Background: Different Perspectives in Comparing Genomes and Structures

While there is awedll-established practice of comparing protein structures -- often focusing on clustering
gructuresinto “fold families” comparing them in terms of Smple geometric parameters (such as packing
efficiency or inter-hdicd angles), or on understanding their motions[22,28,37,39,41] -- there has been
little emphasis on comparing structures in terms of the organisms they come from. In marked contrat,
recent work on genomes has (obvioudy) taken such an organism-comparative perspective, grouping
sequences into families and seeing which families are present in which species. In particular, this sort of
work has enabled the identification of particular sequences that are conserved over especidly long time
scales between very different organisms, such as vertebrates and bacteria[27,43]. Also, much effort has
goneinto functiona genomics, assgning functionsto genes, digtinguishing between orthologs vs. paraogs,
and, findly, reating genes to metabolic pathways [4,32,38].

The neglect so far of structure in genomics is unfortunate for a number of reasons. Firdt of dl, structura
units (or domains) provide the logica way to subdivide proteins. Second, structure is conserved over much
longer evolutionary times than sequence, alowing one to compare very distant organisms. Conservation of
Structure, moreover, isrelated in amore direct way to sequence divergence than that of function. Findly
and most importantly, structure provides the connection between 1D genome sequences and functioning
chemica entities. It, thus, provides an essential point of departure for those interested in designing drugs or
other agents affecting proteins.

Our Objective: Bridging these Perspectives with Structural Genomics

Our objectiveisto bridge these two perspectives and bring a genome-comparative approach to
protein sructure analys's and a protein-sructure angle to genome comparison. Thiswork fdlsinto anew
subfield that has recently been dubbed "structurd genomics.”

A Census of Folds

More specificaly, what we want to do isto build alibrary of folds organizing the universe of known
protein structures and then to compare genomes in terms of their usage of folds from this master partslist --
in the sense of alarge-scale "census' of structures. One interesting question addressed by such acensusis
to what degree certain folds occur only in certain regions of the "evolutionary tree" To put it in extreme
terms, can one explain the obvious differences between yeast and E. coli in terms of their having different
protein folds? Alternatively, it may be that most folds occur in every genome in the same way that the
genetic code and many basic biochemica pathways (such as glycolyss) are dmost universaly shared. Thus
far, it has been only possible to answer this question anecdotaly. On the one hand, the immunoglobulin
fold, which isusudly closdly associated with the vertebrate immune system, has been found in bacteria,
whereit carries out adifferent function [29]. On the other hand, the smal DNA-binding fold known as the
zinc finger so far gppears to be confined only to eukaryotes [3]. Through our genome comparisons, we
propose to address this question in a comprehensive fashion.

Identifying Folds Unique to Pathogens -- especially T. pallidum

We hope to concentrate on identifying folds unique to pathogenic organisms. We expect thiswork to
be of clear medicd relevance in the future, with the increasing prevaence of antibiotic resistant microbes,
snce finding folds unique to pathogens provides clear avenues for drug design.

Genomes of a number of pathogenic organisms have recently been sequenced, and already genes have
been identified that may be unique to them (e.g. H. pylori, B. burgdorferi, M. tuberculosis, T. pallidum
[7,10,11,45]). These would provide alogica place to begin studies. T. pallidum, the syphilis spirochete, in
particular, presents an interesting structura problem [11]. This organism manages to evade immune system




detection to some degree. 1t has been suggested that its “ stedlth” characteristics may be due to its having a
number of special proteins on its exterior. We would like to see whether these involve any unique folds.
(We plan to collaborate on this specific subproject with two of the scientists who sequenced the T.
Pallidum genome, G Weingstock and S Norris from the University of Texas.)

Our Approach to Comparative Genomics

To perform our structure census properly, we need to cluster together the known 3D structuresinto a
library of folds and then match up genome sequencesto foldsin thislibrary. We dso need away to
characterize the sequences without structurad homologuesin, & least, rough Structurd terms. Thisis
particularly important for membrane proteins. We have tackled many of these issues in the past, and our
gpecific plans on how to proceed in the future logically follow from these experiences.
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Fig. 1: Structure Alignment, Core Structures, and Database System. LEFT shows a structural
alignment of 2 globins [25]. MIDDLE shows the mean positions and variability ellipsoids derived from an
alignment of 8 globins [19]. Ellipsoids are only drawn around “high-variance” non-core atoms. RIGHT shows
a schematic of the prototype structures-and-genomes database analysis system.

Step 1: Construct aLibrary of Folds and Match them against Genomes

A library of protein foldsis expected to be an essentiad organizing principle in the huge but finite table of
gene families, grouping together smilar genes like the columnsin the chemicd periodic table [33]. Many
groups worldwide are undertaking parald efforts to build afold library. We have developed preliminary
versons of our library, based on a number of these other classifications (e.g. scop or FSSP [28,37])
[25,42]. In the future we hope to construct a self-contained fold library. Thiswill require addressing three
essential tasks:

(1) Alignment. We need away of automatically comparing protein structures (seefig. 1). In the past, we
developed a method to do pairwise dignments of protein structures using repeated gpplication of dynamic
programming [23,25]. This alowed Structures to be digned in asmilar fashion to norma sequence
aignment, in contrast to other sructura dignment methods, which overlgp distance matrices [28,44].

(2) P-value. We need to be able to assess the significance of a given 3D-comparison. Thisis often quite
subtle and, in a sense, relates to the fundamental problem of what congtitutes amilarity in biology. We have
recently developed an gpproach for evauating significance based on how good a particular match is
compared to one generated randomly (viaap-vaue) [34]. Thisissamilar to the probabilistic schemes
commonly used in sequence comparison -- eg. in blast [30].

(3) Cores. Oncedl the sructuresin afamily are digned via atigticdly sgnificant comparisons, we next
want to know which regions are conserved and which are highly variable and to fuse dl the conserved
regions into a“core structure’” template (see figure 1). We have developed a smple way to tackle this



problem through determining amean and variance for an ensemble of multiply digned structures and then
picking the low variance atoms as “core’ [18].

Sequence Comparison. Once thefold library has been built, there are a variety of waysto associate it
with the genome sequences. The mogt straightforward gpproach is smply to compare each entry in the
library directly against the genome sequences using traditiona sequence matching programs, (e.g. blast or
fasta[1,35]). Somewhat more sengtivity can be achieved through new approaches that indirectly link a
query sequence to its match through athird, intermediate sequence or through some indirectly determined
"property” of the sequences such as predicted secondary structure. We have recently developed some
methods that accomplished this, and we hope to use them in conjunction with programs developed by
others- e.g. PSI-blast [2,12,16,40]. Findly, it may be advantageous to fuse al the digned sequencesinto
some form of explicit consensus sequence template, such as a profile or Hidden Markov Modd (HMM)
[5,9], and then search with these.

Step 2: Prediction for Characterizing Sequences without a Structural Homologue
For the sequences without a clear structural homologue, we will try to characterize them in rough terms
through alimited amount of structure prediction.
GOR. Aswe bdieve future improvements in secondary structure prediction will be limited, we plan to
samply use an off-the-shdf method for this task, the well-established GOR program, which has an accuracy
of 65% for Sngle-sequence prediction and a somewhat higher vaue for multiple-sequence prediction [13].
TM-helices. In contragt, we bdieve that there is great room for improvement in TM-hdlix prediction. This
isprincipaly because of the rapidly increasing amount of structural data on membrane proteins -- eg. the
recent structures of cytochrome oxidase, potassium channd, and glycophorin A. In collaboration with J
Beckwith a Harvard and D Engleman a Y de, we plan to assemble a set of TM -segments based on
known structures as wdll as gene fuson experiments [36] and then use these to train satistical modds
(HMMs in particular) to recognize membrane proteins. Based on recent reports [6], we expect that
membrane protein predication will be particularly useful for T. Pallidum.

We will use a"frequent-words' gpproach to assess the sgnificance of differencesin the number of
predicted super-secondary structures [31].

Step 3: Results from Queries to an Integrated Database System

Our gpproach benefits grestly from comparing as many genomes as possible. The number of completely
sequenced microbid genomesis currently >15 and rapidly increasing; we anticipate that within the five-year
funding period there may be >100 genomes finished. Consequently, we plan to carry out genome
annotation in as high-throughput and automated a fashion as possible, so we can rapidly integrate dl the
genomes into our andyss.

Database. Organizing dl this datawill require a sophisticated database system. We have recently received
equipment grants from Informix and Intel dlowing us to implement a szeable, high-throughput system, and
we have begun designing relaiond (and object-relational) schema to accommodate protein data[21,22].
A prototype version of our genome analys's system (configured for ~10 genomes) is available on the web
(see Fig. 1). It contains 1522 tables that occupy atota of ~459 Mb. Extrapolation over the five-year
funding period based on the increasing number and Sze of genomes plus the additiona analyss we expect
to do implies that our fina database system will involve >25 Gb of deta, a substantid scae up.

Statistics. Once the database is up and running, doing a structure census is Smply ameatter of executing a
number of well-chosen queries cross-referencing folds and organisms. In particular, from querying the



database, we will consgtruct Venn Diagrams, trees, and top-10 lists for the shared and most common folds
in various organisms.

Biases. A most important issue in doing alarge-scale survey is correcting for bias. Because of the
preferences of investigators, some proteins are over-represented and others are under-represented in the
databanks -- e.g. the PDB has an over-representation of globins from humans relaive to those from plants.
We have developed a weighting scheme that attempts to correct for this problem [26]. We have dso
developed resampling methods for assessing how representative the known structures are of the proteinsin
a complete genome [15]. These will be especidly important for determining how applicable various
prediction methods are to the genomes - since these methods are essentidly extrapol ations from the known
structures.
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Fig. 2: Results of Initial Genome Analysis. RIGHT, Log-log graph showing the occurrence of membrane
proteins with a given number of transmembrane (TM) helices in each of the eight genomes. The occurrence
drops off in a similar fashion in all eight genomes, according to a Zipf-like law, and a fit to all eight is shown
in the graph [20]. MIDDLE, Venn diagram showing how ~300 of the known folds are shared amongst 3
genomes [14]. RIGHT, Tree grouping 8 genomes together on the basis of shared folds [17]. Genome
names are as follows: HI, H. influenzae; MG, M. genitalium; MJ, M. jannaschii; SS, Synechocystis; MP;
M. pneumoniae; SC, S. cerevisiae; HP, H. pylori; EC, E. coli.

Preliminary Results: Structural Census of the First Genomes Sequenced

During the past year and a hdf, we have begun to assemble a prototype version of the database system
and analyze the first 8 genomes sequenced [14,15,17,20,24]. Our initid results, shown in figures 2 and 3,
illustrate what is possible. In particular, on the basis of shared folds, we were able to group these initia 8
genomes into atree that is strikingly smilar in topology to one based on conventiond classifications. We
aso identified 45 ancient folds shared by the three kingdoms of life. The most common of these 45 had a
remarkably smilar architecture, conssting of repesated strand- hdlix-strand units joining adjacent strands.
We were able to compare the most common folds in the yeast genome with expression leve (usng
microarray data from Brown and colleagues [8]) and found clear differences between the most highly
duplicated and most highly expressed structures.

Using dructure-prediction, we found that the genomes had very smilar secondary structure content
even though their amino acid content differed widdy. We dso found that in each genome the occurrence of
proteins with a given number of TM-hdices fdls off smoothly with increasng numbers of helices This
implies thet thereis no particular preference (i.e. locad maximum) for proteinswith 7 TM - helices and, thus,
suggests thet this heavily studied group of proteinsis not exceptionaly important in the context of microbia
genomes.
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Fig. 3: Common Folds in the Genomes. LEFT, The “top five” folds common to all three kingdoms of life.
Note how similar their super-secondary structure architecture is [14]. RIGHT, The top-10 folds in yeast
ranked according to duplication and expression in two different conditions [17].
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