Gerstein

Intergenic Annotation. The Gerstein lab has been a major participant in a number of ENCODE efforts, focusing on intergenic annotation. We developed an approach to analyze the distribution of regulatory elements found in many different ChIP-chip experiments (Zhang et al., 2006). We focused on the overall chromosomal distribution of regulatory elements in the encode regions and showed that it is highly nonrandom. Our results indicate that these elements are clustered into regulatory rich ‘islands’ and poor ‘deserts.’ We then performed a multivariate analysis on all the factors collectively. This grouped the transcription factors into sequence-specific and sequence-nonspecific clusters.  Following up on this, we developed an approach for integrating the results of many ChIP-chip experiments to discover new promotors in the human ENCODE regions (Trinklein et al. 2006). We also have carried out comprehensive pseudogene annotation of the human genome and cross referenced this annotation with tiling arrays (Zheng et al., 2005, 2007; Harrison et al., 2005; Zheng et al., 2006; Zheng & Gerstein, 2006, 2007; Zhang et al., 2003). We performed a related analysis of structured RNAs in intergenic regions, also inter-relating them with tiling array data (Zhang et al., 2007; Washietl et al., 2007).

Tiling Array Tools. The Gerstein Lab has developed a considerable amount of tools and machinery for processing tiling arrays. Most of these are described elsewhere in the proposal (e.g. scoring arrays, sect. C.4). One tool not described elsewhere is BoCaTFBS (Wang et al., 2006). This refines ChIP-chip hits by considering known motifs (Wang et al., 2006). Traditional computational algorithms used to identify binding sites, such as consensus sequences (Osada et al., 2004), profile methods (PWM/PSSM) (Stormo, 2000), and HMMs (Pavlidis et al., 2001; Ellrott et al., 2002) generate high false-positive rates when applied genome-wide (Wasserman & Sandelin, 2004). Our method uses a boosted cascade of classifiers -- specifically, alternating decision trees (ADTboost) (Freud & Schapire, 1999), where ADTboost is a special extension of AdaBoost. We use the known motifs (e.g. from the TRANSFAC database, Matys et al., 2003) as positives and the results of the ChIP-chip experiments as negatives. Our method is the first motif finder that explicitly takes into account the data from ChIP-chip experiments. Moreover, BoCaTFBS differs from most other motif programs in that (1) it takes into consideration positional dependencies within a given motif and (2) it uses the negative data (regions where the transcription factor does not bind) in order to refine the binding site.

Regulatory Networks. The Gerstein lab has done quite a number of analyses on the large-scale structure of regulatory networks (e.g. Yu & Gerstein, 2006; Luscombe et al., 2004; Yu et al., 2003, 2004) and has developed tools to enable their analysis (Yip et al., 2006; Yu et al., 2004; networks.gersteinlab.org/tyna ).

 

Publications

* Zhengdong, Z., Alberto, P., Yutao F., Sherman W., Zhiping W., Chang J., Snyder M, Gerstein M. Development of approaches for global analysis of regulatory elements. Global analysis of the genomic distribution and correlation of regulatory elements in the Encode regions. Genome Research. Genome Res.  In press.

* Euskirchen, G., Rozowsky, J., Wei, C.L. Lee, W.H., Zhang, Z, Hartman, S., Emanuelsson, O., Stolc, V., Weissman, S., Gerstein, M., Ruan, Y., Snyder, M. (2006). Mapping of Transcription Factor  Binding Regions in Mammalian Cells by ChIP: Comparison of Array and Sequencing Based Technologies. Genome Res.  In press.

* Trinklein ND, Karaöz U, Wu J, Halees A, Force Aldre S, Collins PJ, Zheng D, Zhang Z, Gerstein M, Snyder M, Myers RM, Weng, Z. Integrated analysis of experimental datasets reveals many novel promoters in 1% of the human genome.  Genome Research., in press.

* S Washietl, JS Pedersen, JO Korbel, AR Gruber, J Hackermuller, J Hertel, M Lindemeyer, K Reiche, C Stocsits, A Tanzer, C Ucla, C Wyss, SE Antonarakis, F Denoeud, J Lagarde, J Drenkow, P Kapranov, TR Gingeras, M Snyder, MB Gerstein, A Reymond, IL Hofacker, PF Stadler . Structured RNAs in the ENCODE Selected Regions of the Human Genome Genome Research (in press)

* J Du, JS Rozowsky, JO Korbel, ZD Zhang, TE Royce, MH Schultz, M Snyder, M Gerstein (2006) A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chIP-chip experiments: systematically incorporating validated biological knowledge.Bioinformatics 22: 3016-24.

* Zhang Z, Rozowsky J, Lam HYK, Snyder M, Gerstein M. Tilescope: online analysis pipeline for high-density tiling microarray data GenomeBiology (in press).

* Wang L, Comaniciu D, Snyder M, Gerstein M. BoCaTFBS: a boosted-cascade learner to refine the binding sites suggested by ChIP-chip experiments. GenomeBiology. Genome Biol 7: R102

Bertone P, Trifonov V, Rozowsky JS, Schubert F, Emanuelsson O, Karro J, Kao MY, Snyder M, Gerstein M. (2006) Design optimization methods for genomic DNA tiling arrays. Genome Res. 16: 271-81.

Borneman, AR, Leigh-Bell, J, Yu, H, Bertone, P., Gerstein, M., Snyder,.M (2006) Target Hub Proteins Serve as Master Regulators of the Complex Transcriptional Network Controlling Yeast Pseudohyphal Growth. Genes Dev 20: 435-448.

* Rozowsky J, Newburger D, Sayward G, Wu J, Jordan G, Korbel JO, Nagalakshmi U, Yang J, Zheng D, Guigo R, Gingeras T, Weissman S,  Miller P, Snyder M, Gerstein M. The DART Classification of Unannotated Transcription within the ENCODE Regions: Associating Transcription with Known and Novel Loci Genome Research (in press)

Thomas E. Royce, Joel S. Rozowsky and Mark B. Gerstein (2007). Assessing the need for sequence-based normalization in tiling microarray experiments. Bioinformatics (in press).

* Zheng D, Gerstein M. A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol 7 Suppl 1: S13.1-10.

* Emanuelsson O, Nagalakshmi U, Zheng D, Rozowsky JS, Urban AE, Du J, Lian Z, Stolc V, Weissman S, Snyder M, Gerstein M. (2006) Assessing the performance of different high-density tiling microarray strategies for mapping transcribed regions of the human genome.  Genome Research, in press.

Royce, T.E., Rozowsky, J.S., Bertone, P., Samantac, M., Stolc, V., Weissman, S., Snyder, M. and Gerstein, M. (2005). Issues in the Analysis of Oligonucleotide Tiling Microarrays. Trend Genetics 21: 466-475.

H Yu, M Gerstein (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A 103: 14724-31.

 

 

C4.2. Analysis of the ChIP samples

C4.2a.  Comparison of ChIP-chip Platforms and Parameters. At the outset of the ENCODE pilot phase, both PCR product arrays and high density oligonucleotide (HDO) arrays were being used by various groups. However, the overall performance and suitability for genome-scale analyses had not ever been compared. Therefore, we began by comparing PCR arrays and 390,000 feature arrays prepared by maskless photolithography (e.g. NimbleGen) by performing ChIP-chip for three yeast factors (Borneman et al., 2006b). We found that the HDO arrays detected approximately three times more binding events than the PCR arrays while also showing increased accuracy. We also investigated optimal parameters for mapping binding sites in mammalian cells using ChIP-chip (Euskirchen et al., 2007).  We compared parameters such as DNA microarray format (oligonucleotide versus PCR), oligonucleotide length, hybridization conditions, and the use of competitor Cot DNA.  Also, methods were devised for scoring and comparing results.  Optimal signal-to-noise, sensitivity and specificity was observed with HDO arrays relative to PCR product arrays (Figure 2).  We observed optimal signals using oligonucleotides >36 b and the presence of Cot competitor DNA (See Figure 2 for the oligonucleotide length results).  Consistent with the better performance of arrays containing longer oligonucleotides, we were not able to identify STAT1 targets using Affymetrix arrays (which uses 25 mers).  Target identification as a function of biological replicates was also determined and revealed that 80-86% of targets were identified with three experimental repeats; four provides a modest 3-5% increase (Euskirchen et al., 2007). We also did a parallel study as the part of the ENCODE consortium to compare platforms for the suitability for assaying transcription (Emanuelsson et al., 2006).  Overall, our conclusions were similar to those in Euskirchen et al. (2007) -- that is, HDO arrays  performed better than PCR ones and feature density was all important.  However, for transcript mapping we got better performance with 25mers than 36mers. Thus, the HDO array platform provides a far more robust array system by all measures than PCR-based arrays, all of which is directly attributable to the large number of probes available. Since we performed this study Agilent has also begun to manufacture HDO arrays.  However their highest density array (244K features) and price ($500) does not make them competitive with the Nimblegen whole genome 10 array set (2.1 million features/array). Affymetrix arrays are competitive in price ($1500 for one set). However, some of our team members have found that they are not as effective as NimbleGen arrays when analyzing certain factors and they cannot be reused (Nimblegen arrays can be used at least twice and new chemistry that should increase the number of rehybridizations/array is currently being tested by one of our team members in collaboration with NimbleGen).  Thus, at this time Nimblegen arrays provide the highest sensitivity and the most value of the array platforms

 


Figure 2 Comparison of ChIP-chip results using different array platforms and oligonucleotide lengths.  Raw signals from each oligonucleotide are plotted.  Key: PCR: PCR product array.  36-36 36 b oligonucledotides arrayed end to end; 50-50: 50 b oligonucledotides arrayed end to end; a-f validated positive regions - negative control region.

 


C4.2b Comparison of ChIP-chip with ChIP-Sequencing. We have also compared ChIP-chip to ChIP followed by DNA sequence analysis of fragment ends (ChIP-PET; Ng et al., 2006) for the STAT1 transcription factor (Euskirchen et al., 2007).  We found that these two technologies were comparable in terms of sensitivity and specificity (Figure 3). Seven of 8 targets enriched 4-fold or more were found with both methods; 4 fold is approximately the threshold at which ChIP targets reproducibly validate by qPCR (see below). The new 2.1 million feature array design contains more probes in repeated regions and is expected to identify all 8 (Euskirchen et al 2006). The resolution of ChIP chip is generally higher (targets can be mapped and validation to within 200 bp (K.S., P.R., M. S., unpublished; see also XXX) than ChIP PET, particularly on the less enriched peaks (see figure 3). At this point, ChIP-PET is also considerably more expensive, even with the new 454 sequencing technologies, than analysis of samples using the NimbleGen 10 array set. However, we will continue to compare ChIP-chip and ChIP-sequencing during the production phase and always make sure that we are using the technique that provides the highest quality and most comprehensive data for the lowest price.

 


 


Figure 3. Comparison of ChIPchip and ChIP-PET results.  Raw signals from each method are plotted.  The concordance of the results for both signals (shown above) and called target regions is quite high (greater than 90% for the top targets (estimated to be 4 fold enriched).

 

 

C5.  Bioinformatics - Processing pipeline for target identification and integration of primary data (ChIP-chip) with secondary validation data.

We have extensive experience with the informatics for carrying out tiling array experiments. This comprises designing the arrays, developing scoring approaches, comparing platforms, constructing high-throughput pipelines for the Nimblegen data, and building a special purpose database for handling the results the experiments.

 

C5.1. Array Processing Platforms -- ExpressYourself & Tilescope

We have developed two generations of tiling arrays software: ExpressYourself for PCR arrays (Luscombe et al., 2003; bioinfo.mbb.yale.edu/ExpressYourself) and Tilescope for oligo arrays (Zhang et al., 2007; tilescope.gersteinlab.org).  Tilescope is an automated data processing pipeline for analyzing data sets generated in experiments using high-density tiling microarrays. The software performs data normalization, combination of replicate experiments, tile scoring, and feature identification. Given the modular architecture of the pipeline, new analysis algorithms can be readily incorporated. Tilescope is capable of handling very large data sets, such as ones generated by whole genome ChIP-chip experiments, as we developed an efficient new data compression algorithm to reduce the data size for fast online data transmission. Tilescope is designed with a graphical user-friendly interface to facilitate a user’s data analysis task, and the results, presented on a web page, can be downloaded for further analysis.

 

C5.2. Approaches for Array Scoring and Artifact Correction

Tilescope incorporates a number of scoring and artifact correction approaches we have developed for tiling arrays. In particular, for Nimblegen arrays, we identified those procedures in the microarray normalization literature that are transferable to tiling arrays and those that needed to be modified or replaced (Royce et al., 2005, 2006).  One issue is that a small fraction of probes on an array experience significant levels of nucleic acid hybridization; many normalization procedures assume hybridization to at least half of all probes on an array.  Another issue is that tiling arrays for whole genomes, for example, require many arrays - each of different design.  Care must be taken when normalizing these arrays to one another because the underlying distribution of measured signals may vary widely among arrays tiling different regions of the genome. We have also worked extensively on compensating for issues of cross-hybridization. In Royce et al. (2007) we developed a correction system for non-specific, sequence-based cross hybridization that is readily applicable to tiling arrays. We have also developed tools for the optimal design of tiling arrays to minimize the effect of repetitive and specifically cross-hybridizing probes (Bertone et al., 2006). These algorithms are implemented as a collection of web-based tools, available at tiling.gersteinlab.org. Finally, in processing large amounts of expression data it is important to be able to discover and correct various spatial array artifacts. Qian et al. (2003), Kluger et al. (2003), and Yu et al., (2007) developed a way of measuring and quantifying a common spatial artifact that can induce spurious correlation of nearby spots on the array.

 

C5.3. Tools to integrate the list of functional elements -- DART

         We have developed DART (DART.gersteinlab.org, Rozowsky et al., 2007) to facilitate the flexible storage, visualization, and comparison of the growing number of experimentally defined sets of transcription factor binding sites. DART has been designed to address a number of challenging issues that arise when attempting to analyze, compare, and store these types of data.  The key aspects of DART include the following: Dealing with heterogeneous datasets, flexibility for storing different tiling array hit attributes, accommodating new genome builds, and integrated linking to other web resources for broader visualization and analysis. Furthermore, DART provides machinery for helping to pick targets for validation.   

 

 

H. Literature Cited

Babu, M.M., Luscombe, N. M., Aravind, L., Gerstein, M. and Teichmann S. A. (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol, 14, 283-91.

Bailey, T.L. and Elkan, C. (1994). Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28-36.

Bailey, T.L., Williams, N., Misleh, C. and Li, W.W. (2006).  Links  MEME: discovering and analyzing DNA  and protein sequence motifs. Nucleic Acids Res: W369-73.

Bertone, P., Kluger, Y., Lan, N., Zheng, D., Christendat, D., Yee, A., Edwards, A. M., Arrowsmith, C. H., Montelione, G. T.and Gerstein, M. (2001) SPINE: an integrated tracking database and data mining approach for identifying feasible targets in high-throughput structural proteomics. Nucleic Acids Res, 29, 2884-98.

Bertone, P., Stolc, V., Royce, T.E., Rozowsky, J.S., Urban, A.E., Zhu, X., Rinn, J.L.,Tongprasit, W., Samanta, M., Weissman, S., Gerstein, M., and Snyder, M. (2004). Global Identification of Human Transcribed Sequences with Genome Tiling Arrays. Science 306: 2242-6.

Bertone, P., Trifonov, V., Rozowsky, J.S., Schubert, F., Emanuelsson, O., Karro, J., Kao, M.Y., Snyder, M., Gerstein, M. (2006) Design optimization methods for genomic DNA tiling arrays. Genome Res 16: 271-81.

Birney, E., Andrews, D., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cox, T., Cunningham, F., Curwen, V., Cutts, T., Down, T., Durbin, R., Fernandez-Suarez, X.M., Flicek, P., Graf, S., Hammond, M., Herrero, J., Howe, K., Iyer, V., Jekosch, K., Kahari, A., Kasprzyk, A., Keefe, D., Kokocinski, F., Kulesha, E., London, D., Longden, I., Melsopp, C., Meidl, P., Overduin, B., Parker, A., Proctor, G., Prlic, A., Rae, M., Rios, D., Redmond, S., Schuster, M., Sealy, I., Searle, S., Severin, J., Slater, G., Smedley, D., Smith, J., Stabenau, A., Stalker, J., Trevanion, S., Ureta-Vidal, A., Vogel, J., White, S., Woodwark, C. and Hubbard, T.J. (2006). Ensembl 2006.  Nucleic Acids Res: D556-61.

Bolstad, B.M., Irizarry, R.A., Astrand, M. and Speed, T.P. (2003). Summaries of Affymetrix GeneChip probe level data. Bioinformatics 19: 185-193.

Borneman, A.R., Leigh-Bell, J., Yu, H., Bertone, P., Gerstein, M., and M. Snyder. (2006) Target Hub Proteins Serve as Master Regulators of the Complex Transcriptional Network Controlling Yeast Pseudohyphal Growth. Genes Dev 20: 435-448.

Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., et al. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122: 947-956.

Buchholz, F., Angrand, P. O., and Stewart, A. F. (1996). A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res 24: 3118-3119.

Buchholz, F., Angrand, P. O., and Stewart, A. F. (1998). Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16: 657-662.

Carriero, N., Osier, M. V., Cheung, K. H., Miller, P. L., Gerstein, M., Zhao, H., Wu, B., Rifkin, S., Chang, J., Zhang, H., White, K., Williams, K. and Schultz, M. (2005)A high productivity/low maintenance approach to high-performance computation for biomedicine: four case studies. J Am Med Inform Assoc 12: 90-8.

Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., Wheeler, R., Wong, B., Drenkow, J., Yamanaka, M., Patel, S., Brubaker, S., Tammana, H., Helt, G., Struhl, K., Gingeras, T.R. (2004). Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116: 499-509.

Chen, Q., Hertz, G. and Stormo, G. (1995). Matrix Search 1.0: A computer program that scans DNA  sequences for transcriptional elements using a database of weight matrices. Comput Appl Biosci, 11: 563-566.

Cheung K.H., White, K., Hager, J., Gerstein, M., Reinke, V., Nelson, K., Masiar, P., Srivastava, R., Li, Y., Li, J., Zhao, H., Li, J., Allison, D.B., Snyder, M., Miller, P., Williams, K. (2002). YMD: A microarray database for large-scale gene expression analysis. Proc. AMIA Symp: 140-144.

Cheung, K. H., Smith, A. K., Yip, K. Y. L., Baker, C. J. O. and Gerstein, M. (2007). Semantic Web Approach to Database Integration in the Life Sciences in Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences (eds. C Baker and K Cheung, Springer, NY), pp. 11-30.

Cheung, K. H., Yip, K. Y., Smith, A., Deknikker, R., Masiar, A. and Gerstein, M. (2005) YeastHub: a semantic web use case for integrating data in the life sciences domain. Bioinformatics, 21, Suppl 1, i85-96.

Conlon, E.M., Liu, X.S., Lieb, J.D., Liu, J.S. (2003). Integrating regulatory motif discovery and genome-wide expression analysis. Proceedings of the National Academy of Sciences USA 100: 3339-3344.

Copeland, N. G., Jenkins, N. A., and Court, D. L. (2001). Recombineering: A powerful new tool for mouse functional genomics. Nat Rev Genet 2: 769-779. Database. J Am Med Inform Assoc 1998 Nov-Dec 5(6): 511-27.

Deplancke, B., Dupuy, D., Vidal, M., and Walhout, A.J. (2004).  A gateway-compatible yeast one-hybrid system. Genome Res. 14: 2093-101.

Du, J., Rozowsky, J.S., Korbel. J., Zhang, Z., Royce, T.E., Schultz, M.H., Snyder, M., and Gerstein, M. (2006). A supervised hidden markov model framework for efficiently segmenting tiling array data in transcriptional and chip-chip experiments systematically incorporating validated biological knowledge. Genome Res. Submitted.

Ellrott, K., Yang, C., Sladek, F.M., Jiang, T. (2002). Identifying transcription factor binding sites through Markov chain optimization. Bioinformatics, 18 suppl 2: S100-S109.

Emanuelsson, O., Nagalakshmi, U., Zheng, D., Rozowsky, J.S., Urban, A.E., Du, J., Lian, Z., Stolc, V., Weissman, S., Snyder, M., and Gerstein, M. (2006). Assessing the performance of different high-density tiling microarray strategies for mapping transcribed regions of the human genome. Genome Research. In press.

Euskirchen, G., Royce, T.E., Bertone, P., Martone, R., Rinn, J.L., Nelson, F.K., Sayward, F., Luscombe, N.M., Miller, P., Gerstein, M., (2004). CREB binds to multiple loci on chromosome 22. Mol. Cell Biol. 24: 3804-3814.

Euskirchen, G., Rozowsky, J., Wei, C.L, Lee, W.H., Zhang, Z., Hartman,S., Emanuelsson, O., Stolc, V., Weissman, S., Gerstein, M., Ruan, Y., Snyder, M. (2006). Optimal Mapping of Transcription Factor Binding Sites in Mammalian Cells. Genome Research. In press.

Feng, W., Wang, G., Zeeberg, B.R., Guo, K., Fojo, A.T., Kane, D.W., Reinhold, W.C., Lababidi, S., Weinstein, J.N., Wang, M.D. (2003). Development of gene ontology tool for biological interpretation of genomic and proteomic data. AMIA Annu Symp Proc.

Frith, M.C., Hansen, U., Spouge, J.L. and Weng, Z. (2004). Finding functional sequence elements by multiple local alignment Nucleic Acids Res. 32: 189-200.

Frith, M.C., Li, M.C., and Weng, Z. (2003). Cluster-Buster: Finding dense clusters of motifs in DNA sequences.  Nuc Acids Res 13: 3666-3668.

Gabriel, K. R. (1971). The biplot graphical display of matrices with application to principal component analysis. Biometrika 58: 453-467.

Gaudet, J., Muttumu, S., Horner, M., and Mango, S. E. (2004). Whole-genome analysis of temporal gene expression during foregut development. PLoS Biol 2: e352.

Gerstein, M. (2000) Annotation of the human genome. Science, 288,1590.

Gerstein, M. (2006) Tools needed to navigate landscape of the genome. Nature, 440, 740.

Gerstein, M., Sonnhammer, E. L., and Chothia, C. (1994). Volume changes in protein evolution. J Mol Biol 236: 1067-1078.

Giepmans, B. N., Adams, S. R., Ellisman, M. H., and Tsien, R. Y. (2006). The fluorescent toolbox for assessing protein location and function. Science 312: 217-224.

Goh, C. S., Lan, N., Echols, N., Douglas, S. M., Milburn, D., Bertone, P., Xiao, R., Ma, L. C., Zheng, D., Wunderlich, Z., Acton, T., Montelione, G. T. and Gerstein, M. (2003) SPINE 2: a system for collaborative structural proteomics within a federated database framework. Nucleic Acids Res, 31, 2833-8.

Greenbaum, D., Douglas, S.M., Smith, A., Lim, J., Fischer, M., Schultz, M. and Gerstein, M. (2004) Computer security in academia-a potential roadblock to distributed annotation of the human genome. Nat Biotechnol, 22, 771-2.

Gupta, M. and Liu, J.S. (2005). De novo cis-regulatory module elicitation for eukaryotic genomes. Proc Natl Acad Sci U S A. 102: 7079-84.

Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.B., Reynolds, D.B., Yoo, J., Jennings, E.G., Zeitlinger, J., Pokholok, D.K., Kellis, M., Rolfe, P.A., Takusagawa, K.T., Lander, E.S., Gifford, D.K., Fraenkel, E., Young, R.A. (2004). Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99-104.

Harrison, P.M., Zheng, D., Zhang, Z., Carriero, N., and Gerstein, M. (2005). Transcribed processed pseudogenes in the human genome: An intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 33: 2374-83.

Hartman, S.E., Bertone, P., Nath, A., Royce, T.E., Gerstein, M., Weissman, S. and M. Snyder. (2005). Global Changes in STAT Target Selection and Transcription Regulation Upon Interferon Treatments. Genes Dev 19: 2953-2968.

Horak, C. and Snyder, M. (2002). ChIP chip: A genomic Approach for Identifying Transcription Factor Binding Sites. Methods Enzymol. 350: 469-484.

Horak, C.E., Luscombe, N.M., Qian, J., Piccirrillo, S., Gerstein, M, and Snyder, M. (2002) Complex Transcriptional Circuitry at the G1/S Transition in Saccharomyces cerevisiae. Genes Dev 16: 3017-3033.

Horak, C.E., Mahajan, M.C., Luscombe, N.M., Gerstein, M., Weissman, S.M., and Snyder, M. (2002). GATA-1 binding sites mapped in the globin locus by using Mammalian ChIp-chip analysis. Proc. Natl. Acad. Sci. U S A 99: 2924-2929.

Hudson, J.R. Jr., Dawson, E.P., Rushing, K.L., Jackson, C.H., Lockshon, D., Conover, D., Lanciault, C., Harris, J.R., Simmons, S.J., Rothstein, R. and Fields, S. (1997). The complete set of predicted genes from Saccharomyces cerevisiae in a readily usable form.  Genome Res 7: 1169-73.

Hughes, J.D., Estep, P.W., Tavazoie, S. and Church, G.M. (2000). Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296(5): 1205-14.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249-264.

Iyer, V.I., Horak, C.A, Scafe, C.S., Botstein, D., Snyder, M., and Brown, P.O. (2001). Genomicbinding distribution of the yeast cell-cycle transcription factors SBF and MBF. Nature 409: 533-538.

Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F. and Gerstein, M. (2003).  A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302: 449-53.

Jensen, S.T. and Liu, J.S. (2004). BioOptimizer: A Bayesian scoring function approach to motif discovery. Bioinformatics 20: 1557-64.

Ji, H. and Wong, W.H. (2005). TileMap: create chromosomal map of tiling array hybridizations.  Bioinformatics 21, 3629-3636.

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M. and Haussler D. (2002). The human genome browser at UCSC. Genome Res 12: 996-1006.

Kim, T.H., Barrera, L.O., Zheng, M., Qu, C., Singer, M.A., Richmond, T.A., Wu, Y., Green, R.D., and Ren, B. (2005). A high-resolution map of active promoters in the human genome.  Nature  436:876-80.

Kluger, Y., Yu, H., Qian, J., and Gerstein, M. (2003). Relationship between gene co-expression and probe  localization on microarray slides. BMC Genomics 4: 49.

Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M, Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., Koseki, H., Fuchikami, T., Abe, K., Murray, H.L., Zucker, J.P., Yuan, B., Bell, G.W., Herbolsheimer, E., Hannett, N.M., Sun, K., Odom, D.T., Otte, A.P., Volkert, T.L., Bartel, D.P., Melton, D.A., Gifford D.K., Jaenisch, R., Young, R.A. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125: 301-313.

Li, W., Meyer, C.A. and Liu, X.S. (2005). A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.  Bioinformatics, 21 Suppl 1: i274-i282.

Liu, X., Brutlag, D.L. and Liu, J.S. (2001). BioProspector: Discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 6: 127-38.

Liu, X.S., Brutlag, D.L. and Liu, J.S. (2002). An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.  Nat Biotechnol 20: 835-9.

Liu, Y., Liu, X.S., Wei, L., Altman, R.B. and Batzoglou, S. (2004).  Eukaryotic Regulatory Element Conservation Analysis and Identification Using Comparative Genomics. Genome Res 14: 451–458.

Loots, G., Ovcharenko, I., Pachter, L., Dubchak, I., Rubin, E. (2002). rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res 12: 832-839.

Lu, L.J., Xia, Y., Paccanaro, A., Yu, H. and Gerstein, M. (2005).  Assessing the limits of genomic data integration for predicting protein networks. Genome Res 15: 945-53.

Luscombe, N.M., Royce, T.E., Bertone, P., Echols, N., Horak, C.E., Chang, J.T., Snyder, M., Gerstein, M. (2003). ExpressYourself: A Modular Platform for Processing and Visualizing Microarray Data. Nucleic Acids Res 31:3477-3482.

LY Wang, M Snyder and  M Gerstein (2006) BoCaTFBS: a boosted cascade learner to refine the binding sites suggested by ChIP-chip experiments. Genome Biol, 7, R102.

Martone, R, Euskirchen, G., Bertone, P., Hartman, S., Royce, T.E., Luscombe, N.L., John L. Rinn, J.L., Nelson, F.,K., Miller, P., Gerstein, M., Weissman, S., Snyder,. M. (2003). Distribution of NF-K B Binding Sites Across Human Chromosome 22. Proc Natl Acad Sci USA 100: 12247-12252.

Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A., Kel-Margoulis, O. (2003). Transfac: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374-378.

Monahan J. (1984) Fast computation of the hodges-lehmann location estimator. ACM Transactions on Mathematical Software, 10, 270.

Muyrers, J. P., Zhang, Y., and Stewart, A. F. (2000). ET-cloning: Think recombination first. Genet Eng (N Y) 22: 77-98.

Muyrers, J. P., Zhang, Y., and Stewart, A. F. (2001). Techniques: Recombinogenic engineering--new options for cloning and manipulating DNA. Trends Biochem Sci 26: 325-331.

Muyrers, J. P., Zhang, Y., Benes, V., Testa, G., Rientjes, J. M., and Stewart, A. F. (2004). ET recombination: DNA engineering using homologous recombination in E. coli. Methods Mol Biol 256: 107-121.

Muyrers, J. P., Zhang, Y., Testa, G., and Stewart, A. F. (1999). Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27: 1555-1557.

Nadkarni, P.M., Brandt, C. (1998). Data extraction and ad hoc query of an entity-attribute-value

Ng, P., Wei, C.L., Sung, W.K., Chiu, K.P., Lipovich, L., Ang, C.C., Gupta, S., Shahab, A., Ridwan, A., Wong, C.H., Liu, E.T., Ruan, Y. (2005). Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat. Methods 2: 105-111.

NM Luscombe, MM Babu, H Yu, M Snyder, SA Teichmann, Gerstein, M. (2004)Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431, 308-12.

Nuwaysir, E.F., Huang, W., Albert, T.J., Singh, J., Nuwaysir, K., Pitas, A., Richmond, T., Gorski, T., Berg, J.P., Ballin, J., McCormick, M., Norton, J., Pollock, T., Sumwalt, T., Butcher, L., Porter, D., Molla, M., Hall, C., Blattner, F., Sussman, M.R., Wallace, R.L., Cerrina, F., Green, R.D. (2002). Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res 12: 1749-55.

Pavlidis, P., Furey, T., Liberto, M., and Haussler, D., Grundy, W. (2001). Promoter region-based classification of genes. Pac Symp Biocomput: 151-163.

Prestridge, D. (1996). Signal Scan 4.0: Additional databases and sequence formats. Comput  Appl Biosci 12: 157-160.

Ptacek, J., Devgan, G., Michaud, G., Zhu, H., Zhu, X., Fasolo, J., Guo, H., Jona, G., Breitkreutz, A., Sopko, R., Lee, S., McCartney, R.R., Schmidt, M.C., Rachidi, N., Stark, M.J.R., Stern, D.F., Tyers, M., de Virgilio, C., Andrews, B., Gerstein, M., Schweitzer, B., Predki, P., and Snyder, M.. (2005). Global Analysis of Protein Phosphorylation in Yeast. Nature 438: 679-84.

Qian, J., Kluger, Y., Yu, H., and Gerstein, M. (2003). Identification and correction of spurious spatial  correlations in microarray data. Biotechniques 35: 42-4, 46, 48.

Qian, J., Lin, J., Luscombe, N.M., Yu, H. and Gerstein, M. (2003). Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19: 1917-26.

Quandt, K., Frech, K., Karas, H., Wingender, E., and Werner, T. (1995). MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data.  Nucleic Acids Res 23: 4878-4884.

Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J, Bell, S.P. and Young, R.A. (2000). Genome-wide location and function of DNA binding proteins. Science 290: 2306-9.

Rinn, J.L., Rozowsky, J.S. Laurenz, I.J., Petersen, P.H. Zou, K., Zhong, W. Gerstein, M., and M. Snyder (2004). Major Molecular Differences Between Mammalian Sexes are involved in Drug Metabolism and Renal Function. Dev Cell 6: 791-800.

Rinn, J.R., Euskirchen, G., Bertone, P., Martone, R., Luscombe, N.M., Hartman, S., Harrison, P.M., Nelson, F.N., Miller, P., Gerstein, M., Weissman, S., and M. Snyder, (2003). The Transcriptional Activity of Human Chromosome 22, Genes Dev 17: 529-540.

Ristevski, S. (2005). Making better transgenic models: conditional, temporal, and spatial approaches. Mol Biotechnol 29: 153-163.

Roulet, E., Busso, S., Camargo, A.A., Simpson, A.J., Mermod, N., and Bucher, P. (2002).  High-throughput Selex Sage method for quantitative modeling of transcription-factor binding sites. Nat Biotechnol 20: 831-5

Royce, T. E., Rozowsky, J. S. and Gerstein, M. B. (2007) Assessing the need for sequence-based normalization in tiling microarray experiments. Bioinformatics, (in press).

Royce, T.E., Rozowsky, J.S., Bertone, P., Samantac, M., Stolc, V., Weissman, S., Snyder, M. and Gerstein, M. (2005). Issues in the Analysis of Oligonucleotide Tiling Microarrays. Trend Genetics 21: 466-475.

Royce, T.E., Rozowsky, J.S., Luscombe,N.M., Emanuelsson, O., Yu, H., Zhu, X., Snyder, M., Gerstein, M. (2006). Extrapolating Traditional DNA Microarray Statistics to the Tiling and ProteinMicroarray Technologies. Methods Enzymol: 411. In press.

Rozowsky, J., Newburger, D., Sayward, F., Wu, J., Jordan, G., Korbel1, J.O., Nagalakshmi, U., Yang, J., Zheng, D., Guigo, R., Gingeras, T., Weissman, S., Miller, P., Snyder, M., and Gerstein, M. (2006). Analysis and Classification of Unannotated Transcription within the Encode Regions: Associating Transcription with Known and Novel Loci. Genome Research. (in press).

Sandelin, A., Alkema, W., Engstrom, P., Wasserman, W.W., and Lenhard, B. 2004.  Jaspar: An open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32: D91-4.

Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M.,  Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., Weinstock, G.M., Wilson, R.K., Gibbs, R.A., Kent, W.J., Miller, W.,  Haussler, D. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res15: 1034-50.

Smith, A., Greenbaum, D., Douglas, S.M., Long, M. and Gerstein, M. (2005) Network security and data integrity in academia: an assessment and a proposal for large-scale archiving. Genome Biol, 6, 119.

Storey, J. D., and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100: 9440-9445.

Stormo, G. (2000). DNA binding sites: Representation and discovery. Bioinformatics 16: 16-23.

Trinklein, N.D., Karaöz, U., Wu, J., Halees, A., Aldred, S.F., Collins, P.J., Zheng, D., Zhang, Z., Gerstein, M., Snyder, M., Myers, R.M. and Weng, Z. (2006). Genome Research. In press.

Troyanskaya, O.G., Garber, M.E., Brown, P.O., Botstein, D. and Altman, R.B. (2002). Nonparametric methods for identifying differentially expressed genes in microarray data Bioinformatics 18: 1454-1461.

Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121.

Urban, A.E., Korbel, J., Selzer, R., Popescu, G.V., Richmond, T., Cubells, J.F., Green, R., Emanuel B.S., Gerstein, M., Weissman, S.M., and Snyder, M. (2006) High Resolution Mapping of DNA Copy Alterations Using High Density Tiling Oligonucleotide Arrays. Proc Natl Acad Sci 103: 4534-4539.

van Steensel, B., Delrow, J. and Henikoff, S. (2001). Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27: 304-8.

Vlieghe, D., Sandelin, A., De Bleser, P.J., Vleminckx, K., Wasserman, W.W., van Roy, F. and Lenhard, B. (2006). A new generation of Jaspar, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res. 34: D95-7.

Washietl, S., Pedersen, J. S., Korbel, J. O., Gruber, A. R., Hackermuller, J., Hertel, J., Lindemeyer, M., Reiche, K., Stocsits, C., Tanzer, A., Ucla, C., Wyss, C., Antonarakis, S. E., Denoeud, F., Lagarde, J., Drenkow, J., Kapranov, P., Gingeras, T. R., Snyder, M., Gerstein, M. B., Reymond, A., Hofacker, I. L., Stadler, P. F. (2007) Structured RNAs in the ENCODE Selected Regions of the Human Genome. Genome Research, (in press)

Wasserman, W., and Sandelin, A. (2004). Applied Bioinformatics for the identification of regulatory elements. Nature 5: 278-287.

Wei, Z. and Jensen, S.T. (2006 ).  GAME: detecting cis-regulatory elements using a genetic algorithm. Bioinformatics 22: 1577-1584.

Workman, C.T., Mak, H.C., McCuine, S., Tagne, J.B., Agarwal, M., Ozier, O., Begley, T.J., Samson, L.D. and Ideker, T. (2006).  A systems approach to mapping DNA damage response pathways. Science 312: 1054-9.

Yip, K. Y., Yu, H., Kim, P. M., Schultz, M. and Gerstein, M. (2006) The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks. Bioinformatics, 22, 2968-70.

Yu, H. and Gerstein, M. (2006) Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci U S A, 103, 14724-31.

Yu, H., Luscombe, N. M., Lu, H. X., Zhu, X., Xia, Y., Han, J. D., Bertin, N., Chung, S., Vidal, M. and  Gerstein, M. (2004) Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res, 14, 1107-18.

Yu, H., Nguyen, K., Royce, T., Qian, J., Nelson, K., Snyder, M. and Gerstein, M. (2007) Positional artifacts in microarrays: experimental verification and construction of COP, an automated detection tool. Nucleic Acids Res, 35, e8.

Yu, H., Zhu, X., Greenbaum, D., Karro, J. and Gerstein, M. (2004) TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. Nucleic Acids Res, 32, 328-37.

Zhang, Z., Harrison, P.M., Liu, Y., and Gerstein, M. (2003). Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13: 2541-58.

Zhang, Z., Paccanaro,A., Fu, Y., Weissman, S., Weng, Z., Chang, J., Snyder, M., Gerstein, M. (2006).  Development of approaches for global analysis of regulatory elements global analysis of the genomic distribution and correlation of regulatory elements in the encode regions. Genome Research. (in press)

Zhang, Z., Pang, A. W. and Gerstein, M. (2007) Comparative analysis of genome tiling array data reveals many novel primate-specific functional RNAs in human. BMC Evol Bio, 7, Suppl 1, S14.

Zheng, D. and Gerstein, M. B. (2006) A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol 7 Suppl 1, S13, 1-10.

Zheng, D. and Gerstein, M. B. (2007).The ambiguous boundary between genes and pseudogenes: the dead rise up, or do they? Trends in Genetics. In press

Zheng, D., Adam Frankish, A., Baertsch, R., Kapranov, P., Reymond, A., Choo, S.W.,  Lu, Y., Denoeud, F., Antonarakis, S.E., Snyder, M., Ruan, Y., Wei, C., Gingeras, T.R., Guigo, R., Harrow, J., and Gerstein, M. (2007). Pseudogenes in the Encode Regions: Consensus Annotation, Analysis of Transcription and Evolution. Genome Research. in press.

Zheng, D., Zhang, Z., Harrison, P.M., Karro, J., Carriero, N., and Gerstein, M. (2005). Integrated pseudogene annotation for human chromosome 22: evidence for transcription. J Mol Biol 349: 27-45.