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ABSTRACT 
Motivation: As the semantic web technology is maturing 
and the need for life sciences data integration over the web 
is growing, it is important to explore how data integration 
needs can be addressed by the semantic web. The main 
problem that we face in data integration is a lack of widely-
accepted standards for expressing the syntax and semantics 
of the data. We address this problem by exploring the use of 
semantic web technologies — including Resource 
Description Framework (RDF), RDF Site Summary (RSS), 
relational-database-to-RDF mapping (D2RQ), and native 
RDF data repository — to represent, store, and query both 
metadata and data across life sciences datasets. 
Results: As many biological datasets are presently available 
in tabular format, we introduce an RDF structure into which 
they can be converted. Also, we develop a prototype web-
based application called YeastHub that demonstrates how a 
life sciences data warehouse can be built using a native 
RDF data store (Sesame). This data warehouse allows 
integration of different types of yeast genome data provided 
by different resources in different formats including the 
tabular and RDF formats. Once the data are loaded into the 
data warehouse, RDF-based queries can be formulated to 
retrieve and query the data in an integrated fashion. 
Availability: The YeastHub web site is accessible via the 
following URL: http://yeasthub.gersteinlab.org 
Contact: kei.cheung@yale.edu 

1 INTRODUCTION  
The web has become instrumental to many facets of 
research in the life sciences domain. Nowadays, researchers 
can easily have Internet access to a large quantity and 
variety of biological data using their web browsers running 
on local desktop computers. As the number of these web 
resources continues to increase, it is important to address the 
problem of interoperability. Currently, it is a challenging 
problem for the following reasons. 
 
1. It is difficult to automatically identify web sites that 

contain relevant and interoperable data, as there is a 
  
* To whom correspondence should be addressed.  

lack of widely-accepted standards for describing these 
web sites as well as their contents. Although 
approaches like the HTML meta tag 
(http://www.htmlhelp.com/reference/html40/head/meta.
html) can be used to annotate a web page through the 
use of keywords, they are problematic in terms of 
sensitivity and specificity. In addition, these approaches 
are neither supported nor used widely by existing web 
search engines. Most web search engines rely on using 
their own algorithms to index individual web sites 
based on their contents.  

2. Different resources provide their data in heterogeneous 
formats. For example, while some data are represented 
in HTML format that is interpretable by the web 
browser, other data formats including the text format  
(e.g., tab-delimited files) and binary format (e.g., 
images) are used. Such heterogeneity in data formats 
makes interoperability difficult if not impossible. 

3. Data interoperability involves both syntactic and 
semantic translation. Both types of translation are 
hindered by the lack of standard data models, formats, 
and vocabulary/ontology. 

 
The semantic web research community addresses these 

problems by seeking methods to facilitate machine-based 
identification and semantic interoperability of web 
resources. Crucial to the semantic web approach is the 
design and development of ontologies (semantic part) that 
are represented in computer-readable formats (syntactic 
part). The eXtensible Markup Language (XML) has become 
a standard syntax for expressing data that are exchanged 
between applications. In the past several years, a large 
collection of XML-based formats has emerged for 
representing different types of biological data. Examples 
include mzXML (Pedrioli et al. 2004) for standardizing the 
representation of mass spectrometry (MS) data generated by 
different MS instruments, BioML (Fenyo 1999) for 
representing biopolymer data, MAGE-ML (Spellman et al. 
2002) for representing microarray gene expression data, 
SBML (Hucka et al. 2003) for representation and exchange 
of biochemical network models, and ProML (Hanisch et al. 
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2002) for specifying protein sequences, structures and 
families. In addition, since XML is widely used there are a 
large number and variety of open source software tools for 
processing it. 

While these XML formats facilitate data exchange 
between applications, they do not adequately address 
semantics and lack expressivity for knowledge 
representation and inference (Decker et al. 2000).  In 
addition, there is a proliferation of semantically-overlapping 
XML formats in the life sciences domain, making syntactic 
and semantic data translation more complex and difficult. 
For example, AGAVE (http://www.agavexml.org/) and 
BSML (http://www.bsml.org/) are different XML formats 
for describing sequence annotation.  SBML, PSI-MI 
(Hermjakob et al. 2004), BIND XML (Alfarano et al. 2005), 
and BioPax (http://www.biopax.org/) are examples of 
pathway/network data formats. Efforts have been underway 
to unify some of these XML formats. For example, MAML 
and GEML, which were two separate microarray gene 
expression data formats, were consolidated into MAGE-
ML. 

The Resource Description Framework (RDF) is a 
standardized XML format designed to describe web 
resources. The RDF structure is generic in the sense that it is 
based on the directed acyclic graph (DAG) model. RDF is a 
model for defining statements about resources and 
relationships among them. Each statement is a triplet 
consisting of a subject, a property, and a property value (or 
object). For example, <“Protein” “Name” “P53”> is a triple 
statement expressing that the subject “Protein” has “P53” as 
the value of its “Name” property. RDF also provides a 
means of defining classes of resources and properties. These 
classes are used to build statements that assert facts about 
resources. Each resource possesses one or more properties. 
While the grammar for XML documents is defined using 
DTD or XSchema, RDF uses its own syntax (RDF Schema 
or RDFS) for writing a schema for a resource. RDFS is 
expressive and it includes subclass/superclass relationships 
as well as constraints on the statements that can be made in 
a document conforming to the schema. Unlike the order of 
elements in XML, the order of RDF properties does not 
matter, thereby giving more flexibility to web programmers 
in developing their applications. While RDF can be 
serialized to a standard XML format, other representations 
such as Notation3 also exist. 

The generic structure of RDF makes data interoperability 
and evolution easier to handle as different types of data can 
be represented using the common graph model. RDF 
extensions such as the Web Ontology Language (OWL) 
support more sophisticated knowledge representation and 
inference. Such languages allow data semantics to be 
defined declaratively (not procedurally) and can be used as a 
common model for expressing different types of biological 
data that are currently defined using different XML 

syntaxes. There are already some biological data that are 
expressed in RDF format. Examples include Gene Ontology 
(Ashburner et al. 2000), NCI thesaurus (Goldbeck et al. 
2003), and UniProt (Apweiler et al. 2004).  

As RDF is gaining more attention in the bioinformatics 
community and more RDF-related tools and technologies 
are becoming available, it is important to find new use cases 
of RDF in the life sciences domain 
(http://www.w3.org/2004/07/swls-ws.html). To this end, our 
paper demonstrates how to use RDF metadata/data 
standards (e.g., RDF Site Summary or RSS) and RDF-based 
technologies (e.g., native RDF database) to facilitate 
integration of diverse types of genome data provided by 
multiple web resources in heterogeneous formats. This 
builds upon our previous work on using XML to 
interoperate heterogeneous genome data (Cheung et al. 
2004). 

Fig. 1. System overview.

2 RDF DATA WAREHOUSE  
Fig. 1 gives a system overview of our semantic web 
approach to data integration. It entails the following steps. 
 
1. Describing and downloading the contents (as tab-

delimited or RDF files) from individual genome web 
sites.  

2. Converting the downloaded data into our RDF format if 
these data are in tab-delimited format.  If the data files 
are in RDF format (even though they are different from 
our RDF format), no conversion is required.  

3. Loading the RDF-formatted data files into an RDF-
native database for data storage, management, and 
retrieval. Once the data are stored in a repository, (web-
enabled) applications can be written to allow users to 
access, query, and analyze the data. 

  
For data that are already stored in relational databases, we 
explore a relational-database-to-RDF mapping method, 
D2RQ (http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rq/), 
which allows existing (or legacy) relational databases to 
publish data in RDF format via a high-level mapping 
specification language.  
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2.1 RDF data stores 
While relational database management systems (RDBMS) 
are the predominant platform for storing, managing, and 
querying biological data, they do not directly fit the RDF 
structure that is based on the DAG model. Mapping 
methods or new database engines are needed to handle RDF 
datasets efficiently. Given the growing use of RDF, 
specialized data storage methods (called  “triple stores”) 
have been developed to efficiently store, manage, and query 
RDF-formatted data. Representative approaches include: 
Sesame (http://www.openrdf.org), Kowari 
(http://www.kowari.org), Joseki (http://www.joseki.org), 
and  Triplestore (http://triplestore.aktors.org).  

m

Some data store approaches (e.g., Sesame) use or provide 
the option to use a relational database (e.g., Oracle, MySQL, 
and Postgres) as the underlying persistent store. Others (e.g., 
Kowari) allow a repository to be created directly on top of 
the RDF files without the need of using a relational 
database. Many of these RDF database systems come with 
their own implementation of RDF query languages (e.g., 
SeRQL is implemented by Sesame and iTQL by Kowari).  

A scalability report on existing RDF data stores has been 
published (http://simile.mit.edu/reports/stores/). In the 
report, Sesame and Kowari are rated high in terms of their 
performance, ease of use, and deployment. Based on this 
report, we have made the decision to use Sesame to 
implement the data warehouse. In addition, Sesame is the 
only system that allows main memory, relational database, 
and file approaches to be used to construct a repository. 
This lets us compare these underlying storage approaches. 

2.2 Metadata and data 
In our system, each resource has two RDF files created and 
associated with it, metadata and data. Fig. 2 shows the first 
step of entering information needed to generate the 
metadata. Based on the information entered, our system will 
generate metadata in RDF format. The RDF format that we 
use is based on the RDF Site Summary (RSS; 
http://web.resource.org/rss/1.0/), which is a standard format 

between web sites. In RSS terms, each resource is known as 
a channel. The basic idea of RSS is that each news web site 
will publish (or syndicate) its headline and description of its 
contents as an RSS feed; applications such as aggregators 
can spider these RSS-enabled sites and assemble their feeds. 
We use a similar idea to create and store the genome-
oriented RSS feeds centrally. Our data warehouse system 
can be considered as an aggregator that integrates the data 
that are described in the RSS feeds.  

The RSS format we use incorpor

originally intended for sharing news headlines and contents 

ates different sets (or 

L through 

2. e format of the original data file: 

3. e given to a resource. 
 used to 

5. rce 

6. count of the resource content. 
r 

8. (e.g., a person, 

9. tity (e.g., a person, 

10. e original 

11. fies the individual(s) who makes 

12. c reference 

odules) of vocabularies including the Dublin Core 
Metadata (DCM) vocabulary 
(http://dublincore.org/documents/dcmi-terms/). We use the 
following DCM terms/properties. 

 
1. Source URL gives the web address or UR 

which the original data resource (or channel) can be 
accessed. In our case a resource or channel is a 
particular data file. 
Format indicates th
tab-delimited and RDF. 
Title is a descriptive nam

4. Type of resource is a list of types that can be
categorize the nature of the content of the resource. 
Language indicates the language in which the resou
contents are published. 
Description gives an ac

7. Identifier is used to identify a resource uniquely. Ou
system generates this identifier automatically and 
assigns it to the identifier property. 
Creator indicates the entity 
organization, or service) that is responsible for making 
the original resource available. 
Publisher indicates the en
organization, or service) that makes the resource that is 
derived from the original resource available. 
Created indicates the date on which th
resource is created. 
Contributor identi
contribution to the content of the resource.  
Bibliographic citation gives a bibliographi
to the resource. 

 

Fig. 3. Metadata encoded in RSS 1.0 format. 

Fig. 2. Metadata generation step. 
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 While title, description, identifier (generated by the 
system) and source URL are mandatory, the other 
properties are optional. By using these standard properties, 
we hope to broaden the utility and sharing of metadata. Fig. 
3 gives an example of the metadata represented using these 
properties in RSS format.  

If the source data file is in RDF format, the user just needs 
to provide the URL of the corresponding schema file. If the 
source data file is in tabular format, the user needs to 
indicate whether the data file contains column headers and if 
so, at which line they occur. Also, the user needs to indicate 
the line number of the first data row. In addition to data 
conversion, the user is offered the option to load the 
converted dataset into the RDF repository for storage and 
later query retrieval; queries can be done not only for the 
just stored dataset, but also integrated queries over all 
resources stored in the repository can be done.  

During the second step of data registration — data 
generation (as shown in Fig. 4), the user needs to provide 
information on how the RDF data format should be 
generated based on the tabular structure (as shown on top of 
Fig .4). This is divided into two parts.  

 
1. The first part requires the user to indicate the type of 

genome objects and the organism involved. In addition, 
the user needs to enter the default namespace for the 
properties to which the file columns (headers) are 
mapped (see below). Finally, the user indicates which 
column (if any) is the ID column by entering the 
corresponding URL, which includes the string pattern 
“[ID]” that will be replaced by the actual ID value.   

2. In the second part, the property name is entered for 
each file column selected by the user. If the source file 
contains column headers, the header labels will be used 
as the default property names (which can later be edited 
by the user). It is possible that the properties may have 
been defined in schemas identified by different 
namespaces. Therefore, the interface provides the user 
with the option to enter a namespace for each property. 
In addition, the interface lets the user indicate whether a 
single column entry contains multiple values (e.g., gene 
synonyms separated by “|”). If so, the user has to 
indicate the delimiter (e.g., comma or space) that is 
used to separate the values. In this case, the 
corresponding RDF output will have multiple property-
value pairs. This may simplify data querying later. 
Finally, the interface allows the user to replace a 
substring pattern with another substring pattern when 
converting column values to property values. For 
example, a GO ID in one resource may contain a colon 
(e.g., GO:12345), while in another resource it has no 
colon (e.g., GO12345). Such a substring replacement 
function helps reduce data variability between 
resources, thereby easing data integration. 

 

Currently, our RDF conversion applies only to data that 
are represented in tab-delimited format. In addition to 
converting tab-delimited files into RDF format, our system 
generates the corresponding RDF schema. Fig. 5 depicts the 
RDF schema generally. In the figure, there is a class named 
genome object that is associated with a collection of 
individual genome objects (a collection is a special type of 
RDF container). Also, genome object has the 
properties,object type and organism which describe the type 
of the genome objects involved (e.g., genes, markers, or 
proteins) and the organism of interest (e.g., yeast, human, or 
mouse). Each genome object in the collection can be 
described by a set of properties that can be user-defined or 
derived from existing standard vocabularies. Different 
collections of genome objects (obtained from different 
sources) may involve different sets of properties.  

 Fig. 6 illustrates how a collection of yeast genes is 
expressed in our RDF/XML format. In this example, the 
description of each yeast gene includes the standard open 
reading frame (ORF) name, common gene name, and 

Fig. 4. Tabular-to-RDF data conversion. 

Fig. 5. Class diagram of the YeastHub RDF data model. 
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synonyms. Each gene is identified by a URL that takes the 

mon system-generated 
id

to 
neous 

em directly to 

2. 
know RDF 

web e user to perform the steps 

 

ORF name as a parameter and returns the detailed 
description of the gene from MIPS.  

The link connecting the generated RDF metadata file, data 
file, and the schema file is via a com

entifier that is stored in the property identifier in the 
metadata file. We create a RDF repository for each file type. 

3 BIOLOGICAL USE CASE: YEASTHUB 
To demonstrate how to use semantic web techniques 
integrate diverse types of genome data in heteroge
formats, we have developed a prototype application called 
“YeastHub”. In this application, a data warehouse has been 
constructed using Sesame to store and query a variety of 
yeast genome data obtained from multiple sources. For 
performance reasons, we create the RDF repository using 
main memory. The application allows the user to register a 
dataset and convert it into RDF format if it is in tabular 
format. Once the datasets are loaded into the repository, 
they can be queried in the following ways. 
 
1. Ad hoc queries. This allows the user to compose  

RDF-based query statements and issue th
the data repository. Currently, it allows the user to use 
the following query languages: RQL, SeRQL, and 
RDQL. This requires the user to be familiar with at 
least one of these query syntaxes as well as the structure 
of the RDF datasets to be queried. SQL users should 
find it easy to learn RDF query languages.  
Form-based queries. While ad hoc RDF queries are 
flexible and powerful, users who do not 
query languages would prefer to use an alternative 
method to pose queries. Even users who are familiar 
with RDF query languages might find these languages 
arcane to use. To this end, the application allows users 
to query the repository through web query forms 
(although they are not as flexible as the ad hoc query 
approach). To create these query forms, YeastHub 
provides a query template generator. Fig. 7 shows the 

involved in generating and saving the query form. First, 
as shown in Fig. 7 (a), the user selects the datasets and 
the properties of interest. After the selection, the user 
proceeds to specify how to generate the query form 
template, as shown in Fig. 7 (b). This page requires the 
user to indicate which properties are to be used for the 
query output (select clause), search Boolean criteria 
(where clause), and join criteria. In addition, the user is 
given the option to create a textfield, pulldown menu, 
or select list (in which multiple items can be selected) 
for each search property. Once the entry is complete, 
the user can go ahead to generate the query form by 
saving it with a name (all this information is stored as 
metadata in a MySQL database). The user can then use 
the generated query form, as shown in Fig. 7(c), to 
perform Boolean queries on the selected datasets. 
Notice that the user who generates the query is not 
necessarily the same person who uses the form to query 
the repository. Some users may just use the query 
form(s) generated by someone else to perform data 
querying. These users may not have the need to create 
query forms themselves. 

 pages that allow th

Fig. 6. An example collection of yeast essential genes represented 
in RDF/XML format. 

(a) 

(c) 

(b) 

Fig. 7. (a) Selection of data sources and properties for  creating a 
query template. (b) Query template generation. (c) Generated 
query form template.  
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Presently, both types of queries return results in HTML 
format for display to the human user. Other formats (e.g., 
RDF format) can be provided. 

3.1 Example Queries 
Our example queries involve integrating datasets obtained 
from different web-accessible databases. Table 1 lists these 
databases. In addition to showing the data distribution 
formats, it categories the databases into the following types. 
 
1. Global databases represent very large repositories 

typically consisting of gigabytes or terabytes of data. 
These databases are widely accessed by researchers 
from different countries via the Internet. The example 
here is the yeast portion of UniProt in RDF format. 
Boutique databases are large databases with typ

Fig. 8. Example integrated query form. 

2. ical 
sizes ranging from several megabytes to hundreds of 
megabytes (or even several gigabytes). Examples 
include SGD, YGDP, MIPS, BIND, GO, and 
TRIPLES. While SGD and MIPS datasets are typically 
available in tabular format, GO and BIND are available 
in XML format.  TRIPLES is a relational database. 
Local databases are relatively small databases that3.  are 
typically developed and used by individual laboratories. 
These databases may range from several kilobytes to 
several (or tens of) megabytes in size. Examples 
include a protein-protein interaction dataset extracted 
from BIND and a protein kinase chip dataset. While 
global and boutique databases are mostly Internet-
accessible, some local databases may be network-
inaccessible and may involve proprietary data formats. 

 
 Table 1. Types of databases and data distribution formats. 
 

 Tabular XML RDF Rel. DB 
Global Databases (GB/TB)  BIND UniProt  
Boutique Databases (MB/GB) , MIPS SGD,  YGDP GO  TRIPLE 
Local Databases (KB/MB) Protein Chips, Protein-

Protein Interactions 
   

 
Example Query 1: Figure 8 shows a query form that 

allows the user to simultaneously query the following yeast 
resources: a) essential gene list obtained from MIPS, b) 
essential gene list obtained from YGDP, c) protein-protein 
interaction data (Yu et al. 2004), d) gene and GO ID 
association obtained from SGD, e) GO annotation and, f) 
gene expression data obtained from TRIPLES (Kumar et al. 
2002). Datasets (a)- (d) are distributed in tab-delimited 
format. They were converted into our RDF format. The GO 
dataset is in an RDF-like XML format (we made some 
slight modification to it to make it RDF-compliant). 
TRIPLES is an Oracle database. We used D2RQ to 
dynamically map a subset of the gene expression data stored 
in TRIPLES to RDF format.  

The example query demonstrates how an integrated query 
can be used to correlate between gene essentiality and 
connectivity derived from the interaction data. The 
hypothesis is that the higher its connectivity, the more likely 

that the gene is essential. This hypothesis has been 
investigated in other work (Guelzim et al. 2002; Wuchty 
2004). In the query form shown in Fig. 8, the user has 
entered the following Boolean condition: connectivity = 80, 
expression_level = 1, growth_condition = vegetative, and 
clone_id = V182B10. Such Boolean query joins across six 
resources based on common gene names and GO IDs. Fig. 9 
shows the corresponding SeRQL query syntax and output. 
The query output indicates that the essential gene 
(YBL092W) has a connectivity equal to 80. This gene is 
found in both the MIPS and YGDP essential gene lists. This 
gives a higher confidence of gene essentiality as the two 
resources might have used different methods and sources to 
identify their essential genes. The query output displays GO 
annotation (molecular function, biological process, and 
cellular component) and TRIPLES gene expression. 

Example Query 2: This query demonstrates how to 
integrate the UniProt dataset with the yeast protein kinase 

Fig. 9. Syntax and output of example query 1. 
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ch

3
ry to be created using a database 
k, or main memory. We evaluate 

cution for each repository type. Both the 
m

ip dataset that captures the number of substrates that each 
kinase phosphorylates with an expression level > 1.  Fig. 10 
shows the RQL query syntax and the output that gives the 
number of substrates phosphorylated by kinase “YBL105C” 
(level >1) as well as the functional annotation of the kinase. 
This protein is listed as essential in both MIPS and YGDP. 
In addition to connectivity, we might hypothesize that the 
more the number of substrates a kinase phosphorylates at a 
high level, the more likely that the kinase is essential.  

.2 Performance 
Sesame allows a reposito
(e.g., MySQL), native dis
the performance of these approaches using example query 1 
described previously. We run the same query twice against 
main memory, mySQL, and native disk repositories. Each 
repository stores the identical datasets with a total of ~800K 
triple statements.  

Table 2 shows the amount the time (in milliseconds) it 
takes for query exe

ain memory and MySQL approaches take about the same 
amount of time on the first query run (~300ms). On the 
second query run, the MySQL approach is 7 times faster 
than the main memory one due to a cache effect (the speed 
difference, however, is only a fraction of a second). The 
file-based approach takes the longest query execution time.  
 
Table 2. Query performance. 

Query run Memory MySQL File 
 

1 312 ms 308 ms 9929 ms 
2 306 ms 44 ms 11045 ms 

 
Table 3 shows the amo  time ( nds) it takes to 
d an RD atted rot dat ich contains 

ye

File 

unt of in seco
loa F-form UniP a file, wh

ast data only, into the three repositories. The file size is 
about 63 MB (~1.4 million triple statements). As shown in 
Table 3, the main memory approach has the best data 
loading performance, while the MySQL approach has the 
worst performance due to the overhead involved in creating 
data indexes. In conclusion, the main memory approach 
gives the best overall performance. 
 
Table 3. UniProt data loading performance. 

Load run Memory MySQL 
 

1 38 s 651 s 262 s 
2 40 s 646 s 275 s 

 

3  Impl ntation
eastHub is implemented using Sesame 1.1. We use 

The web interface is written 
abular-to-RDF conversion is 

format is popularly used in 
es data, there are other data 
h as the record format (or the 

1.
er 

replaces the old one, the URL may need to be changed. 

3. 

ant to exactly 

To
proj w-124.ibm.com/developerworks/oss/lsid/) 
has proposed a standard scheme to reference data resources. 
E

.3 eme  
Y
Tomcat as the web server. 
using Java servlets. The t
written using Java. To access and query the repository 
programmatically, we use Sesame’s Sail API that is Java-
based. We use MySQL as the database server (version 
3.23.58) to store information about the correspondences 
between the resource properties and the query form fields. 
Such information facilitates automatic generation of query 
forms and query statements. We also use the database server 
to create an RDF repository for performance benchmark as 
described previously. YeastHub is currently running on a 
Dell PC server that has dual processors of 2 GHz, 2 GB 
main memory, and a total of 120 GB hard disk space. The 
computer operating system is Red Hat Enterprise Linux AS 
release 3 (Taroon Update 4). 

4 DISCUSSION 
Although the tab-delimited 

Fig. 10. Syntax and output of example query 2.  

distributing life scienc
distribution formats suc
attribute-value pair format), XML format, other proprietary 
formats. It would be logical to incorporate these formats 
into our RDF data conversion scheme. In the process of our 
RDF data conversion, we generate the corresponding RDF 
schemas. While our approach to generating new schemas 
allows existing properties that are defined in other schemas 
to be reused, there is a need to perform schema mapping at a 
later stage, as new standard RDF schemas will emerge. How 
to translate one RDF schema into another RDF schema 
would be an interesting semantic web research topic. 

While URL’s are commonly used as a means to identify 
resources on the web, they have the following problems. 

 
 The web server referenced by the URL may be broken 

or become unavailable. Also, when a new serv

2. The syntax of the URL may change over time as the 
underlying data retrieval program evolves. For 
example, parameter names may be changed and 
additional parameters may be required. 
The data returned by a URL may change over time as 
the underlying database contents change. This creates a 
problem for researchers when they w
reproduce any observations and experiments based on a 
data object. 

 
 address these problems, the Life Science Identifier 

ect (http://ww

very LSID consists of up to five parts: the Network 
Identifier (NID); the root DNS name of the issuing 
authority; the namespace chosen by the issuing authority; 
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the object id unique in that namespace; and finally an 
optional revision id for storing versioning information. For 
example, “urn:lsid:ncbi.nlm.nih.gov:pubmed:12571434” is 
an LSID that references a PubMed article. Each part is 
separated by a colon to make LSIDs easy to parse. The 
specific details of how to resolve the LSID to a given data 
object is left to an LSID issuing authority. In our case, we 
can potentially implement an LSID resolution server (or 
LSID issuing authority) for referencing data objects stored 
in our semantic web data warehouse. 

To increase the performance of data querying and loading, 
we use the main memory approach to build the RDF 
repository.  For large amounts of data, we may use the 
re

QL) 
su

date 
q

lsyntax/), which is an 
ex

. 
ata warehouse by using a native RDF 
me) to store and query diverse types 

system allows 
th

r data are already available in the tab-
d

es such as triple 
stores and RDF query languages to integrate a wide 
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lational database or native disk repository for data archival 
purposes and load the datasets of interest from the archival 
repository into the main memory repository for speed 
performance. Also, if we have a computer cluster, a parallel 
main memory architecture may be used to allow multiple 
main memory repositories to be queried concurrently. 

While RDF-based query languages are SQL-like, there 
are SQL features that have not been implemented in Sesame 
yet. For example, not all RDF query languages (e.g., R

pport outer-join like queries. In other words, if any of the 
properties included in a join query have no values, all the 
corresponding triple statements will be omitted from the 
query results. To get around this problem, our RDF data 
format includes property tags that have no data values. 

Also, it would be useful to implement the aggregate 
functions (e.g., sum and average using GROUP BY). 
Sesame currently does not support delete and up

ueries, although these operations can be performed using 
some programmatic graph interfaces. Another limitation is 
that Sesame does not have a way to identify the source of 
triples (statements) once they are loaded into the repository. 
This makes removal of triples from a repository difficult if 
the triples come from different RDF files and have 
overlapping namespaces.  SPARQL is a new RQL standard 
addressing these issues (http://www.w3.org/TR/2004/WD-
rdf-sparql-query-20041012/). 

To enhance the knowledge representation and inference 
capability of the semantic web, OWL 
(http://www.w3.org/TR/owl-xm

tension of RDF, has emerged as an XML-based web 
ontology language. Support of reasoning using OWL is 
being incorporated into some RDF stores (e.g., Sesame and 
Tucana). This allows such RDF stores to transit from being 
data stores to becoming knowledge stores. There are 
questions (e.g., planning, explanation, and prediction) that 
cannot be answered by traditional database queries. 
However, they can be addressed by the kind of 
representation and reasoning provided by an ontological 
language such as OWL. This has been demonstrated in the 
context of reasoning about signaling network data (Baral et 
al. 2004). Our work also represents a step in this direction. 

5 SUMMARY 
We describe how to use a semantic web approach to 
facilitate data interoperability in the life sciences domain

Thi
H

We build a prototype d
database system (Sesa
of yeast genome data across multiple sources. Although we 
use yeast data as our demonstration, our data integration 
approach can be applied to other organisms. 

In addition to using a RDF data store, we demonstrate 
how to use other RDF technologies including RSS and 
D2RQ to describe metadata and map data dynamically from 
a relational database to RDF format. Our 

ese RDF technologies to be tested and interoperated with 
each other. For example, we found a bug when using D2RQ 
to map an Oracle database to RDF, while it was working 
fine for MySQL. With the help of the developers of D2RQ, 
we were able to fix the bug to make D2RQ work for Oracle.  
It is worth noting that the semantic web and RDF are still 
relatively new technologies; as time passes and their use 
becomes more widespread, more efficient and robust triple 
stores will be developed and applications such as ours will 
benefit from this. 

We introduce an RDF format into which tabular data can 
be converted. Our goal is to make it easy for life scientists to 
cooperatively publish and use their data in RDF format 
(especially if thei

elimited format). The benefits of using RDF in life 
sciences applications include the following. 

 
1. It standardizes data representation, manipulation, and 

integration using graph modeling methods.  
2. It allows exploration of RDF technologi

variety of biological data.  
It facilitates development and utilization o
ontologies to promote semantic interoperability 
between bioinformatic web services. 
It fosters a fruitful collabor
Intelligence (AI) research community and the life 
sciences research community. 
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