
An XML application for genomic data interoperation

Kei-Hoi Cheung1, Yang Liu2, Anuj Kumar3, Michael Snyder2,3, Mark Gerstein2, Perry Miller1,3
1Center for Medical Informatics, Department of Anesthesiology 2 Department of Molecular

Biophysics and Biochemistry, 3Department of Molecular, Cellular and Developmental Biology,
Yale University, New Haven, CT 06520, USA

{kei.cheung, anuj.kumar, michael.snyder, mark.gerstein, perry.miller}@yale.edu

Abstract

As the eXtensible Markup Language (XML)
becomes a popular or standard language for
exchanging data over the Internet/Web, there are a
growing number of genome Web sites that make their
data available in XML format. Publishing genomic
data in XML format alone would not be that useful if
there is a lack of development of software applications
that could take advantage of the XML technology to
process these XML-formatted data. This paper
illustrates the usefulness of XML in representing and
interoperating genomic data between two different
data sources (Snyder's laboratory at Yale and SGD at
Stanford). In particular, we compare the locations of
transposon insertions in the yeast DNA sequences that
have been identified by BLAST searches with the
chromosomal locations of the yeast open reading
frames (ORFs) stored in SGD. Such a comparison
allows us to characterize the transposon insertions by
indicating whether they fall into any ORFs (which may
potentially encode proteins that possess essential
biological functions). To implement this XML-based
interoperation, we used NCBI's "blastall" (which gives
an XML output option) and SGD's yeast nucleotide
sequence dataset to establish a local blast server. Also,
we converted the SGD's ORF location data file (which
is available in tab-delimited format) into an XML
document based on the BIOML (BIOpolymer Markup
Language) standard.

1. Introduction
With the growing use of the Web, large quantities

of biological data have been made accessible to the
scientific community through many genome Web sites
such as the National Center for Biotechnology
Information (NCBI) Web site
(http://www.ncbi.nlm.nih.gov/) and the Protein Data
Bank (PDB) Web site (http://www.rcsb.org/pdb/). The
Web has widely been accepted because it is an Internet-
based standard that has been incorporated into multiple
platforms (e.g., Unix, Windows, and Mac). Web
browsers such as Netscape and Internet Explorer (IE)
are platform-independent and are easy to use. They
provide for the user the capability of browsing through
a large set of data graphically on their local computers.
This graphical capability is made possible by the
HyperText Markup Language (HTML). Another
important feature of the Web is that it allows multiple

HTML documents resided on different Web servers to
be linked to one another through hypertext links. Such
hypertext links have revolutionized the way information
(stored in remote databases) can be linked over the
Internet. This level of database inter-connectivity has
already proven very useful since it allows the user to
navigate data from one Web site to another related Web
site very easily. According to Karp [1], however, this is
not the “Holy Grail” of genomic data interoperation.
There are two problems associated with this hypertext
linking approach.

1. Item-by-item linking. One problem is that the user
has to click on the link one at a time in order to
retrieve related information. This will be a time-
consuming and tedious method to collect related
information if the number of links involved is great,
thereby slowing data collation prior to analysis.

2. Fixed linked fields. The other problem occurs when
we attempt to establish links to external data
sources. These external links restrict how we can
access related data. For example, some genome
databases allow their data entries to be linked via
accession numbers (unique object/record
identifiers). However, if these numbers are not
available in the public interface, there will be no
way to establish links using other fields (such as
gene names or gene symbols).

Despite its hyperlink capability, the HTML is
designed mainly for data display purposes. It is not
suitable for large-scale machine processing. To address
this, many genome sites have distributed large datasets
as flat files (e.g., tab-delimited files). Researchers can
then download these files and process them by custom
programs. According to [2], this flat-file approach is
very limited, because it lacks such abilities as
referencing, controlled vocabulary, and constraints.
Often fields are ambiguous and their contents are
contextual. In other words, the programmer has to
manually interpret the semantics. This hinders the use
of flat files by programs without human interaction. To
fully automate genomic-scale data interoperation, we
need a data representation format that not only
separates the semantic content from the display content,
but it also allows computer programs to process the
semantic part efficiently.

The eXtensible Markup Language (XML) has
emerged as a popular format (both human and machine
readable) for exchanging information over the Web.

XML was designed to overcome the limitations of
HTML and flat files as described previously. It is
derived from the Standard Generalized Markup
Language (SGML), the international standard for
defining descriptions of the structure and content of
different types of electronic documents. XML
documents are self-describing. A set of user-defined
tags can be created for one or many XML documents.
Syntactic and semantic rules can be defined for these
tags in the form of Document Type Definitions (DTD).
In general, the XML tags are used to identify different
types of hierarchically related elements in the
document, with the possibility of referencing and
recursion. Besides its use in data publishing, XML
gives the means for defining strongly structured
documents so that computer programs can easily
navigate through them and access relevant pieces of
information. Another advantage of using XML is that
there is a large body of XML-related software tools and
technologies including Document Object Model
(DOM) and eXtensible Stylesheet Language (XSL) that
are available in the public domain.

There has been an increasing use of XML in the
genome community. Recently, we have seen a growing
number of genome sites that distribute data in XML
format. Among these are NCBI, PDB, and Gene
Ontology (http://www.geneontology.org/). In addition,
a number of XML-related standards have been
proposed for representing different types of biological
data. Among them are MAML
(http://www.ncbi.nlm.nih.gov/geo/maml/index.cgi) and
GEML (http://www.geml.org/), which are XML-based
languages for describing gene expression data; BIOML
(http://www.bioml.com/BIOML/) that describes
biopolymers including genes and proteins; and BSML
(http://www.labbook.com/products/xmlbsml.asp) that
describes DNA sequence data.

This paper describes how to use XML to represent
and interoperate the yeast data that have been produced
at two different sites: Snyder’s Lab at Yale and the
Saccharomyces Genome Database (SGD) [3] at
Stanford. The paper is organized as follows. Section 2
will give an overview of the yeast genomic project to
which our XML approach is applied. This section will
also describe the computer programs used to process
the data in different stages. In Section 3, we will
describe our XML approach to interoperating the yeast
datasets of interest. Also, some examples will be given.
Section 4 will provide some discussion of how to
improve and extend our work. Finally, we will give the
conclusion in Section 5.

2. Application Domain and Data Processing
Fig. 1 gives an overview of the yeast genomic

project to which our XML approach is applied. This
project involves a large-scale functional analysis of the
yeast genome by transposon mutagenesis [4]. The data
generated from this project are stored in a Web-
accessible database—TRIPLES [5]. This research
project generates a large collection of mutant yeast
strains or DNA sequences (represented by short dark
lines in Fig. 1), each strain carrying a transposon
insertion (represented pictorially by an inverted
triangle) at a defined site within the yeast genome.

These mutant strains are subsequently used in a
variety of functional studies, enabling the analysis of
gene expression, disruption phenotypes, and protein
localization [6]. This strain collection is maintained in
96-well format. Each strain is assigned a unique ID
based upon its position within a 96-well storage plate.
For example, strain "V108B6" is stored in plate 108 at
position B6. The prefix "V" indicates that this strain
carries a transposon insertion within a region of the
yeast genome expressed during vegetative growth.
Yeast cells propagate vegetatively when provided with
sufficient nutrients; under appropriate conditions of
starvation, however, yeast cells undergo meiosis and
spore formation. Strains carrying a transposon
insertion affecting a gene whose expression is induced
during this sporulation process are named with an "M"
(meiotic) prefix. This ID designation is useful in
tracking given strains during subsequent analysis steps.
As described below, number of computer programs are
used to identify a genomic region (e.g., a gene)
disrupted by a transposon insertion within each strain.

• Sequencing. An initial step of the project is to
sequence the DNA samples (yeast mutant strains)
collected. Automatic DNA sequencers such as the
ones manufactured by Applied Biosystems support
high throughput sequencing. Following high-
throughput automated sequencing, DNA sequence
data is typically output as chromatograms (trace
signals) that must be subsequently converted into
nucleotide sequence. These chromatogram data sets
are stored in binary files ("chromat" files). In our
case, each chromat file contains DNA sequence data
for a given strain. These files are named according
to the strain ID described previously. We process
these chromat files with the PHRED-PHRAP
package [7, 8] to produce nucleotide sequences
(clone sequences). In addition, we have configured
PHRED-PHRAP to remove vector sequence as well
as the transposon sequence itself from each clone
sequence. Occasionally, transposon sequence are
missed by PHRED-PHRAP due to sequencing
errors. These errors generate DNA sequence data
that imperfectly matches the pre-specified
transposon sequence. Often, these sequencing
errors are minor; manual inspection is usually
sufficient to identify transposon sequence in these
cases. To address this problem, a script was written
to scan the output of PHRED-PHRAP for varying
patterns of this transposon sequence. Specifically,
the sequence data are scanned for a region of 10
nucleotides corresponding to the extreme 5’ end of
the transposon. This automatic “pattern-matching”
is helpful in reducing manual labor, thereby
streamlining data processing.

• Sequence homology searching. Following
PHRED-PHRAP processing, the resulting DNA
sequence data is searched against the yeast genome
as a means of identifying the genomic site of
transposon insertion. For this purpose, sequences
are submitted for BLAST [9] searches. We have
implemented a local BLAST server by using the
“BLASTALL” program from NCBI and the yeast
nucleotide sequence sets from SGD. We have
written scripts to allow multiple sequence files (each

of which can contain multiple sequences) to be
submitted for BLAST searches. This batch
submission is necessary in order to analyze the large
volume of sequence data generated in a typical
genome project.

• Identification of ORFs. The BLAST results
returned from SEARCH-LAUNCHER are
processed automatically to identify both the exact
site of transposon insertion within the yeast genome
as well as open reading frames disrupted by this
insertion event. Based on the BLAST output
(sequence alignments), the chromosomal coordinate
of transposon insertion is calculated. The resulting
insertion coordinate is then compared with the start
and end chromosomal coordinates of all annotated
ORFs recorded in SGD.

3. Implementation of XML Interoperation
The datasets that we attempt to interoperate using

XML involve the BLAST output data and the ORF
location data obtained from SGD (ftp://genome-
ftp.stanford.edu/pub/yeast/tables/ORF_Locations/ORF
_table.txt). As described previously, we used the
"BLASTALL" program provided by NCBI to perform
local BLAST searches. This program allows the
BLAST output to be formatted in XML. The DTD for
the BLAST XML output can be obtained via the
following: ftp://ncbi.nlm.nih.gov/blast/documents. This
XML structure was derived from the ASN.1 structure
of BLAST and is still experimental. The input to the
BLASTALL program is a sequence file containing the
individual sequences. In our case, each sequence file
represents a 96-well plate and therefore consists of 96
sequences, each of which is identified by a strain (or
clone) ID as described previously. The BLASTALL
program will produce an XML document as output for
each sequence (the sequence strain ID is used to name
the XML document). To facilitate large-scale

processing, we have written scripts to allow a batch of
sequence files to be submitted for BLAST searches.

The ORF location data file provided by SGD is
available in tab-delimited format. In order to make our
data interoperation truly XML-based, we converted this
data file into an XML document. Instead of defining an
arbitrary XML structure, we used BIOML
(BIOpolymer Markup Language) as a guide to
implement the conversion. In general, BIOML
describes information about biopolymers (e.g., genes
and proteins) including the chromosomal locations of
DNA sequences. ORFs can be considered a specific
type of DNA sequences (the ones that encode proteins).
To make this fact explicit, we modified the definition
(DTD) of BIOML slightly to include ORF as a new
element. In the following, some examples are provided
to illustrate the BLAST XML output and the SGD ORF
location data in XML format. Also, we describe how to
interoperate these XML documents.

3.1. Blast XML Output

This section gives examples to illustrate the XML-
formatted output of BLAST for two different strain
sequences: one has matches with yeast genome
sequence and the other has no match.

A. Match Example
The XML example below illustrates the BLAST

matches of the input (query) sequence "V97A1". This
BLAST output includes the following: which BLAST
program (and what version) is used (e.g., blastn 2.1.3 is
used for nucleotide sequence searching); which genome
sequence database is used for matching the query or
input sequence(s); description of the query sequence
(e.g., the name of the sequence); the parameters used in
performing the BLAST search (in this example, the
filter "D", which stands for DUST, is used to filter the
query sequence); descriptions of the matches or hits;
and statistics. In general, a BLAST search can result in

Fig. 1. Yeast transposon insertions and ORF identification.

BLAST

SGD ORF
Locations

ORF
Identification

PHRAP-
PHRED

Sequencing

multiple hits in different regions of the target (yeast)
genome. Each hit is characterized by a set of High-
scoring Segment Pairs (HSPs) that include pairs of
aligned sequences with the corresponding alignment
scores.

<?xml version="1.0"?>

<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN"

"NCBI_BlastOutput.dtd">

<BlastOutput>

 <BlastOutput_program>blastn</BlastOutput_program>

 <BlastOutput_version>blastn 2.1.3 [Apr-11-2001]</BlastOutput_version>

 <BlastOutput_reference>

~Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, ~Jinghui

Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), ~"Gapped

BLAST and PSI-BLAST: a new generation of protein database

search~programs", Nucleic Acids Res. 25:3389-3402.

 </BlastOutput_reference>

 <BlastOutput_db>../Blast/chr_all.nt</BlastOutput_db>

 <BlastOutput_query-ID>lcl|QUERY</BlastOutput_query-ID>

 <BlastOutput_query-def>V97A1</BlastOutput_query-def>

 <BlastOutput_query-len>346</BlastOutput_query-len>

 <BlastOutput_param>

 <Parameters>

 <Parameters_expect>10</Parameters_expect>

 <Parameters_include>0</Parameters_include>

 <Parameters_sc-match>1</Parameters_sc-match>

 <Parameters_sc-mismatch>-3</Parameters_sc-mismatch>

 <Parameters_gap-open>5</Parameters_gap-open>

 <Parameters_gap-extend>2</Parameters_gap-extend>

 <Parameters_filter>D</Parameters_filter>

 </Parameters>

 </BlastOutput_param>

 <BlastOutput_iterations>

 <Iteration>

 <Iteration_iter-num>1</Iteration_iter-num>

 <Iteration_hits>

 <Hit>

 <Hit_num>1</Hit_num>

 <Hit_id>ref|NC_001147|</Hit_id>

 <Hit_def>[org=Saccharomyces cerevisiae] [strain=S288C] [moltype=genomic]

[chromosome=XV]</Hit_def>

 <Hit_accession>NC_001147</Hit_accession>

 <Hit_len>1091284</Hit_len>

 <Hit_hsps>

 <Hsp>

 <Hsp_num>1</Hsp_num>

 <Hsp_bit-score>686.389</Hsp_bit-score>

 <Hsp_score>346</Hsp_score>

 <Hsp_evalue>0</Hsp_evalue>

 <Hsp_query-from>346</Hsp_query-from>

 <Hsp_query-to>1</Hsp_query-to>

 <Hsp_hit-from>1089180</Hsp_hit-from>

 <Hsp_hit-to>1089525</Hsp_hit-to>

 <Hsp_pattern-from>0</Hsp_pattern-from>

 <Hsp_pattern-to>0</Hsp_pattern-to>

 <Hsp_query-frame>1</Hsp_query-frame>

 <Hsp_hit-frame>-1</Hsp_hit-frame>

 <Hsp_identity>346</Hsp_identity>

 <Hsp_positive>346</Hsp_positive>

 <Hsp_gaps>0</Hsp_gaps>

 <Hsp_align-len>346</Hsp_align-len>

 <Hsp_density>0</Hsp_density>

 <Hsp_qseq>

TATTGCAGCAGTGATGAGGACAGCGACACGTGCATTCATGGTAG

TGCTAATGCCAGTACCAATGCGACTACCAACTCCAGCACTAATGC

TACTACCACTGCCAGCACCAACGTCAGGACTAGTGCTACTACCAC

TGCCAGCATCAACGTCAGGACTAGTGCGATTACCACTGAAAGTA

CCAACTCCAGCACTAATGCTACTACCACTGCCAGCACCAACGTCA

GGACTAGTGCTACTACCACTGCCAGCATCAACGTCAGGACTAGT

GCGACTACCACTGAAAGTACCAACTCCAACACTAGTGCTACTACC

ACCGAAAGTACCGACTCCAACACTAGTGCTACTA

</Hsp_qseq>

 <Hsp_hseq>

TATTGCAGCAGTGATGAGGACAGCGACACGTGCATTCATGGTAG

TGCTAATGCCAGTACCAATGCGACTACCAACTCCAGCACTAATGC

TACTACCACTGCCAGCACCAACGTCAGGACTAGTGCTACTACCAC

TGCCAGCATCAACGTCAGGACTAGTGCGATTACCACTGAAAGTA

CCAACTCCAGCACTAATGCTACTACCACTGCCAGCACCAACGTCA

GGACTAGTGCTACTACCACTGCCAGCATCAACGTCAGGACTAGT

GCGACTACCACTGAAAGTACCAACTCCAACACTAGTGCTACTACC

ACCGAAAGTACCGACTCCAACACTAGTGCTACTA

</Hsp_hseq>

<Hsp_midline>

||

||

||

</Hsp_midline>

</Hsp>

 .

 .

 </Hit_hsps>

 </Hit>

.

.

</Iteration_hits>

 <Iteration_stat>

 <Statistics>

 <Statistics_db-num>17</Statistics_db-num>

 <Statistics_db-len>12156302</Statistics_db-len>

 <Statistics_hsp-len>0</Statistics_hsp-len>

 <Statistics_eff-space>4.01149e+09</Statistics_eff-space>

 <Statistics_kappa>0.710605</Statistics_kappa>

 <Statistics_lambda>1.37407</Statistics_lambda>

 <Statistics_entropy>1.30725</Statistics_entropy>

 </Statistics>

 </Iteration_stat>

 </Iteration>

 </BlastOutput_iterations>

</BlastOutput>

B. No Match Example
The example below illustrates that the input

sequence "V97A5" has no match/hit in the yeast
genome sequence. It is obvious in the XML output that
there are no hit descriptions. Also shown in the
example (near the bottom) is the following element-
value pair: "<Iteration_message>No hits
found</Iteration_message>".

<?xml version="1.0"?>

<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN"

"NCBI_BlastOutput.dtd">

<BlastOutput>

 <BlastOutput_program>blastn</BlastOutput_program>

 <BlastOutput_version>blastn 2.1.3 [Apr-11-2001]</BlastOutput_version>

 <BlastOutput_reference>

~Reference: Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, ~Jinghui

Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), ~"Gapped

BLAST and PSI-BLAST: a new generation of protein database

search~programs", Nucleic Acids Res. 25:3389-3402.

 </BlastOutput_reference>

 <BlastOutput_db>../Blast/chr_all.nt</BlastOutput_db>

 <BlastOutput_query-ID>lcl|QUERY</BlastOutput_query-ID>

 <BlastOutput_query-def>V97A5 </BlastOutput_query-def>

 <BlastOutput_query-len>32</BlastOutput_query-len>

 <BlastOutput_param>

 <Parameters>

 <Parameters_expect>10</Parameters_expect>

 <Parameters_include>0</Parameters_include>

 <Parameters_sc-match>1</Parameters_sc-match>

 <Parameters_sc-mismatch>-3</Parameters_sc-mismatch>

 <Parameters_gap-open>5</Parameters_gap-open>

 <Parameters_gap-extend>2</Parameters_gap-extend>

 <Parameters_filter>D</Parameters_filter>

 </Parameters>

 </BlastOutput_param>

 <BlastOutput_iterations>

 <Iteration>

 <Iteration_iter-num>1</Iteration_iter-num>

 <Iteration_stat>

 <Statistics>

 <Statistics_db-num>17</Statistics_db-num>

 <Statistics_db-len>12156302</Statistics_db-len>

 <Statistics_hsp-len>0</Statistics_hsp-len>

 <Statistics_eff-space>2.30966e+08</Statistics_eff-space>

 <Statistics_kappa>0.710605</Statistics_kappa>

 <Statistics_lambda>1.37407</Statistics_lambda>

 <Statistics_entropy>1.30725</Statistics_entropy>

 </Statistics>

 </Iteration_stat>

 <Iteration_message>No hits found</Iteration_message>

 </Iteration>

 </BlastOutput_iterations>

</BlastOutput>

3.2. SGD location data example

The example below illustrates how the SGD
location data are represented using the BIOML syntax.
As mentioned previously, we have extended the
BIOML structure to include open reading frames
(orf’s). This new element is modeled in a very similar
way to "locus" that is included in the original BIOML
DTD. Both "locus" and "orf" are modeled as sub-
elements of "chromosome" that, in turns, is a sub-
element of "organism". The "orf" element has the same
sub-elements (e.g., gene, dna and db_entry) as locus
has. Both elements have almost the same set of
attributes (e.g., start and end chromosomal coordinates)
except that "orf" uses an additional attribute "introns"
to indicate the number of introns (if any) within the
open reading frame. We introduced this attribute
mainly because there is an "introns" column in the
source file. Also notice in the example that there is a
"file" element that is used to describe the data source,
including the URL through which the file can be
downloaded and the description of each column.

<?xml version="1.0"?>

<!DOCTYPE bioml SYSTEM "bioml.dtd">

<bioml label="SGD chromosomal location data">

<organism label="Saccharomyces cerevisiae">

.

.

<chromosome label="V" number="5">

.

.

<orf label="YER179W" start="548416" end="549512" introns="1">

meiosis-specific protein related to RecA and Rad51p. Dmc1p colocalizes with

Rad51p to discrete subnuclear sites in nuclear spreads during mid prophase,

briefly colocalizes with Zip1p, and then disappears by pachytene

<db_entry label="orf" format="SGD" entry="S0000981">

</db_entry>

<gene label="dmc1">

</gene>

<dna label="YER179W">

<exon label="exon 1" start="1" end="132">

</exon>

<exon label="exon 2" start="225" end="1097">

</exon>

</dna>

</orf>

.

.

</chromosome>

.

.

</organism>

<file label="SGD ORF LOC" URL="ftp: // genome-ftp.stanford.edu / pub / yeast / tables

/ ORF_Locations / ORF_table.txt" format="TAB-LIMITED">

Table of Saccharomyces cerevisiae ORF Information. This table was produced by the

Saccharomyces Genome Database project (http://genome-www.stanford.edu/). This is

a tab-delimited file. The columns do not all line up when viewed with a text editor or

word processor. However the tabs allow this file to be imported into a spreadsheet

program without any changes. The table includes all Open Reading Frames (ORF)

given a name by the systematic sequencers of the yeast genome. Unless experimental

evidence or strong sequence similarity exists an ORF must encode a protein of 100

amino acids or great to be given a systematic named. Some small ORFs are surely

missing from the current list. Information included, 1) ORF Standard Name 2) SGDID

for the ORF 3) Gene Name (if available) 4) Chromosome 5) Starting nucleotide within

the currently know chromosomal sequence 6) Ending nucleotide within the currently

know chromosomal sequence 7) Number of introns contained within the ORF 8) Exon

coordinates where 1 is the first nucleotide of the ORF 9) Brief Description of gene

product Note, ORFs encoded on the complement strand relative to the systematic

sequence submitted to the public databases will have a starting nucleotide number larger

than the ending nucleotide number. Also all ORFs will include the stop codon. Please

report errors or suggestions of how this table can be more useful to Mike Cherry

(cherry@genome.stanford.edu).

</file>

</bioml>

3.3. Interoperation

We wrote a PERL program that uses the Document
Object Model (DOM) module to interoperate the XML
documents for both the BLAST output and SGD
location data. Using DOM, the XML documents are
mapped into a tree structure in memory. DOM also
provides a number of methods to access different parts
of the tree efficiently and easily (e.g., accessing
elements by their names).

For the BLAST output that involves multiple hits
(HSPs), our program is designed to choose the first
HSP with the following two conditions:

1. A query sequence whose start or end position is
one (indicated by Hsp_query-from or
Hsp_query-to).

2. An e-value (the value of the Hsp_evalue element)
that is equal to or smaller than a threshold value.

Once an HSP that satisfies the above conditions is
found, we can determine the orientation (ascending or
descending) and the chromosomal position of the
transposon insertion by comparing the start and end
positions (specified by Hsp_query-from and
Hsp_query-to) of the query sequence with those
(specified by Hsp_hit-from and Hsp_hit-to) of the hit
sequence. If the value of Hsp_query-from is equal to
one, the orientation is ascending and the insertion
position is obtained from the Hsp_hit-from element.
Otherwise, the orientation is descending and the
insertion position is obtained from the Hsp_hit-to
element. Given the chromosomal position of the
transposon insertion, our program compares it with the
start and end chromosomal coordinates of the exons of
the ORFs contained in the SGD XML document (some
ORFs have multiple exons). If it falls within an exon, a
match is reported by the program.

4. Discussion
By representing the SGD data in XML, we have

noted a number of advantages over the use of flat files.
First of all, the order of the XML elements is
insignificant. This makes the code easier to maintain. In
the flat file approach, a change in the order of the
columns would require code modification. Using the
BIOML structure, the information about a chromosome
(e.g., its label) is stored only once. The same piece of
information is stored redundantly in the flat file format.
Also, XML tends to be more efficient in accessing data
in comparison with the flat file approach. When
comparing the insertion coordinate (within a particular
chromosome) obtained in the BLAST output with the
coordinates of the exons of the ORFs, we have to
access each ORF sequentially using the flat file
approach. Using XML instead, we can access the
chromosome directly and then iterate through the ORFs
within that chromosome.

We adopted a relatively simple rule (the use of a
threshold value) to scan the BLAST search results for
sequence hits. Using this strategy, we may miss
functionally significant matches in BLAST database
searches. Programs such as BEAUTY [10] provide
additional information (e.g., the locations of local hits
and any annotated domains) based on BLAST search
post-processing. Given such additional information, we
may be able to identify more hits.

We characterized the transposon insertions by
detecting their chromosomal locations in the yeast
genome and identifying the known open reading frames
(ORFs) disrupted by these insertion events. There are
more ways to characterize these transposon insertions.
For example, the insertions can be characterized as "in-
frame" or "out-of-frame". Also, we have not discussed
how to characterize those insertions that do not fall into
any known ORFs. In this case, we can determine if they
are within any ORFs that have not been annotated
previously. We call such ORFs non-annotated open
reading frames (NORFs). There are programs such as
NCBI’s ORF finder (http://www.ncbi.nlm.nih.gov/gorf/
gorf.html) that can identify ORFs by scanning the start

and stop codons that are embedded in a nucleic
sequence. As described in [11], we have developed a
program (ORFSEEK) to identify NORFs for the yeast
genome based on the transposon insertions.

The XML documents (BLAST output and SGD
location data) are processed and interoperated using
DOM. This approach may yield poor performances
when dealing with large XML documents. For
processing large XML documents, we may use
alternative XML technologies such as the Simple API
for XML (SAX).

We wrote a PERL program to parse the SGD data
file (a tab-delimited flat file) and convert it into an
XML document. However, this approach will not scale
if the XML conversion needs to be applied to a large
number of files that are structured differently. In this
case, each file would require a separate parsing
program. To make this conversion process scalable, we
have explored a metadata approach [12] that uses a
central metadata repository to represent and store the
structural mapping rules between the source files and
the target XML documents. Then a single generic
program can be written to process these rules to
perform the XML conversion. Rules can be added or
modified by simply editing the metadata without the
need to change the conversion program.

5. Conclusion
We have demonstrated how to use XML to

represent and interoperate data for a yeast genomic
project involving transposon insertions. The results of
this interoperation include location of the transposon
insertions within the yeast genome including those that
fall into the previously identified open reading frames.
XML is self-describing and hierarchical. It also
provides a machine-readable format for capturing data
semantics. Our XML approach involved using the
NCBI's BLASTALL program that is capable of
producing XML output and converting the SGD' s ORF
location dataset into XML based on the extension of
BIOML. We also used an XML-related technology,
DOM, to process the XML-formatted data. We
discussed how our work could be improved and
extended. In summary, our work lends support to the
idea of using XML to distribute and exchange genomic
data over the Web.

Acknowledgements
This work was supported in part by NIH grants G08

LM05583 from the National Library of Medicine, R01
CA77808, and 1K25HG02378-01. The authors would
like to thank Kim Worley at the Baylor College of
Medicine (BCM) and Wayne Matten at NCBI for
pointing to the XML output of BLASTALL.

References
[1] Karp, P., A Strategy for Database Interoperation.

Journal of Computational Biology, 1995. 2(4): p.
573-586.

[2] Achard, F., G. Vaysseix, and E. Barillot, XML,
bioinformatics and data integration.
Bioinformatics, 2001. 17(2): p. 115-125.

[3] Cherry, J., C. Adler, C. Ball, S. Chervitz, S.
Dwight, E. Hester, Y. Jia, G. Juvik, T. Roe, M.
Schroeder, S. Weng, and D. Botstein, SGD:
Saccharomyces Genome Database. Nucleic Acids
Res., 1998. 26(1): p. 73-79.

[4] Burns, N., B. Grimwade, P. Ross-Macdonald, E.
Choi, K. Finberg, G. Roeder, and M. Snyder,
Large-scale analysis of gene expression, protein
localization, and gene disruption in Saccharomyces
cerevisiae. Genes Dev., 1994. 8(9): p. 1087-1105.

[5] Kumar, A., K. Cheung, P. Ross-Macdonald, P.
Coelho, P. Miller, and M. Snyder, TRIPLES: a
database of gene function in S. cerevisiae. Nucleic
Acids Research, 2000. 28(1): p. 81-84.

[6] Ross-Macdonald, P., P. Coelho, T.R. T, S.
Agarwal, A. Kumar, R. Jansen, K. Cheung, A.
Sheehan, D. Symoniatis, L. Umansky, M.
Heidtman, K. Nelson, H. Iwasaki, K. Hager, M.
Gerstein, P. Miller, G.R. GS, and M. Snyder,
Large-Scale Analysis of the Yeast Genome by
Transposon Tagging and Gene Disruption. Nature,
1999. 402(25): p. 413-418.

[7] Ewing, B. and P. Green, Base-calling of automated
sequencer traces using phred II. Error

probabilities. Genome Research, 1998. 8: p. 186-
194.

[8] Ewing, B., L. Hillier, M. Wendl, and P. Green,
Base-calling of automated sequencer traces using
phred I. Accuracy assessment. Genome Research,
1998. 8: p. 175-185.

[9] Altschul, S., W. Gish, W. Miller, E. Myers, and D.
Lipman, Basic Local Alignment Search Tool.
Molecular Biology, 1990. 215: p. 403-410.

[10]Worley, K., B. Wiese, and R. Smith, BEAUTY: an
enhanced BLAST-based search tool that integrates
multiple biological information resources into
sequence similarity search results. Genome Res.,
1995. 5(2): p. 173-84.

[11]Cheung, K., A. Kumar, M. Snyder, and P. Miller,
An Integrated Web Interface for Large-Scale
Characterization of Sequence Data. Functional and
Integrative Genomics, 2000. 1: p. 70-75.

[12]Cheung, K., A. Deshpande, N. Tosches, S. Nath,
A. Agrawal, P. Miller, A. Kumar, and M. Snyder.
A Metadata Framework for Interoperating
Heterogeneous Genome Data Using XML. AMIA
2001, in press.

