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Abstract

Motivation: Protein abundance is related to mRNA expression through many
different cellular processes. Up to now, there have been conflicting results on
how correlated the levels of these two quantities are. Given that expression
and abundance data are significantly more complex and noisy than the
underlying genomic sequence information, it is reasonable to simplify and
average them in terms of broad proteomic categories and features (e.g. functions
or secondary structures), for understanding their relationship. Furthermore, it
will be essential to integrate, within a common framework, the results of many
varied experiments by different investigators. This will allow one to survey the
characteristics of highly expressed genes and proteins.

Results: To this end, we outline a formalism for merging and scaling many
different gene expression and protein abundance data sets into a comprehensive
reference set, and we develop an approach for analyzing this in terms of broad
categories, such as composition, function, structure and localization. As the
various experiments are not always done using the same set of genes, sampling
bias becomes a central issue, and our formalism is designed to explicitly show
this and correct for it. We apply our formalism to the currently available
gene expression and protein abundance data for yeast. Overall, we found
substantial agreement between gene expression and protein abundance, in terms
of the enrichment of structural and functional categories. This agreement,
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which was considerably greater than the simple correlation between these
quantities for individual genes, reflects the way broad categories collect many
individual measurements into simple, robust averages. In particular, we found
that in comparison to the population of genes in the yeast genome, the
cellular populations of transcripts and proteins (weighted by their respective
abundances, the transcriptome and what we dub the translatome) were both
enriched in: (i) the small amino acids Val, Gly, and Ala; (ii) low molecular
weight proteins; (iii) helices and sheets relative to coils; (iv) cytoplasmic
proteins relative to nuclear ones; and (v) proteins involved in ‘protein synthesis,’
‘cell structure,’ and ‘energy production.’

Supplementary information:http://genecensus.org/expression/ translatome

Contact: mark.gerstein@yale.edu

http://genecensus.org/expression/translatome
mailto:mark.gerstein@yale.edu
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Introduction
High throughput experimentation, measuring mRNA (Schenaet al., 1995;
Eisen and Brown, 1999; Ferea and Brown, 1999; Lipshutz et al., 1999) and
protein expression (Anderson and Seilhamer, 1997; Futcheret al., 1999; Gygi
et al., 1999a; Ross-Macdonaldet al., 1999; Lopez, 2000; MacBeath and
Schreiber, 2000; Nelsonet al., 2000; Zhu et al., 2000) are currently the single
richest source of genomic information. However, how to best interpret this
data is still an open question (Bassettet al., 1996; Wittes and Friedman,
1999; Zhang, 1999; Gerstein and Jansen, 2000; Searls, 2000; Sherlock, 2000;
Claverie, 1999; Einarson and Golemis, 2000; Epstein and Butow, 2000;
Shapiro and Harris, 2000). Understanding how protein abundance is related to
mRNA transcript levels is essential for interpreting gene expression, protein
interactions, structures and functions in a cellular system (Hatzimanikatiset
al., 1999). Moreover, as protein concentration is the more relevant variable
with respect to enzyme activity, it connects genomics to the physical chemistry
of the cell (Kidd et al., 2001). Protein abundance may also be invaluable for
diagnostics and for determining drug targets (Corthalset al., 2000).

Previously, we surveyed the population of protein features—such as
folds, amino acid composition, and functions—in yeast, and other recently
sequenced genomes (Gerstein, 1997, 1998a,b; Gerstein and Hegyi, 1998;
Hegyi and Gerstein, 1999; Das and Gerstein, 2000; Lin and Gerstein,
2000), and we extended this concept to compare the population of features
in the yeast transcriptome to that in the genome (Drawid et al., 2000;
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Jansen and Gerstein, 2000). Others have also done related work (Frishman
and Mewes, 1997; Tatusovet al., 1997; Jones, 1998; Wallin and von Heijne,
1998; Frishman and Mewes, 1999; Wolf et al., 1999). Here, we present a new
methodology to compare the features of the mRNA expression population with
the protein abundance population.

Precise terminology is essential for this comparison. Unfortunately, ‘pro-
teome’ is used inconsistently. Proteome can logically be used to describe all
the distinct proteins in the genome (Qi et al., 1996; Cavalcoliet al., 1997; Fey
et al., 1997; Garrelset al., 1997; Gaasterland, 1999; Jones, 1999; Sali, 1999;
Tekaiaet al., 1999; Bairoch, 2000; Cambillau and Claverie, 2000; Doolittle,
2000; Pandey and Mann, 2000; Rubin et al., 2000) and, in this context, it
is equivalent to what others may refer to as the coding part of the genome.
However, in papers on two-dimensional (2D) electrophoresis, it is often used
to describe the sum total of proteins in a cell, taking into account the different
levels of protein abundance (Shevchenkoet al., 1996; Gygi et al., 2000a; Lopez,
2000; Washburn and Yates, 2000). In an effort to be clear, we propose the term
‘translatome’ for this second usage of proteome.

With this definition, we are able to refer compactly to three different cellular
populations. These are illustrated inFig. 1.

(i) We use the termgenomewhen we refer to the population of open reading
frames, where each ORF counts once.

(ii) We use the termtranscriptomewhen we refer to the population of mRNA
transcripts. This term was originally coined byVelculescuet al. (1997).
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Note that each ORF may give rise to different numbers of transcripts.
Consequently, the transcriptome is essentially the same as the genome but
with each ORF weighted by its expression level.

(iii) The next level is the cellular population of proteins. As each protein
represents a translated transcript, we make an analogy with the term
transcriptome and use the termtranslatomeas described above to describe
this third population. Thus, the translatome is a subset of the genome where
each ORF is weighted by its associated level of protein abundance.

Note that one could also less compactly call the translatome a ‘weighted
proteome.’ However, doing so assumes one of the two aforementioned
definitions of proteome. To avoid ambiguity, we studiously avoid the use of
proteome altogether in the paper.

Differences between the translatome and the transcriptome exist given that
transcripts from different genes can give rise to different numbers of proteins,
due to different rates of translation and protein degradation. Post-transcriptional
modifications further affect the translatome.

In our analysis of the transcriptome and translatome, we focus on global
protein features rather than the comparison of individual genes. Previous
analyses have shown that differences between mRNA expression and protein
abundance levels can be quite dramatic for individual genes. This may either be
due to the noise in the data or to fundamental biological processes. However,
our analyses show that the variation between transcriptome and translatome is
much smaller for global properties that are computed by averaging over the
properties of many individual genes.
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Fig. 1. Schematic overview of the analysis. On the left-side we outline the terms we use to describe
the process of gene expression. The coding section of the genome is transcribed into a population of
mRNA transcripts called the ‘transcriptome.’ The transcripts in turn are translated to a population of
proteins; we use the term ‘translatome’ for this protein population rather than the alternative ‘proteome’
because the latter term may be confounded with the protein complement of the genome (which is not
necessarily associated with a quantitative abundance level). The matrix in the middle schematically shows
an analysis of the three stages of expression. In general, we define a protein ‘population’ as a set of
genes associated with a corresponding number of expression or abundance levels (‘weights’). In the
matrix each row represents a weight and each column a gene set. In particular, we differentiate between
the mRNA reference expression set (GmRNA = GGen), which essentially covers the complete genome,
and the reference protein abundance set (GProt) which contains the proteins in data sets 2-DE #1 and
2-DE #2 (seeTable 1) because the protein abundance set is a significantly smaller subset of the genome.
By definition, this subset contains only proteins that can be identified by 2-D gel electrophoresis and is
therefore biased in this sense. The enrichment figures throughout this paper, through a comparison of the
right- and left-sides of this figure, show the results of the experimental biases of 2D gels on the data set.
Each pie chart represents a composition of a particular protein featureF (for instance, an amino acid
composition) in a population (represented by the symbolµ). We can further look at the ‘enrichment’ of
this feature in one population relative to another (represented by the symbol1, see Section ‘Methods’ for
an explanation of the formalism).
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Methods
Data sources used

For our analysis we culled many divergent data sets, representing protein
abundance and mRNA expression experiments and also other sources of
genome annotation. These are all summarized inTable 1.

Biases in the data

The databases that annotate the specific genes may not always be accurate (Ishii
et al., 2000). Gene Chip experiments suffer with regard to cross hybridization
and the saturation of probes. SAGE data degrades for lowly expressed mRNAs.
2D gels are unable to resolve membrane proteins (approximately 30% of the
genome) and basic proteins (Gerstein, 1998c; Krogh et al., 2001). In addition,
the procedures for identification and quantification of the protein spots are
subject to uncertainties (Haynes and Yates, 2000). Human biases include the
lack of low abundance proteins (Fey and Larsen, 2001; Gygi et al., 2000b; Harry
et al., 2000) and the differences between laboratories in sample preparation. Our
reference expression data set attempts to resolve these problems.

Data set scaling

A reference set for mRNA expression.With many different mRNA expression data
sets available, it is worthwhile to integrate them into a single unified reference
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set, with the intention of reducing the noise and errors contained in the
individual data sets and to obtain a unified estimate of the normal expression
state in a cell.

We adopt an iterative scaling and merging formalism, which we summarize
below. We present a more detailed review of the methods on our web site.

We start with the values of one gene chip data setUi where i is used
throughout as a subscript to denote gene number. We then transform the values
of the next Gene Chip data setXi to Yi with the following non-linear regression:
min

∑
i (Yi − Ui )

2 with Yi = AXB
i whereA and B are the parameters of the

regression. Note that two Gene Chip sets may not be defined for the same
set of genes, so we have to perform the fit only over the genes common to
both sets. The motivation for scaling is that the dynamic range of observed
expression levels varies somewhat between different data sets, although cell
types and growth conditions are very similar. Reasons for disparity may include
different calibration procedures for relating fluorescence intensity to a cellular
concentration (measured in copies of transcripts per cell) or different protocols
for harvesting and reverse-transcribing the cellular mRNA.

We then merge and average the data to create a new reference setV as
follows:

If Ui andYi are both defined for genei and
|Yi − Ui |

Yi + Ui
< α

ThenVi =
1
2(Yi + Ui )
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Else if onlyYi exists,Vi = Yi

ElseVi = Ui .

As presented above, where only one data set has a value for the corresponding
ORF, we incorporated that value and did not exclude it. When both data sets
have values for an ORF, we averaged the values if they were within 15% of
each other; otherwise, we just stayed with the original chip data setUi . We
usedα = 15% in order to prevent outliers from skewing the result. This
15% value is a reasonable threshold for excluding outliers though other values
(e.g. 10 or 20%) would give similar results (data not shown). Other data sets are
subsequently included in the same procedure, continuing the iteration from the
new expression valuesVi . The initial iteration starts with the Young Expression
Set, asUi , since we have the highest confidence in its accuracy.

The SAGE data (Velculescuet al., 1997) was not included in the above
procedure since it is of a fundamentally different nature. An advantage of
the SAGE technology over Gene Chips is that there is no possible signal
saturation for high expression levels, as is possible for chips (Futcheret al.,
1999). Conversely, SAGE values are less reliable for lowly expressed genes
since there is a chance that one might not sequence a SAGE tag corresponding
to such a gene altogether. Therefore, if after the last iteration, the average Gene
Chip expression levelVi was both above a certain thresholdβ and below the
SAGE expression levelSi for the same gene, it was replaced with the SAGE
value; otherwise the average Gene Chip value was kept. This gave us our final
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expression setwmRNA. Our treatment of the SAGE data is modeled after that in
Futcheret al. (1999), and like them, we usedβ = 16.

This incorporation of the SAGE data into the reference data set ensures that
the highly expressed outliers are as accurate as possible.

Rather than plain arithmetic averaging, this overall scaling procedure with
theα cutoff avoids ‘artificial averages’ that combine very different values for a
particular gene. Some expression values might be statistical outliers. In addition,
it may be possible that the expression levels of a variety of genes can only
be within mutually exclusive ranges or modes, such as when two alternative
pathways are switched on or off. Simply averaging these would give values that
are less representative of the particular mode values. This situation is analogous
to that in averaging together an ensemble of protein structures (i.e from NMR
structure determination). Each structure could be stereochemically correct,
with all side-chain atoms in predefined rotamer configurations. However, an
average of all structures could yield one that is stereochemically incorrect if
this involved averaging over particular side-chains in different rotameric states.

With regard to our regression analysis, we have investigated both non-linear
and linear fits but found a non-linear procedure to be more advantageous. The
non-linear relationship between different expression data sets perhaps reflects
saturation in one or more of the Gene Chips—not an uncommon phenomenon.
This non-linearity is immediately evident on scatter plots of two data sets
against one another (see website). Accordingly, the non-linear fit produces a
smaller residual than the linear fit: 98 297 (non-linear) versus 122 182 (linear)
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for the scaling of the Church data set and 59 828 (non-linear) versus 67 462
(linear) for the Samson data set.

A reference set for protein abundance.We followed a similar procedure to calculate
a reference protein abundance set from the two gel electrophoresis data sets. We
first scaled the two data sets against the mRNA expression reference data set,
getting regression parametersC j andD j :

min
∑

i

(Pi, j − C j w
D j

mRNA,i )
2

where the subscriptj indicates the data set 2-DE #1 or 2-DE #2 respectively;
Pi, j is the protein abundance value in data setj , andwmRNA,i the corresponding
reference expression value, andC j andD j are the parameters of the non-linear
regression.

Using these parameters, we transformed the values of set 2-DE #2 onto
2-DE #1. Then we combined both sets into the reference protein setwProt by
averaging them, if both values existed. Otherwise, by using the existing value,
viz:

Qi,2 ≡ C1

( Pi,2

C2

)D1/D2

wProt,i = (Pi,1 + Qi,2)/2 if both Pi,1 andQi,2 exist.

Else if only Pi,1 exists,wProt,i = Pi,1

Else if Qi,2 exists,wProt,i = Qi,2.
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Enrichment of features

Formalism. In the next part of our analysis, we want to group a number of proteins
together into various categories based on common features and characterize
those features that are enriched in one population relative to another, i.e. the
translatome population of proteins as measured by 2D gels relative to the
transcriptome population of transcripts or the genome population of genes. To
this end, we set up a formalism that could be applied universally to all the
attributes that we were interested in. Due to the limitations of the experiments,
the translatome, transcriptome, and genome populations are defined on different
sets of genes, and sometimes we want to remove this ‘selection bias’ by forcing
them to be compared on exactly the same set of genes. This is a key aspect of
our formalism as presented inFig. 1.

We call an entity like [w, G] a ‘population,’ whereG is a set describing
a particular selection of genes from the genome andw is vector of weights
associated with each element of this population. In particular, we focus on three
main populations here:
(i) [1, GGen] is the population of genes in the genome, all 6280 genes weighted

once (w = 1);
(ii) [wmRNA, GmRNA] is the observed population of the transcripts in the

transcriptome, i.e. the 6249 genes in the reference expression set weighted
by their reference expression value;

(iii) [wProt, GProt] is the observed cellular population of the proteins in the
translatome, i.e. the 181 genes in the reference abundance set weighted by
their reference abundance value.
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(The set of genes in the genomeGGen is approximately equal to the genes in set
GmRNA, such that we can use both symbols interchangeably.) We can also use
this notation to describe specific experiments—e.g. [wlacZ, GlacZ] describes the
gene set and weights relating to the transposon abundance set.

Furthermore, we defineF j as the value of a featureF in ORF j . For example,
F could be the composition of leucine (a real number) or a binary value (0 or 1)
indicating whether an ORF contains a trans-membrane segment. Given these
definitions, the weighted average of featureF in population [w, G] is:

µ(F, [w, G]) ≡

∑
j ∈G w j F j∑

j ∈G w j
.

The weighted averages of two populations [w, G] and [v, S] can be compared
by simply looking at their relative difference1:

1(F, [v, S], [w, G]) =
µ(F, [v, S]) − µ(F, [w, G])

µ(F, [w, G])

wherev andw are weights for the sets of ORFsSandG respectively. We call1
the ‘enrichment’ of featureF because it indicates whetherF is enriched (if1
is positive) or depleted (if1 is negative) in population [v, S] relative to [w, G].

Usually, the gene setG is defined by the particular experiment, for which the
weight w was measured. However, it is also possible to combine the gene set
associated with one experiment with expression levels from another set. One
may want to do this to compute the enrichment only on the genes common
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to both populations, for which there are defined values for bothw andv, viz:
1(F, [v, S∩ G], [w, S∩ G]). In practice, this is most relevant for comparing
GProt andGmRNA. SinceGProt is completely a subset ofGmRNA, we need not
explicitly deal with intersections if we calculate all statistics directly overGProt.

One can adjust the weight vectors to take into account different types of
averaging. For instance, when computing the amino acid composition (F = aa)
from the amino acid compositions of individual ORFsF j = aaj (∀ j ∈ G), we
weight by ORF length. In the case of expression weights, we have:

w j = N j wmRNA, j ∀ j ∈ G

whereN j is a measure of the length of ORFj (such as the number of amino
acids).

On the other hand, when computing the average molecular weight per amino
acid, we need to normalize by the number of amino acids per ORF, which is
equivalent to choosing the following weights:

w j =
wmRNA, j

N j
∀ j ∈ G.

Application of methodology to quantitative abundance sets

Having defined our formalism, we applied it to a diverse set of protein features
in yeast.
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Amino acid enrichment. As shown inFig. 2a, we used our methodology to measure
the enrichment of individual amino acids in both the translatome and the
transcriptome relative to the genome. We found that three amino acids—valine,
glycine and alanine—were consistently enriched in both transcriptome and
translatome populations.

In Fig. 2a we compare different gene sets. InFig. 2b we focus mainly on
the variation in enrichments when all the comparisons are restricted to the set
of 181 genes (GProt ∩ GmRNA = GProt) common to all data sets. Thus, the
differences between the populations now only reflect the effects of differential
transcription of certain genes and differential translation of certain transcripts.
We find here an enrichment specifically of cysteine in the translatome in relation
to the transcriptome.

To measure the statistical significance of the results on amino acid
enrichment, we have performed a control analysis on a randomized data set
(Fig. 2d). We randomly permutated the expression values of the ORFs 1000
times and then recomputed the enrichments. This allowed us to compute
distributions for the amino acid enrichments and, from integrating these,
one-sidedp-values indicating the significance of the observed enrichments.

Amino acid enrichment in Transposon data set.We also tried to extend our
methodology, ineffectively, to cope with the semi-quantitative Transposon set.
We used only those 450 ORFs that consistently yielded either no expression or
high expression, as binary data, on or off. We show the enrichments of amino
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acids computed from this filtered Transposon abundance set inFig. 2a. Overall,
the enrichments from this set seemed to be attenuated in comparison to other
data.

Biomass enrichment.A corollary to amino acid enrichments is the determination of
the average biomass of the transcriptome and translatome populations (shown
in Fig. 2c). We found that the average molecular weight of a protein in both
populations was, on average, lower than in the genome population. These
preliminary observations suggest a cell preference to use less energetically
expensive proteins for those that are highly transcribed or translated. However,
we also found that the average molecular weightper amino aciddiffered
much less between the transcriptome and the translatome on the one hand, and
the genome on the other hand (though it was still slightly less). This finding
indicates that lower molecular weights in the translatome and transcriptome
relative to the genome are predominantly due to greater expression of shorter
proteins rather than the incorporation of smaller amino acids.

Secondary structure composition.We also used our methodology to study the
enrichment of secondary-structural features. Secondary structural annotation
was derived from structure prediction applied uniformly to all the ORFs in
the yeast genome as described inTable 1. As shown inFig. 3a, all three
populations—genome, transcriptome, and translatome—had a fairly similar
composition of secondary structures—sheets, helices, and coils. The differences
between populations were marginal and based only on the small subset of genes.
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We also found that Transmembrane (TM) proteins were significantly depleted
in the transcriptome (see website and caption). These results are consistent with
our previous analyses (Jansen and Gerstein, 2000). The protein abundance data
does not have any membrane proteins.

Subcellular localization. Fig. 3c shows the enrichment of proteins associated with
the various subcellular compartments. For clarity, we divided the cell into
five distinct subcellular compartments, (seeTable 1). We found that, in
comparison to the genome, both the transcriptome and translatome are enriched
in cytoplasmic proteins. This is true whether we make our comparisons in
relation to the relatively large reference mRNA expression set or the smaller
reference protein abundance set. AsFig. 3c shows, the 2D gel experiments are
clearly biased towards proteins from the cytoplasm. However, in the biased
subsetGProt transcription and translation lead to an even higher fraction of
cytoplasmic proteins in the translatome.

Functional categories. Finally, we compared the enrichment of various functional
categories in both the translatome and the transcriptome (seeFig. 3b). This
gives us a broad yet informative view of the cell as a whole. As described in
Table 1, we used the top-level of the MIPS scheme for the functional category
definitions. We found broad differences between the various populations, with
some of the functional categories showing strikingly high enrichments.
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Table 1. Data sets
Data set Description Size [ORFs] Reference
mRNA expression

Young Gene chip profiles yeast cells with 5455 Holstegeet al. (1998)
mutations that affect transcription

Church Gene chip profiles of yeast cells 6263 Rothet al. (1998)
under four different conditions

Samson Comparing gene chip profiles for 6090 Jelinsky and Samson(1999)
yeast cells subjected to alkylating agent

SAGE Yeast cells during vegetative growth 3778 Velculescuet al. (1997)
Reference expression Scaling and integrating the mRNA 6249 –

expression set into one data source
Protein abundance

2-DE #1 Measurement of yeast protein 156 Gygi et al. (1999a,b)
abundance by 2D gel
electrophoresis and mass spectrometry

2-DE #2 Similar to 2-DE set #1 71 Futcheret al. (1999)
Transposon Large-scale fusions of yeast genes 1410 Ross-Macdonaldet al. (1999)

with lacZ by transposon insertion
Reference abundance Scaling and integrating the 2-DE 181 –

data sets into one data source
Annotation

Annotated localization Subcellular localizations of yeast 2133 Drawid and Gerstein(2000)
proteins (6280)

TM segments Predicted TM and 2710 Gerstein(1998a,b,c)
soluble proteins in yeast (6280)

MIPS functions Functional categories for yeast 3519 Meweset al. (2000)
ORFs (6194)

GOR secondary structure Predicted secondary structure yeast ORFs 6280 Gerstein(1998a,b,c)
This table provides an overview of the data sets used in our analysis. The table is divided into three sections. The top section lists different mRNA
expression sets. The middle section shows the protein abundance data sets used. The bottom section contains different annotations of protein features.
The column ‘Data set’ lists a shorthand reference to each data set used throughout this paper. The next columns contain a brief description of the data
sets, the number of ORFs contained in each of them, and the literature reference. In contrast to the other data we investigated, the reference expression
and abundance data sets have been calculated for the purpose of our analysis (see text). An expanded version of the table is available on our web site.

Some further information on the genome annotations:

Localization. Protein localization information from YPD, MIPS and SwissProt were merged, filtered and standardized (Bairoch and Apweiler, 2000;
Costanzoet al., 2000; Meweset al., 2000) into five simplified compartments—cytoplasm, nucleus, membrane, extracellular (including proteins in ER
and golgi), and mitochondrial—according to the protocol inDrawidet al. (2000). This yielded a standardized annotation of protein subcellular
localization for 2133 out of 6280 ORFs.

TM segments. In 2710 out of 6280 yeast ORFs TM segments are predicted to occur, ranging from low to high confidence (732 ORFs). The TM
prediction was performed as follows: the values from the scale for amino acids in a window of size 20 (the typical size of a TM helix) were averaged

and then compared against a cutoff of−1 kcal mol−1. A value under this cutoff was taken to indicate the existence of a TM helix. Initial hydrophobic
stretches corresponding to signal sequences for membrane insertion were excluded. (These have the pattern of a charged residue within the first seven,
followed by a stretch of 14 with an average hydrophobicity under the cutoff.) These parameters have been used, tested, and refined on surveys of

membrane protein in genomes. ‘Sure’ membrane proteins had at least two TM-segments with an average hydrophobicity less than−2 kcal mol−1

(Rostet al., 1995; Gersteinet al., 2000; Santoniet al., 2000; Seneset al., 2000).

Functions. MIPS functional categories have been assigned to 3519 out of 6194 ORFs. (The remainder are assigned to category ‘98’ or ‘99,’ which
corresponds to unclassified function.)
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Fig. 2. Amino acid and biomass enrichment. (a) Shows the amino acid enrichments between different populations as indicated by the

legend to the right of the plot (the legend is ordered in the same way as the schematic illustration inFig. 1). The bars indicate the enrichment
of the transcriptome relative to the genome, whereas the circles indicate the enrichment of the translatome relative to the genome. In addition,
we also show the enrichment for protein abundance from the Transposon abundance set, represented by the circles with the line through them.
(b) Shows a different view of amino acid enrichment from that contained in (a), now focusing on changes, and thus restricting the comparison
to the genes common to all the data sets. The graph is ordered according to the enrichment from transcriptome to translatome (black squares).
We focus here only on the changes for the abundance gene set (GProt) to exclude the effects that arise from looking at different subsets. In this
view the enrichments from genome to transcriptome (white squares) and from genome to translatome (white diamonds) look more similar
than do the analogous sets in (a). To make comparison with (a) easier we again show the enrichment from genome to the transcriptome for
the complete gene set (GGen, shown in bars). (c) Shows biomass enrichment. The left panel depicts the average molecular weight per ORF
(in units of kDa) and the right panel, the average molecular weight per amino acid (in units of Daltons) in each of the three stages of gene
expression. The numbers inside the circles indicate the average molecular weights. The values next to the arrows indicate the enrichments
in biomass between different populations. Both the circle diameters and the arrow widths are functions of the corresponding values (the
hollow arrow indicates a positive value). It is very clear that the average molecular weight per ORF is much lower in the translatome (by 20
or 15%) and transcriptome (by 29%) than in the genome. This relative depletion of biomass mainly takes place as a result of transcription;
the effect of translation is less clear, depending on the populations compared. On the other hand, the depletion in the average molecular
weight per amino acid (−3.3% from genome to translatome) is an order of magnitude smaller than in the average weight per ORF. This
shows that the yeast cell favors the expression of shorter ORFs over longer ones, and agrees with our earlier observation that there is a
negative correlation between maximum ORF length and mRNA expression (Jansen and Gerstein, 2000); it seems that this effect mainly
takes place during transcription rather than translation. (d) This plot shows that the amino acid enrichments are statistically significant. We
have assessed significance by randomly permuting the expression levels among the genes and then recomputing the amino acid enrichments.
This procedure can be repeated and used to generate distributions of random enrichments that can then be compared against the observed
enrichments. In the plot the gray bars represent the observed enrichments already shown inFig. 3a. On top of the gray bars we show standard
boxplots of enrichment distributions based on 1000 random permutations. (The middle line represents the distribution median. The upper
and lower sides of the box coincide with the upper and lower quartiles. Outliers are shown as dots and defined as data points that are outside
the range of the whiskers, the length of which is 1.5 the interquartile distance.) Based on the random distributions, we can compute one-sided
p-values for the observed enrichments. Amino acids for which thep-values are less than 10−3 are shown in bold font.



Abstract

Introduction

Methods

Discussion and . . .

Acknowledgement

References

� �

� �

GO BACK

CLOSE FILE

7%

11%
6%

4%
4%

17%
33%

10%

15%
26%

22%
3%

1%
5%

34%

1% 8%

10% 2%
8%

3%

22%
28%

20%23%

11%
5%

2%
5%

32%

3%

19%

23%

18%

2%
1%7%

36%

1%
12% Metabolism (1)

Energy (2)
Cell growth, cell division 
and DNA synthesis (3)
Transcription (4)
Protein synthesis (5)
Cellular organization (30)
Unclassified (98, 99)
Other

(c)

22.7%

15.2%

12.0%
32.3%

17.8%

70.7%

6.6%

4.7%

10.8%
7.2%

65.5%2.7%

11.5%

6.2%

14.2%

88.8%

0.3%
2.6%
2.1%

6.2%

84.8%

0.3%

5.3%
4.0%

5.7%

(b)

Function

Cytoplasm

Membrane

Mitochondria

Nucleus

Other

LocalizationSecondary structure(a)

16.4%

45.8%
37.8%

38.2%

16.8%

45.0%

34.1%

19.1%

46.9%

35.0%

17.9%

47.2%

33.5%

17.4%

49.0%

α-helix
β-sheet
Coil

Fig. 3.Breakdown of the transcriptome and translatome in terms of broad categories relating to structure, localization,
and function. All of the subfigures are analogous to the schematic illustration inFig. 1. (a) Represents the composition
of secondary structure in the different populations. (b) Represents the distribution of subcellular localizations associated
with proteins in the various populations. We used standardized localizations developed earlier (Drawid and Gerstein,
2000), which, in turn, were derived from the MIPS, YPD, and SwissProt databases (Bairoch and Apweiler, 2000;
Costanzoet al., 2000; Meweset al., 2000). The subcellular localization has been experimentally determined for less
than half of the yeast proteins, so our analysis applies only to this subset. (c) Shows the division of ORFs into different
functional categories (according to the MIPS classification) in the various populations. Only the largest functional
categories of the top level of the MIPS classification are shown. The group ‘other’ contains the smaller top-level
categories lumped together. This ‘other’ group is different from the group ‘unclassified,’ which contains genes without
any functional description.
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Discussion and conclusion
We developed: (i) a methodology for integrating many different types of gene
expression and protein abundance into a common framework and applied this to
a preliminary analysis; (ii) a procedure for scaling and merging different mRNA
and protein sets together; and (iii) an approach for computing the enrichment
of various proteomic features in the population of transcripts and proteins.
We showed that by analyzing broad categories instead of individual noisy
data points, we could find logical trends in the underlying data. For example,
individual transcription factors might have higher or lower protein abundance
than one expects from their mRNA expression, but the category ‘transcription
factors’ as a whole has a similar representation in the transcriptome and
translatome.

We found, as previously described (Futcheret al., 1999; Gygi et al., 1999b;
Greenbaumet al., 2001), a weak correlation between individual measurements
of mRNA and protein abundance. The outliers of this correlation tend to be
associated with cellular organization. One might conceive of using these outliers
(i.e. those with significantly different transcriptional and translational behavior)
to find consensus regulatory sequences. One possible method would involve
using predicted mRNA structures (Jaegeret al., 1990; Zuker, 2000) to find and
investigate consensus structural elements in these outliers to which the yeast
translational machinery is known to be sensitive (McCarthy, 1998).

In relation to functional categories, we found three trends that were
particularly notable: (i) the ‘cellular organization,’ ‘protein synthesis,’ and
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‘energy production’ categories were increasingly enriched as we moved from
genome to transcriptome to translatome. In the transcriptome and translatome
population relative to the genome; (ii) proteins with ‘unclassified function’
are significantly depleted, perhaps reflecting a bias against studying them;
(iii) proteins in the ‘transcription’ and ‘cell growth, cell division, and DNA
synthesis’ categories were consistently depleted. This reflects the fact that many
of these proteins, such as transcription factors, act as ‘switches’ such that
only small quantities of the protein are necessary to activate or deactivate a
process. These results concur with previous calculations (Jansen and Gerstein,
2000) wherein we found the transcriptome is enriched specifically with proteins
involved in protein synthesis and energy.

Limitations given the small size of the protein abundance data

Even with the extended coverage made possible by merging many data sets
together into reference sets, the analysis is still limited by the minimal data.
This was most applicable to the protein abundance measurements, potentially
biasing our statistical results towards certain protein families. Moreover, the 181
proteins inGProt do not represent a random sample. They are skewed towards
highly expressed, well-studied proteins. Our methodology attempts to control
for this gene-selection bias through our enrichment formalism, which allows
one to rather precisely gauge various aspects of the bias. Conversely, many
protein features in both the translatome and the transcriptome are dominated
by highly expressed proteins. Under these circumstances, it is often sufficient
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to look at this smaller number of dominating proteins to characterize the whole
population. This is similar to the development of the codon adaptation index for
yeast (Sharp and Li, 1987). While based on only 24 highly expressed proteins,
it has proven to be robust in predicting expression levels for the entire genome.

We believe that the essential formalism and approach that we develop will
remain quite relevant for future data sets (Smith, 2000).
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