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What 1s a mathematical model?

Uses mathematical language to describe a system

A mathematical model consists of a collection
of variables and rules governing their values.

Models are based on assumptions inspired by
observing some real phenomena 1n the hope
that the model behavior resembles the real
behavior.

Mathematical modeling is process of constructing, testing, and
improving mathematical models



Advantages of the modeling approach 1n biology

“Essentially, all models are wrong, but some are useful.”
-George Box, University of Wisconsin

Concise summary of present knowledge of operation of a
particular system

Predict outcomes of modes of operation not easily studied
experimentally 1in a living system

Provide diagnostic tools to test theories about the site of
suspected pathology or effect of drug treatment

Clarify / ssmplify complex experimental data

Suggest new experiments to advance understanding of a
system




Limitations of the modeling approach

“Essentially, all models are wrong, but some are useful.”
-George Box, University of Wisconsin

* Models often require many simplifying
assumptions

— beware of garbage 1n, garbage out

» Validation of model predictions 1s essential

— examination of behavior under known limiting
conditions

— experimental validation

— limits of model can point out what we don’t
understand




Modeling the immune response

[f you want more information on the biology...
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http://www?3.niaid.nith.gov/topics/immuneSystem




The Immune System

Science that began with Jenner in 1796

* A network of cells, tissues, and organs that work
together to defend the body against attacks by “foreign™
invaders (antigens).

— Primarily microbes (germs)—tiny, infection-causing organisms such as
bacteria, viruses, parasites, and fungi.

* Provides basis for vaccines (e.g., flu shot)

« But also implicated in disease:
— Autoimmune (Lupus, MS, Rheumatoid Arthritis)
— Respond to harmless foreign substance (ragweed pollen) produces allergy
— Sepsis, Cancer

« Understanding will lead to better diagnostics & therapies

Organs of immune system = “lymphoid organs™, since home to lymphocytes
(small white blood cells that are key players in the immune system)



Why Model the Immune System?

Experiments provide only a static window onto the real dynamics of immunity

* Immune response involves the o (1
collective and coordinated response EE
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of =10!2 cells and molecules

 Spatially-distributed system

— blood, lymph nodes, spleen, thymus,
bone marrow, etc.

* Feedback loops and non-linear dynamics
» Experiments often require artificial constructs

Models can help understand the source(s) of variability between experiments



Increasing Impact of Computational Immunology

‘All journals now publish papers with significant computational components

Summer School on

Computational Immunology
(June 9-13, 2014)
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Mechanistic modeling vs. curve fitting

Only mechanistically correct models extrapolate reliably
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Interpolation (i.e. within sample predictions) vs.
Extrapolation (i.e. out of sample predictions, as in the right panel)



Dynamic vs. Static modeling

A dynamic model accounts for the element of time,
while a static model does not

White blood cells produced

Exponential growth of virus by bone marrow

Population size (V)
Population size (M)

Time (1) Time ()

Dynamic equations can be simulated to study system behavior




Types of Dynamic Models

Choosing the type of model is an important first step

Continuous: time or state variables (often called ‘density’)
*  Ordinary differential equations

Discrete: time or state variables

« assume a small set of qualitative states e.g. active or inactive
«  changes in state are given by discrete (logical) rules

Deterministic: no randomness is involved in the
development of future states of the system

*  Given model structure, parameter values, and initial conditions, there is
no variation in output

Stochastic: the next state of is not fully determined by the
previous state — probability 1s involved

e  can take into account the fluctuations in mRNA/protein/cell numbers and
external noise

Spatial structure can also important




Ordinary Differential Equations (ODEs)

Continuous and Deterministic

Production rate

— = p W) B()=B(0)+ pr mmp

Population size

' Time (t)

Change in number of B cells per time

dB _ . B(t+A)-B()
dt t—0 At

Most models used in practice not solvable — simulate



Exponential growth (and decay)

Continuous and Deterministic

Population size (N)

al\f — N How long for
dr : Human population to double?
_ Population __ '
i 2N (0) = N(0)e"
% _i ///: In2=rt
- t = In[2]/r
Time (t) -
N(t)=N(0)e"

Doubling time: time for population to reach 2x initial value
Half-life: time for population to reach 50% of initial value



Steady-state

Population sizes remain constant at steady-state

Red Blood Cell production
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Solve for steady state by setting derivatives equal to zero



Density dependence

Birth (or death) rate may depend on population size
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Stable steady-state: small perturbations return to same state




Logistic Model (S-shaped curve)

Includes density-dependent birth and death (r=Db - d)

dN N 2000
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Initial stage of growth is 2 =108 (555
approximately exponential; 500 -
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Is this a “model” if can’t explain why birth/death rate r~N/K?
phenomenological model

Carrying capacity (K): population size that can be sustained indefinitely




Modeling Interactions

Law of mass action (also called the mean-field assumption):

Entities encounter each other according to their relative abundance across space -- the rate of an
elementary reaction is proportional to product of concentrations of participating entities

o) Target cells (T) become infected cells (I)
Or dT sl
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Other approaches are needed to account for spatial structure




Phase Plane Analysis

Nullclines plot where derivatives are zero (cross at steady-state)
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Phase portraits plot typical trajectories in the state space



The Modeling Process

Starts with a specific scientific question

Real World Working

Problem Model

Interpret Represent

Results/ Mathematical
Conclusions Model

Simulate Translate

Computational
\" feYe [=]|

Richard Allen

Model should produce predictions that suggest new experiments




B cells “recognize” antigens thorough antibody receptor

First phase of diversification occurs in bone marrow while cell is maturing
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Q@ o= Rearrangement generates diverse receptors:
=4 94 &
:mr;;zll-u;aarc::rti:;c:lhes

Membrane-bound Ighl (might)

B lymphocyles

First WJ recombination

1"r|f2 v‘d "'I‘< J'{ bl sw

T HIElHHHA— .

Number of functional gene segments
in human immunoglobulin loci

Light Heavy
Maudralization Segment chains chaln
Lysis (complement) 7 - K A H
Phagocytosis e
(PMN, macrophage) (USRS = Variable (V) 40 el G5
Diversity {T) 0 0 27
Jomng {J} 5 4 4]
Caopyright © 2002, Elsevier Scianca (USA). All rights resenved.

Second phase of diversification (by somatic hypermutation) follows activation




The Modeling Process: V(D)J Recombination

How are VJ segments chosen to generate an Ig light chain?

. v, | ds . | .
Hypothesis: VJ chosen

randomly with equal probability

ecombinalio
Vin Ve Vi e de e Uy Cx

I Real World I
I Problem

Observed V usage

J ' | Pr[V.]= UN; P[J,]= I/M
Predicted V usage 1

_ - randInteger(N) = floor(N * rand()) + 1

Model should produce predictions that suggest new experiments




The Modeling Process: V(D)J Recombination

Extend rearrangement model to cover different alleles

2 IMMUNOLOGY, Vol. 14, 2002: pp. 160190
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Analysis of B cell receptor production and rearrangement

Part I. Light chain rearrangement™

Yoram Louzoun®*, Tzivia Friedman”, Eline Luning Prak b Sam Litwin®

and Martin Weigerl®
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A probabilistic model of allelic exclusion fails to explain the
status of receptor genes and the receptor phenotype of most
B cells... we have revived the purely probabilistic approach in a
model that now includes receptor editing and allows for some
multi-receptor B cells. We find that this model can explain the
observed properties of B cells when the frequency of self-
reactive B cells is high...
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Alpha reflects degree of sequentiality for Jx rearrrangement.

Revised model of rearrangement suggest new experiments




Things to ask before any modeling study

Frank Tobin (2009): Modeling 1s Powerful BUT Has Far to Go
BiolT World.com

1. Why do you want to do modeling?

2. How will you know 1f you succeed?

3. What will you do with the model once you have
1t? For what decisions will it be used or what
confirmatory experiments will get performed?

Beware motivation: “We want to create a model of process X...”
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Forward Modeling
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Detailed mathematical model designed
to incorporate a desired level of
anatomic or physiologic features

|
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A Efferant
lymphatics

— Can have arbitrary complexity as desired (Thorley-Lawson et al, 2008)
— Parameter values often obtained from published literature
— EXx: tissue structure formation, cell signaling networks

Used for simulating realistic experimental data under precisely
defined conditions to test hypotheses in silico

Can help design better experiments and reduce animal use

Generally too complicated for fitting to experimental data

Allows generation of synthetic data sets with prescribed
noise characteristics (Monte Carlo simulation) for
evaluating parameters obtained by inverse modeling



Inverse Model

A mathematical model designed to fit experimental data so as
to explicitly quantify physical or physiological parameters of
interest

Values of model elements are obtained using parameter
estimation techniques aimed at providing a “best fit” to the
data

Generally mnvolves an iterative process to minimize the
average difference between the model and the data

Evaluating the quality of an inverse model involves a
combination of established mathematical techniques as well as
intuition and creative insight



“Essentially, all models are wrong,
but some are useful.”

-George Box, University of Wisconsin



