS
TAGTCGAGGCTTTASA
AGTCGAGGCTTTASAT
GTCGAGGCTTTASATA
TCGAGGCTTTASATAG
CGAGGCTTTASATAGT
GAGGCTTTASATAGTC
AGGCTTTASATAGTCG
GGCTTTASATAGTCGA
GCTTTASATAGTCGAG
CTTTASATAGTCGAGG
TTTASATAGTCGAGGC
TTASATAGTCGAGGCT
TASATAGTCGAGGCTT
ASATAGTCGAGGCTTT
$*"TAGTCGAGGCTTTA

2. Sort

— >

GTTTGCGAANTGTCSA

AGGCTTTASATAGTCG
AGTCGAGGCTTTASAT
AS*TAGTCGAGGCTTT
CGAGGCTTTASATAGT
CTTTASATAGTCGAGG
GAGGCTTTASATAGTC
GCTTTASATAGTCGAG
GGCTTTASATAGTCGA
GTCGAGGCTTTASATA
TAGTCGAGGCTTTASA
TASATAGTCGAGGCTT
TCGAGGCTTTASATAG
TTASATAGTCGAGGCT
TTTASATAGTCGAGGC
ATAGTCGAGGCTTTAS
SATAGTCGAGGCTTTA

3. Select final
column

| ATAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAGS | Genomic sequence

I GGTTGGTCGGATTCGGAATCACGGAAAATTAAGATTCCSG ] Transform

Adapted from Flicek, P. & Birney, E. Sense from sequence reads: methods for
alignment and assembly. Nat Meth 6, S6-S12 (2009).

Reference genome
(> 3 gigabases)

Chr1
Chr2 ms
Chr3 m==
Chr4

Concatenate into
single string

Short read

ACTCCCGTACTCTAAT

L

transform and indexing

»
Burrows-Wheeler l

Bowtie index ;'

(~2 gigabytes) H
n

Look up i
‘suffixes’ n
of read ‘

\/

ACTCCCGTACTCTAAT
, T
- AT
~ AAT
.
.

ACTCCCGTACTCTAAT

Hits identify

positions in

genome where ”
read is found

b

Convert each
hit back to
genome location

Used in Bowtie, the current most widely used read aligner

* Described in Coursera course: Bioinformatics Algorithms (part 1, week 10)
Trapnell and Salzberg 2009, Slide adapted from Ray Auerbach



Read mapping issues

Multiple mapping

Unmapped reads due to sequencing errors

VERY computationally expensive

— Remapping data from The

Cancer Genome Atlas

consortium would take 6 CPU years?

Current methods use heu
100% accurate

These are open problems

ristics, and are not

lhttps://twitter.com/markgerstein/status/396658032169742336




. e . transcription factor
histone modification P

\ /
bl

FINDING ENRICHED REGIONS: CHIP-
SEQ DATA ANALYSIS

Park 2009 Nature Reviews Genetics



J/ | (‘

* Determinellocations of transcription factors and
histone modifications.

* The binding of these factors is what regulates whether
genes get transcribed.

11
Park 2009 Nature Reviews Genetics



CHIP-seq protocol

DNA bound by histones and transcription factors

Target protein of mterest with Antibody

Hg A

Sequence DNA bound by protein of interest

12
Park 2009 Nature Reviews Genetics



CHIP-seq Data

>

ChIP-seq

A

S —

# of sequence reads

Chromosomal region

Basic interpretation: Signal map to represents binding profile
of protein to DNA

How do we identify binding sites from CHIP-seq signal
“peaks”?

13
Park 2009 Nature Reviews Genetics



“Naive” CHIP-seq analysis

ChiP—seq ‘ | ‘
L - p— St

Chromosomal region

e Background assumption: all sequence reads map to
random locations within the genome

* Divide genome into bins, distribution of expected
frequencies of reads/bin is described by the
Poisson distribution.

* Assign p-value based on Poisson distribution for
each bin based on # of reads

# of sequence reads

Rozowsky et al. 2009 Nature Biotech, Park 2009 Nature Reviews Genetics



Is a Poisson background reasonable for
CHIP-seq data?

_ Input

8e+05
l

Frequency
Frequency

4e+05
|

{ l I 1
0 &0 100 150 200

Oe+00
|

Reads/1000 base window

4e+05 8e+05

Oe+00

Poisson Distribution

|

[ | I
0 &0 100 150 200

Reads/1000 base window

“Input” is from a CHIP-seq experiment using an antibody for a non-

DNA binding protein

15
ENCODE NF-Kb CHIP-seq data



Is a Poisson background reasonable for
CHIP-seq data?

* “Input” experiment: Do CHIP-seq using an
antibody for a protein that doesn’t bind DNA

bl

ChiP—seq input DNA

 There are also “peaks” in the input!

Park 2009 Nature Reviews Genetics



Peakseq

Rozowsky et al. 2009 Nature Biotech
Gerstein Lab

17



Determining protein binding sites by
comparing CHIP-seq data with input




Candidate binding site identification

100
- 80

| ” Threshold
'spmﬂ tmlLﬂLMLm " m ' - m ' e LMM """ I et g i ittt i i ekl st

b
| | H HI \ H \I iy \H | H\I\ | Potentlal target sites
Ak l V U \‘ n WAL IO WV M“WIMWL 1AW er f
i

! J Mappablllty map

TBCH D22A

O 1" - - ) —

CELSR1 CERK

Use Poisson distribution as background, as in the
“naive” analysis discussed earlier

Normalize read counts for mappability
(unigueness) of genomic regions

Use large bin size, finer resolution analysis later
Rozowsky et al. 2009 Nature Bilogtech



Input normalization

400 v TRAT o P

350 - Y X
L . ;.3,";“ ."/ o
8300< Ay .
3 250 +
8200*
g.-’ 150 -
= 100 P=0
& 50 1 Slope = 1.24

9 Correlation = 0.71

0 50 100 150 200 250 300 350 400
Input DNA

v'"Normalize based on slope of least squares regression line.

Normalized reads = CHIP-seq reads/(slope*input reads)

20
Rozowsky et al. 2009 Nature Biotech



Input normalization

All data points Candidate peaks removed
400 — - 400
AR R 350 - P,:‘l
o ol Wit AR . @ Slope = 0. 98
g 3001 W AR ¢ 300 1 Correlation = 0.77
@ 250 @ 250 1
g 200 1 200 1
c‘{L’ 150 1 h 150 -
= 100 " P=0 = 100 1
O . Slope = 1.24 O g
o Correlation = 0.71 0
O 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Input DNA Input DNA

v'Using regression based on all data points (including
candidate peaks) is overly conservative.

21
Rozowsky et al. 2009 Nature Biotech



Calling peaks vs. input

ChlIP-seq sample
mmmmmwhmmﬂm M wtdl Jmm&l MIMMMMMM‘.J‘MhmhmmMm‘MLm wiisblias s

I\ IR Ry \ IV 1T | o
80 Potentlal target S|tes
60

o Normalized input DNA

0
MLMM“MWMMMNMMWMMMMW bl okt kb bk bl g

Enriched target sites | ||| ]

* Binomial distribution
— Each genomic region is like a coin

— The combined number of reads is the # of times that
the coin is flipped

— Look for regions that are “weighted” toward sample,
not input

Vv

80

22
ENCODE NF-Kb CHIP-seq data



Multiple Hypothesis Correction

* Millions of genomic bins =2 expect many bins
with p-value < 0.05!

e How do we correct for this?



Multiple Hypothesis Correction

* Bonferroni Correction
— Multiply p-value by number of observations
— Adjusts p-values = expect up to 1 false positive

— Very conservative



Multiple Hypothesis Correction

* False discovery rate (FDR)

— Expected number of false positives as a
percentage of the total rejected null hypotheses

— Expectation[false positives/(false positives+true
postives)]

* g-value: maximum FDR at which null
hypothesis is rejected.

* Benjamini-Hochberg Correction
— g-value = p-value*# of tests/rank



|s PeakSeq an optimal algorithm?



Many other CHIP-seq “peak”-callers

*'°° &
-"° e
‘b«@

program /G2 “f" S8 f o fff e‘yy:'. o°¢$°;i:§’; o o

) conditional
CisGenome | 28 | 1.1 X X bi | model
Mirsmal ChipSeq
Poak F 16 12.01 X
chromsome scale
E-RANGE| 27 | 21 X X X Poisson dist.
MACS| 13 |1.35 X X X X local Poisson dist.
. chromsome scale
auest| 14|23 X X X X Poisson dist.
HPeak| 29 | 1.1 X X X Hidden Markov Moded
Sole-Search| 23] 1 | X | X X X X One sample t-test
onal
Peakseq| 21 |1.01 X X X binoenial moded
SISSRS| 32 14 X X X
Spp package
(wid & mic) 3|17 X X X X X
Generating density Peak Adjustments w. Significance relative to
profiles assignment control data control data

X* = Windows-only GUI or cross-platfoem command kne interface

X** = gptional if sufciont data is available to spit control data
X' = method exiudes putative duplicated regions, no treatment of deletions

Wilbanks EG, Facciotti MT (2010) Evaluation of Algorithm Performance in ChIP-Seq Peak Detection. PLoS ONE 5(7): e11471. doi:10.1371/

journal.pone.0011471
http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011471

@° PLOS 2’7 ONE



CHIP-seq summary

* Method to determine DNA binding sites of
transcription factors or locations of histone
modifications

* Must normalize sequence reads to
experimental input

e Search for signal enrichment to find peaks

— Peakseq: binomial test + Benjamini-Hochberg
correction

— Many other methods



RNA-SEQ: GOING BEYOND
ENRICHMENT



RNA-seq

e Searching for “peaks” not enough:

Base-resolution expression profile

RNA expression level

Nucleotide position

* Are these “peaks” part of the same RNA
molecule?

* How much of the RNA is really there?

30
Wang et al Nature Reviews Genetics 2009



Background: RNA splicing

I— —

intron
exon

I—

 pre-mRNA must have introns spliced out
before being translated into protein.

* The components that are retained in the
mature mRNA are called exons

31



Background: alternative splicing

B I
exon
Isoform 1
Isoform 2

e Alternative splicing leads to creation of multiple
RNA isoforms, with different component exons.

e Sometimes, exons can be retained, or introns can
be skipped. 32



Simple quantification

* Count reads overlapping annotations of
known genes

* Simplest method: Make composite model of
all isoforms of gene

—] — | L 1 { — Isoform 1

— — | L 1 i — Isoform 2

— N — - —  Composite Model

* Quantification: Reads per kilobase per million
reads (RPKM)

33



Isoform Quantification

* Map reads to genome

e How do we assign reads to overlapping
transcripts?

— — | L 1 [ — Isoform 1
N

'| | { — Isoform 2




Isoform Quantification

e Simple method: only consider unique reads

— — | L 1 [ — Isoform 1
-

'| | { — Isoform 2

1




Isoform Quantification

e Simple method: only consider unique reads
* Problem: what about the rest of the data?

_|

I { — Isoform 1

—
—] ] ] | |— Isoform 2

36



Expectation Maximization Algorithm

* Assign reads to isoforms to maximize

likelihood of generating total pattern of
observed reads.

* 0. Initialize (expectation): Assign reads
randomly to isoforms based on naive (length
normalized) probability of the read coming
from that isoform (as opposed to other
overlapping isoforms)

probabilities Py =

/ O s :
fslcing x5 "
fragments from > nans p

each of the - abundances
transcripts s o I Py
- tbt 9
¥y, — A
“ e - Pt

Lior Pachter 201i7ArXiv




Expectation Maximization Algorithm

1. Maximization: Choose transcript
abundances that maximize likelihood of the
read distribution (Maximization).

0.33 t » . aligned reads
ranscrip with proportional
abundances Q ‘) ‘ - c.l'— O assignment to
- b — — transcripts
P Dlue e——--ee transcripts
green ------------------------ aligned to
red S - s s w e o S ¢ v v v genome
033
genome

027

Lior Pachter 201i8ArXiv



Expectation Maximization Algorithm

e 2. Expectation: Reassign reads based on the
new values for the relative quantities of the
isoforms.

0.33 _ ‘ aligned reads
transcript with proportional

abundances Q ‘>_ d— O assignment to

- transcripts
transcripts
........................ aligned to
------ genome
0.33
genome

027

Lior Pachter 201i9ArXiv



Expectation Maximization Algorithm

* 3. Continue expectation and maximization
steps until isoform quantifications converge (it
is @ mathematical fact that this will happen).

. aligned reads
with proportional
027 ®© O ¢ - i— (P  assignmentto
_a_b — —_ transcripts
E-step ©
...... .
————® Dle transcripts
green ........................ aligned tO
red P - s s e e e e e e S - v v e genome
genome
M-step
9© o2 _e
E-step
’ ......

Lior Pachter ZOﬁOArXiv



Detecting new transcripts
Search for “peaks”:

Base-resolution expression profile

RNA expression level

Nucleotide position

Reads that overlap splice junctions—2> peaks
part of same transcript

Special sequencing techniques to find ends of
transcripts

Still a major open area of research ’

1
Wang et al Nature Reviews Genetics 2009



RNA-Seq conclusions

* RNA-Seq is a powerful tool to identify new
transcribed regions of the genome and
compare the RNA complements of different
tissues.

* Quantification harder than CHIP-seq because
of RNA splicing

* Expectation maximization algorithm can be
useful for quantifying overlapping transcripts



COMPARING GENOME-WIDE
SIGNALS



RNA-seq Expression Correlation

, Spearman correlation: 0.959

RPKM

Embryonic stem cells (hESC)

0 1 2 3

10 10

10

Neural progenitor cells (N2): RPKM
* Correlate expression between tissues

Adapted from Wu, J.Q., Habegger, L. et al. Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and

10

paired-end sequencing. Proceedings of the National Academy of Sciences 107, 5254-5259 (2010).

Slide adapted from L Haﬁegger



CHIP-seq signals of interacting proteins

10100
I Fos | |

o Jun
e kil b duba Ll
- (I T HiE— (- [ L i A

7453 ZBTB17  CLCNKA EPHA2 RSG1 FBX042 Clorfidd  CROCCP3 NBPF1  MIR3675 MSTIP9  MIR3675 CROCC ~ SDHE PADI2

* Fos and Jun, which interact physically, have
similar binding profiles at many genomic loci.

45
Data from ENCODE Consortium, figure by me



Signal aggregation

8-- ey .- MEnan oy snanan oy s o ¥ 1 B ! . X | S=G.C
1R=0CA
| |K=GT
_é‘ 4 Y=C.T
- i 1W=AT
g . D=A1G
O N=ATGC
3
a at
L1 W WY R e

8 rare N ad | IR BRI NN PPN BPRPRTR PR S R A
-200 <100 O 100 200 -200 <100 O 100 200 -200 <100 © 100 200

Distance from element (bp)

Sum signals from all genomic locations of a
certain type

— Here: CHIP seq signal at fixed distances from

protein binding motif
Venters and Pugh Natuﬁg 2013



PREDICTING GENE EXPRESSION
WITH CHIP-SEQ DATA



RELATING GENE EXPRESSION WITH
HISTONE MODIFICATION AND TF BINDING
SIGNALS

ulnputu To what extent the gene expression
_________________________________ levels are determined by TF binding/
HM modification?

modification signal

Predictive
models

: Histone
| —>

| |
| |
! Gene :
| expression :
: levels :
| |

Slide by Chao Cheng



Setting up the model

1. Divide area around gene into bins according
to distance to trascription start and end sites

TSS (transcription start site) TTS (transcription terminal site)
N == == - Gene k
AD\/ 4v ™ 4 1\/
Bin 40-1 Bin 41-80 Bin 120-81 Bin 121-160
(TSS-4kb to TSS)  (TSS to TSS+4kb) (TTS-4kb to TTS)  (TTS to TTS+4kb)

49
Slide by Chao Cheng



Setting up the model

2. Collect histone modification data for each
bin, and for each gene

TSS (transcription start site) TTS (transcription terminal site)
— Gene k
4 4.. /11a\ .44 0 1 81 1\/
Bin 40-1 Bin 41-80 Bin 120-81 Bin 121-160

(TSS-4kb to TSS) (TSS to TSS+4kb) (TTS-4kb to TTS)  (TTS to TTS+4kb)
Chromatin features: . >
Histone modifications .

Predictors

50
Slide by Chao Cheng



Setting up the model

3. Train model to “learn” relationship between
CHIP-seq and RNA-seq data.

TSS (transcription start site) TTS (transcription terminal site)

Gene k
0 1 811 60
\/ RNA-Seq data
Bin 40-1 Bin 41-80 Bin 120-81 Bin 121-160
(TSS-4kb to TSS)  (TSS to TSS+4kb) (TTS-4kb to TTS)  (TTS to TTS+4kb)

l l l Prediction target:

Chromatin features: : ) Gene expression level
Histone modifications ' .
Predictors

51
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His. mods around TSS & TTS are clearly related to level
of gene expression, in a position-dependent fashion

H3K4me?2

,-:f"\

Wf—-’

-1k

Gerstein*,..., Cheng* et al. 2010,

TSS

+1.5k -1.5k

— Transcript Level —
Autosomal

top 20%

bottom 20%

TS

Science

-4kb —-—— TSS =3 4kb

-4kb ~-e=—— TTS =3 4kb
Correlation between Signal and expression

START STO

H3(Ab1)
H3(Ab2)
H3K4me2
H3K4me3
H3K9me2
H3K9me3(Ab1)
H3K9me3(Ab2)
H3K36me2(Ab1)
H3K36me2(Ab2)
H3K36me3
H3K79me1
H3K79me2
H3K79me3
MES-4
MRG-1
POLII

52
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Support vector machine to classify genes
with high, medium and low expression

o
0
o
2 ol /
S —— BIN#1 (0kb)
@ - —— BIN £10 (-1kb)
B © BIN #20 (-2kb)
N BIN #30 (-3kb)
o —— BIN #40 (-4kb)
o
o

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

v'Areas close to gene predict expression better )
Slide by Chao Cheng



Support vector regression to predict gene
expression levels

Observed Expression ()
-2 -1

-3

Predicted expression from
Pol lI+13HMs (SVR model)

54
Slide by Chao Cheng



Mouse ESC : o TF Mode

Models g ; i HM Model
llluminates 3
Different g3 i i
Regions of S
Influence for .
TFs vs HMs ] § |

° Datasets -4kb TSS 4kb -4kb TTS 4kb

— ChlIP-Seq for 12 TFs
(Chen et al. 2008)

— ChIP-Seq for 7 HMs TF Model
(Meissner et al.’08; Mikkelsen et al. @_ | i Moe
07) S :

— RNA-Seq (Cloonan et al. 2008) % . :

A TF+HM model that 8 §
combine TF and HM St |
features does NOT improve
accuracy! St ! :
~akb TSS 4Kb —4Kb TS 4Kb
55

Cheng et al. 2011, Nucleic Acids Res. Slide by Chao Cheng



Sensitivity
0.0 0.2 04 06 0.8

1.0

TF and HM models are tissue specific

L1(0.820)
L2(0.805)
L3(0.800)
L4(0.796)

EEMB Model (BIN#43, 0.3kb)
EEMB(0.905)

Adult(0.802)

0.0 0.2 0.4 0.6 0.8
1-Specificity

HM model-- Best prediction is
achieved by using histone
modification and expression data
from the same developmental stage

1.0

Measured log2(K562/GM12878

PCC=0.73

10

-10 -5 0 5 10
Predicted log2(K562/GM12878)

TF model- differential TF binding
signals are predictive of differential
expression levels between two
human cell lines

56

Slide by Chao Cheng

Cheng et al. 2011, Genome Biology (a)



Summary: relate TF/HM signals with
expression

« TF/HM signals are highly predictive to gene
expression

« TF and HM signals are redundant for ‘predict’
gene expression

 TF and HM models are tissue/cell line specific

 microRNA expression can also be predicted

Gerstein et al. 2010, Science Cheng et al. 2011, Nucleic Acids Res. Cheng et al. 2011, Genome Biology (a) >

Slide by Chao Cheng



Conclusions

* Diverse sequencing experiments have
common analysis elements, based on signal
processing.

* Proper statistics key to making claims about
NGS data.

* Integrating many genome-wide experiments
through machine learning can yield useful
inferences about biology.



