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Motivation: Protein abundance is related to mRNA expression through many Acknowledgement

different cellular processes. Up to now, there have been conflicting results onS e
how correlated the levels of these two quantities are. Given that expressio
and abundance data are significantly more complex and noisy than the
underlying genomic sequence information, it is reasonable to simplify and
average them in terms of broad proteomic categories and features (e.g. function
or secondary structures), for understanding their relationship. Furthermore, it
will be essential to integrate, within a common framework, the results of many
varied experiments by different investigators. This will allow one to survey the
characteristics of highly expressed genes and proteins.

Results: To this end, we outline a formalism for merging and scaling many
different gene expression and protein abundance data sets into a comprehensi
reference set, and we develop an approach for analyzing this in terms of broag
categories, such as composition, function, structure and localization. As the
various experiments are not always done using the same set of genes, sampli
bias becomes a central issue, and our formalism is designed to explicitly sho
this and correct for it. We apply our formalism to the currently available
gene expression and protein abundance data for yeast. Overall, we foung
substantial agreement between gene expression and protein abundance, in ter
of the enrichment of structural and functional categories. This agreement,



. . . . Abstract
which was considerably greater than the simple correlation between =mtroducﬂon

quantities for individual genes, reflects the way broad categories collect many G-
individual measurements into simple, robust averages. In particular, we found FSEEG_—-GGE_—_G.G
that in comparison to the population of genes in the yeast genome, theyyummm.
cellular populations of transcripts and proteins (weighted by their respective S
abundances, the transcriptome and what we dub the translatome) were bot
enriched in: (i) the small amino acids Val, Gly, and Ala; (ii) low molecular
weight proteins; (iii) helices and sheets relative to coils; (iv) cytoplasmic
proteins relative to nuclear ones; and (v) proteins involved in ‘protein synthesis,
‘cell structure, and ‘energy production.

Supplementary information:http://genecensus.org/ expression/translatome
Contact: mark.gerstein@yale.edu
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High throughput experimentation, measuring mRN2clienaet al., 1995 CHoEs
Eisen and Brown1999 Ferea and Brown1999 Lipshutzet al, 1999 and Discussion and....
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protein expressionAnderson and Seilhamet997 Futcheret al,, 1999 Gyqi

et al, 19993 Ross-Macdonalcet al, 1999 Lopez 200Q MacBeath and
Schreibey200Q Nelsonet al,, 200Q Zhu et al,, 2000 are currently the single
richest source of genomic information. However, how to best interpret this
data is still an open questiorBéssettet al, 1996 Wittes and Friedman
1999 Zhang 1999 Gerstein and JanseR00Q Searls 2000 Sherlock 200Q
Claverie 1999 Einarson and Golemjs200Q Epstein and Butow 200Q
Shapiro and Harri2000. Understanding how protein abundance is related to
MRNA transcript levels is essential for interpreting gene expression, protein
interactions, structures and functions in a cellular systela@zimanikatiset

al., 1999. Moreover, as protein concentration is the more relevant variable
with respect to enzyme activity, it connects genomics to the physical chemistr
of the cell Kidd et al, 2001). Protein abundance may also be invaluable for
diagnostics and for determining drug targete(thalset al.,, 2000.

Previously, we surveyed the population of protein features—such as
folds, amino acid composition, and functions—in yeast, and other recently
sequenced genomesdrstein 1997 1998ab; Gerstein and Hegyil998
Hegyi and Gerstein 1999 Das and Gerstejn200Q Lin and Gerstein
2000, and we extended this concept to compare the population of featureg
in the yeast transcriptome to that in the genonagvid et al, 200Q
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Jansen and Gerstei2000). Others have also done related workrighman Apstract

and Mewes 1997 Tatusovet al, 1997 Jones 1998 Wallin and von Heijne
1998 Frishman and Mewe4.999 Wolf et al, 1999. Here, we present a new
methodology to compare the features of the mRNA expression population with]g\Emmm
the protein abundance population. References
Precise terminology is essential for this comparison. Unfortunately, ‘pro-
teome’ is used inconsistently. Proteome can logically be used to describe al
the distinct proteins in the genom@i(et al,, 1996 Cavalcoliet al, 1997 Fey
et al, 1997 Garrelset al, 1997 Gaasterland1999 Jones 1999 Sali, 1999
Tekaiaet al, 1999 Bairoch 2000 Cambillau and Claverie200Q Doolittle,
200Q Pandey and Mann200Q Rubin et al., 2000 and, in this context, it
is equivalent to what others may refer to as the coding part of the genome
However, in papers on two-dimensional (2D) electrophoresis, it is often used
to describe the sum total of proteins in a cell, taking into account the different
levels of protein abundanc8lievchenket al,, 1996 Gygi et al., 2000a Lopez
200Q Washburn and Yate2000. In an effort to be clear, we propose the term
‘translatome’ for this second usage of proteome.
With this definition, we are able to refer compactly to three different cellular
populations. These are illustratedrig. 1

(i) We use the terngenomewhen we refer to the population of open reading
frames, where each ORF counts once.

(i) We use the terntranscriptomewhen we refer to the population of mMRNA
transcripts. This term was originally coined Mglculescuet al. (1997).

Introduction
Methods

Discussion and ...




Note that each ORF may give rise to different numbers of transcripts. Abstract

Consequently, the transcriptome is essentially the same as the genome b
with each ORF weighted by its expression level. Discussion and ...

(i) The next level is the cellular population of proteins. As each protein PR
represents a translated transcript, we make an analogy with the ternEEEEEs
transcriptome and use the tetranslatomeas described above to describe
this third population. Thus, the translatome is a subset of the genome whersg
each ORF is weighted by its associated level of protein abundance.

Note that one could also less compactly call the translatome a ‘weighted
proteome.” However, doing so assumes one of the two aforementioned
definitions of proteome. To avoid ambiguity, we studiously avoid the use of
proteome altogether in the paper.

Differences between the translatome and the transcriptome exist given tha
transcripts from different genes can give rise to different numbers of proteins,
due to different rates of translation and protein degradation. Post-transcriptiona
modifications further affect the translatome.

In our analysis of the transcriptome and translatome, we focus on global
protein features rather than the comparison of individual genes. Previous
analyses have shown that differences between mRNA expression and protei
abundance levels can be quite dramatic for individual genes. This may either b¢
due to the noise in the data or to fundamental biological processes. Howeve
our analyses show that the variation between transcriptome and translatome
much smaller for global properties that are computed by averaging over the
properties of many individual genes.

Introduction
Methods
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Fig. 1. Schematic overview of the analysis. On the left-side we outline the terms we use to describe
the process of gene expression. The coding section of the genome is transcribed into a population d
MRNA transcripts called the ‘transcriptome.’” The transcripts in turn are translated to a population of
proteins; we use the term ‘translatome’ for this protein population rather than the alternative ‘proteome’
because the latter term may be confounded with the protein complement of the genome (which is no
necessarily associated with a quantitative abundance level). The matrix in the middle schematically show
an analysis of the three stages of expression. In general, we define a protein ‘population’ as a set @
genes associated with a corresponding number of expression or abundance levels (‘weights’). In thg
matrix each row represents a weight and each column a gene set. In particular, we differentiate betwee
the mRNA reference expression s&frna = Ggen), Which essentially covers the complete genome,
and the reference protein abundance &3ty which contains the proteins in data sets 2-DE #1 and
2-DE #2 (se€Table 1) because the protein abundance set is a significantly smaller subset of the genome
By definition, this subset contains only proteins that can be identified by 2-D gel electrophoresis and is
therefore biased in this sense. The enrichment figures throughout this paper, through a comparison of t
right- and left-sides of this figure, show the results of the experimental biases of 2D gels on the data set
Each pie chart represents a composition of a particular protein fektfer instance, an amino acid
composition) in a population (represented by the symboMe can further look at the ‘enrichment’ of
this feature in one population relative to another (represented by the sysmbek SectionMethods' for
an explanation of the formalism).
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For our analysis we culled many divergent data sets, representing proteir e uE s
abundance and mRNA expression experiments and also other sources QREEERVE
genome annotation. These are all summarizethivie 1

Biases in the data

The databases that annotate the specific genes may not always be atshirate (
et al, 2000. Gene Chip experiments suffer with regard to cross hybridization
and the saturation of probes. SAGE data degrades for lowly expressed mRNAg
2D gels are unable to resolve membrane proteins (approximately 30% of thg
genome) and basic proteinGérstein 1998¢ Krogh et al,, 200J). In addition,
the procedures for identification and quantification of the protein spots are
subject to uncertaintiedHgynes and Yate000. Human biases include the
lack of low abundance proteins€y and Larser2001; Gygiet al, 2000Q Harry

et al, 2000 and the differences between laboratories in sample preparation. Ou
reference expression data set attempts to resolve these problems.

Data set scaling

A reference set for mRNA expressioWith many different mRNA expression data
sets available, it is worthwhile to integrate them into a single unified reference



Abstract

set, with the intention of reducing the noise and errors contained in the
individual data sets and to obtain a unified estimate of the normal expressiorfFsss
state in a cell. Discussion and. ..

We adopt an iterative scaling and merging formalism, which we summarize e
below. We present a more detailed review of the methods on our web site. References

We start with the values of one gene chip data Wetwherei is used
throughout as a subscript to denote gene number. We then transform the valug
of the next Gene Chip data s¥i to Y; with the following non-linear regression:
min)"; (Y — U2 with Y; = AXB where A and B are the parameters of the
regression. Note that two Gene Chip sets may not be defined for the sam
set of genes, so we have to perform the fit only over the genes common tq
both sets. The motivation for scaling is that the dynamic range of observed
expression levels varies somewhat between different data sets, although ceg
types and growth conditions are very similar. Reasons for disparity may include
different calibration procedures for relating fluorescence intensity to a cellular
concentration (measured in copies of transcripts per cell) or different protocolg
for harvesting and reverse-transcribing the cellular mRNA.

We then merge and average the data to create a new referenve aset
follows:

Introduction

<

IYi — Uil

If U; andY; are both defined for geneand———
Yi + U;

ThenVi = 3(Y; + Uj)
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Else if onlyY; exists,V, =,

Introduction

ElseV; = U;. Methods
Discussion and. ..

As presented above, where only one data set has a value for the correspondirjrm—m""
ORF, we incorporated that value and did not exclude it. When both data set e
have values for an ORF, we averaged the values if they were within 15% of
each other; otherwise, we just stayed with the original chip datdJsetVe
useda = 15% in order to prevent outliers from skewing the result. This
15% value is a reasonable threshold for excluding outliers though other values
(e.g. 10 or 20%) would give similar results (data not shown). Other data sets aré
subsequently included in the same procedure, continuing the iteration from thg
new expression valuag. The initial iteration starts with the Young Expression
Set, adJ;, since we have the highest confidence in its accuracy.

The SAGE data\elculescuet al, 1997 was not included in the above
procedure since it is of a fundamentally different nature. An advantage of
the SAGE technology over Gene Chips is that there is no possible signa
saturation for high expression levels, as is possible for chipsgcheret al,
1999. Conversely, SAGE values are less reliable for lowly expressed genes
since there is a chance that one might not sequence a SAGE tag correspondi
to such a gene altogether. Therefore, if after the last iteration, the average Ge
Chip expression leveéV; was both above a certain threshgldand below the
SAGE expression levedy for the same gene, it was replaced with the SAGE
value; otherwise the average Gene Chip value was kept. This gave us our fing



: : . b
expression sevmrna- Our treatment of the SAGE data is modeled after that in ﬁtrsc:;i(:tion

Futcheret al. (1999, and like them, we usefl = 16. T

This incorporation of the SAGE data into the reference data set ensures thoyS e —"—"
the highly expressed outliers are as accurate as possible. Acknowledgement

Rather than plain arithmetic averaging, this overall scaling procedure with FESERES
thea cutoff avoids ‘artificial averages’ that combine very different values for a
particular gene. Some expression values might be statistical outliers. In addition
it may be possible that the expression levels of a variety of genes can onl
be within mutually exclusive ranges or modes, such as when two alternative
pathways are switched on or off. Simply averaging these would give values tha
are less representative of the particular mode values. This situation is analogo
to that in averaging together an ensemble of protein structures (i.e from NMR
structure determination). Each structure could be stereochemically correct
with all side-chain atoms in predefined rotamer configurations. However, an
average of all structures could yield one that is stereochemically incorrect if
this involved averaging over particular side-chains in different rotameric states.

With regard to our regression analysis, we have investigated both non-linea
and linear fits but found a non-linear procedure to be more advantageous. Th
non-linear relationship between different expression data sets perhaps reflec
saturation in one or more of the Gene Chips—not an uncommon phenomeno
This non-linearity is immediately evident on scatter plots of two data sets
against one another (see website). Accordingly, the non-linear fit produces 4§
smaller residual than the linear fit: 98 297 (non-linear) versus 122 182 (linear)
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for the scaling of the Church data set and 59 828 (non-linear) versus 67 462

[ Introducti
(linear) for the Samson data set. ntroduction

Methods

Discussion and ...

A reference set for protein abundancé/Ne followed a similar procedure to calculate
a reference protein abundance set from the two gel electrophoresis data sets.
first scaled the two data sets against the mRNA expression reference data sq
getting regression parametés andD:

) D;
man(P,,j - CJ'meRNA,i)2
i

Acknowledgement

References

where the subscript indicates the data set 2-DE #1 or 2-DE #2 respectively;
P j is the protein abundance value in datajsetndwmrna,i the corresponding
reference expression value, adgdandD; are the parameters of the non-linear
regression.

Using these parameters, we transformed the values of set 2-DE #2 ontg
2-DE #1. Then we combined both sets into the reference protemwsgt by

averaging them, if both values existed. Otherwise, by using the existing value
viz:

Q2= C1(i—’§> oube

weroti = (B,1+ Qi 2)/2 if both B 1 and Q; 2 exist.
Else if only B 1 exists,wproti = Pi.1

Else if Q; 2 exists,wproti = Qi 2.
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Enrichment of features

Introduction
Formalism. In the next part of our analysis, we want to group a number of proteins LUEGEEE

together into various categories based on common features and characteri JREEEECIEUEIE
those features that are enriched in one population relative to another, i.e. th GESEEEtSUE
translatome population of proteins as measured by 2D gels relative to thejiaiiae
transcriptome population of transcripts or the genome population of genes. Tq
this end, we set up a formalism that could be applied universally to all the
attributes that we were interested in. Due to the limitations of the experiments,
the translatome, transcriptome, and genome populations are defined on differe
sets of genes, and sometimes we want to remove this ‘selection bias’ by forcing
them to be compared on exactly the same set of genes. This is a key aspect

our formalism as presentedfig. L

We call an entity like yv, G] a ‘population,” whereG is a set describing

a particular selection of genes from the genome anid vector of weights

associated with each element of this population. In particular, we focus on threq

main populations here:

() [1, Gger] is the population of genes in the genome, all 6280 genes weighted
once (v =1);

(i) [wmrna, Gmrnal is the observed population of the transcripts in the
transcriptome, i.e. the 6249 genes in the reference expression set weightg
by their reference expression value;

(i) [wprot, Gprog is the observed cellular population of the proteins in the
translatome, i.e. the 181 genes in the reference abundance set weighted |
their reference abundance value.
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(The set of genes in the genoiigenis approximately equal to the genes in set Abstiact

GmRNA, Such that we can use both symbols interchangeably.) We can also us

this notation to describe specific experiments—enghcl, Giacz] describes the

gene set and weights relating to the transposon abundance set. JR R E—
Furthermore, we defing; as the value of a featuife in ORF j. For example, References

F could be the composition of leucine (a real number) or a binary value (0 or 1)

indicating whether an ORF contains a trans-membrane segment. Given thes

definitions, the weighted average of featlirén population v, GJ is:

> jec WiFj
ZjeG Wi

The weighted averages of two populatioms 5] and [v, § can be compared
by simply looking at their relative differenck:

w(F, v, S) — u(F, [w, G])
w(F, [w, G])

Introduction
Methods

Discussion and ...

w(F, [w, G]) =

A(F,[v, S, [w, G)) =

wherev andw are weights for the sets of ORBsandG respectively. We calh

the ‘enrichment’ of featurd- because it indicates whethEris enriched (ifA

is positive) or depleted (iA\ is negative) in populationv| §] relative to w, G]J.
Usually, the gene s& is defined by the particular experiment, for which the

weightw was measured. However, it is also possible to combine the gene se

associated with one experiment with expression levels from another set. Ong

may want to do this to compute the enrichment only on the genes commo
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to both populations, for which there are defined values for kotindv, viz:
A(F, [v, SN G], [w, SN G]). In practice, this is most relevant for comparing
Gprot and Gmrna. SinceGpyot is completely a subset @& ,rna, We Need not
explicitly deal with intersections if we calculate all statistics directly d8efor. JR R E—
One can adjust the weight vectors to take into account different types Of faSss
averaging. For instance, when computing the amino acid composkiena)
from the amino acid compositions of individual ORFs = aa; (V] € G), we
weight by ORF length. In the case of expression weights, we have:

Introduction
Methods

Discussion and ...

wj = Njwmrna,j V] €G

whereN;j is a measure of the length of ORF(such as the number of amino
acids).

On the other hand, when computing the average molecular weight per aming
acid, we need to normalize by the number of amino acids per ORF, which is
equivalent to choosing the following weights:

WMRNA, j

Vi € G.
Nj I e

wj =

Application of methodology to quantitative abundance sets

Having defined our formalism, we applied it to a diverse set of protein features
in yeast.



Amino acid enrichment. As shown inFig. 2a, we used our methodology to measure

Amino acid enrichment in Transposon data seétVe also tried to extend our

Abstract

Introducti
the enrichment of individual amino acids in both the translatome and the ;;;OL;Z'O”

transcriptome relative to the genome. We found that three amino acids—valine ge——"—"""
glycine and alanine—were consistently enriched in both transcriptome anci e ——"
translatome populations. References

In Fig. 2a we compare different gene sets.Rig. 2b we focus mainly on
the variation in enrichments when all the comparisons are restricted to the se
of 181 genes Gprot N Gmrna = Gprop cOmmon to all data sets. Thus, the
differences between the populations now only reflect the effects of differential
transcription of certain genes and differential translation of certain transcripts.
We find here an enrichment specifically of cysteine in the translatome in relation
to the transcriptome.

To measure the statistical significance of the results on amino acid
enrichment, we have performed a control analysis on a randomized data s
(Fig. 2d). We randomly permutated the expression values of the ORFs 1000
times and then recomputed the enrichments. This allowed us to computg
distributions for the amino acid enrichments and, from integrating these,
one-sidedp-values indicating the significance of the observed enrichments.

methodology, ineffectively, to cope with the semi-quantitative Transposon set.
We used only those 450 ORFs that consistently yielded either no expression o
high expression, as binary data, on or off. We show the enrichments of aming
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acids computed from this filtered Transposon abundance &&j.i2a. Overall,
the enrichments from this set seemed to be attenuated in comparison to othé
data.

Introduction
Methods
Discussion and ...

. . . . . . . . Acknowledgement
Biomass enrichment. A corollary to amino acid enrichments is the determination of

the average biomass of the transcriptome and translatome populations (sho
in Fig. 2c). We found that the average molecular weight of a protein in both
populations was, on average, lower than in the genome population. Thesg
preliminary observations suggest a cell preference to use less energeticall
expensive proteins for those that are highly transcribed or translated. Howeve
we also found that the average molecular weigbt amino aciddiffered
much less between the transcriptome and the translatome on the one hand, a
the genome on the other hand (though it was still slightly less). This finding
indicates that lower molecular weights in the translatome and transcriptome
relative to the genome are predominantly due to greater expression of shorte
proteins rather than the incorporation of smaller amino acids.

References

Secondary structure compositionWe also used our methodology to study the
enrichment of secondary-structural features. Secondary structural annotatio
was derived from structure prediction applied uniformly to all the ORFs in
the yeast genome as describedTable 1 As shown inFig. 3a, all three
populations—genome, transcriptome, and translatome—had a fairly simila
composition of secondary structures—sheets, helices, and coils. The differencs
between populations were marginal and based only on the small subset of gene



We also found that Transmembrane (TM) proteins were significantly depleted Abstact

in the transcriptome (see website and caption). These results are consistent wi
our previous analysedgnsen and Gerstei000. The protein abundance data
does not have any membrane proteins.
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Subcellular localization. Fig. 3c shows the enrichment of proteins associated with

the various subcellular compartments. For clarity, we divided the cell into
five distinct subcellular compartments, (séable 1. We found that, in
comparison to the genome, both the transcriptome and translatome are enrichg
in cytoplasmic proteins. This is true whether we make our comparisons in
relation to the relatively large reference mRNA expression set or the smalle
reference protein abundance set.FAg. 3¢ shows, the 2D gel experiments are
clearly biased towards proteins from the cytoplasm. However, in the biased
subsetGp,qt transcription and translation lead to an even higher fraction of
cytoplasmic proteins in the translatome.

Functional categories. Finally, we compared the enrichment of various functional
categories in both the translatome and the transcriptomeHRgeeb). This
gives us a broad yet informative view of the cell as a whole. As described in
Table 1 we used the top-level of the MIPS scheme for the functional category
definitions. We found broad differences between the various populations, with
some of the functional categories showing strikingly high enrichments.




Table 1. Data sets
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Data set Description Size [ORFs] Reference
TRYA G Discussion and . ...
Young Gene chip profiles yeast cells with 5455 Holstegeet al. (19989
mutations that affect transcription
Church Gene chip profiles of yeast cells 6263 Rothet al. (1998 ACkn0W|edgemem
under four different conditions References
Samson Comparing gene chip profiles for 6090 Jelinsky and Samsqii999
yeast cells subjected to alkylating agent
SAGE Yeast cells during vegetative growth 3778 Velculescuet al. (1997
Reference expression Scaling and integrating the mRNA 6249 -
expression set into one data source
Protein abundance
2-DE #1 Measurement of yeast protein 156 Gygi et al.(19993b)
abundance by 2D gel
electrophoresis and mass spectrometry
2-DE #2 Similar to 2-DE set #1 71 Futcheret al. (1999
Transposon Large-scale fusions of yeast genes 1410 Ross-Macdonalét al. (1999
with lacZ by transposon insertion
Reference abundance Scaling and integrating the 2-DE 181 -
data sets into one data source
Annotation
Annotated localization Subcellular localizations of yeast 2133 Drawid and Gerstei2000
proteins (6280)
TM segments Predicted TM and 2710 Gerstein(1998ab,c)
soluble proteins in yeast (6280)
MIPS functions Functional categories for yeast 3519 Meweset al. (2000
ORFs (6194)
GOR secondary structure Predicted secondary structure yeast ORFs 6280 Gerstein(1998ab,c)

This table provides an overview of the data sets used in our analysis. The table is divided into three sections. The top section lists different mMRNA
expression sets. The middle section shows the protein abundance data sets used. The bottom section contains different annotations of protein features,
The column ‘Data set’ lists a shorthand reference to each data set used throughout this paper. The next columns contain a brief description of the data
sets, the number of ORFs contained in each of them, and the literature reference. In contrast to the other data we investigated, the reference expressio
and abundance data sets have been calculated for the purpose of our analysis (see text). An expanded version of the table is available on our web site.
Some further information on the genome annotations:

Localization Protein localization information from YPD, MIPS and SwissProt were merged, filtered and standaBdizedH{ and Apweiler200Q

Costanzeet al, 2000 Meweset al, 2000 into five simplified compartments—cytoplasm, nucleus, membrane, extracellular (including proteins in ER

and golgi), and mitochondrial—according to the protocdDirawid et al. (2000. This yielded a standardized annotation of protein subcellular

localization for 2133 out of 6280 ORFs.

TM segmentdn 2710 out of 6280 yeast ORFs TM segments are predicted to occur, ranging from low to high confidence (732 ORFs). The TM

prediction was performed as follows: the values from the scale for amino acids in a window of size 20 (the typical size of a TM helix) were averaged

and then compared against a cutoff-ef kcal morL. A value under this cutoff was taken to indicate the existence of a TM helix. Initial hydrophobic
stretches corresponding to signal sequences for membrane insertion were excluded. (These have the pattern of a charged residue within the first seven
followed by a stretch of 14 with an average hydrophobicity under the cutoff.) These parameters have been used, tested, and refined on surveys of
membrane protein in genomes. ‘Sure’ membrane proteins had at least two TM-segments with an average hydrophobicitylzeissahmu)l’1

(Rostet al, 1995 Gersteiret al, 200Q Santoniet al, 2000 Senest al, 2000.

Functions MIPS functional categories have been assigned to 3519 out of 6194 ORFs. (The remainder are assigned to category ‘98’ or ‘99, which
corresponds to unclassified function.)
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Flg 2. Amino acid and biomass enrichment. (a) Shows the amino acid enrichments between different populations as indicated by the

legend to the right of the plot (the legend is ordered in the same way as the schematic illustriatipri)nThe bars indicate the enrichment
of the transcriptome relative to the genome, whereas the circles indicate the enrichment of the translatome relative to the genome. In additio
we also show the enrichment for protein abundance from the Transposon abundance set, represented by the circles with the line through the
(b) Shows a different view of amino acid enrichment from that contained in (a), now focusing on changes, and thus restricting the compariso
to the genes common to all the data sets. The graph is ordered according to the enrichment from transcriptome to translatome (black square
We focus here only on the changes for the abundance ger@msgd to exclude the effects that arise from looking at different subsets. In this
view the enrichments from genome to transcriptome (white squares) and from genome to translatome (white diamonds) look more simila
than do the analogous sets in (a). To make comparison with (a) easier we again show the enrichment from genome to the transcriptome f(
the complete gene seBGen shown in bars). (c) Shows biomass enrichment. The left panel depicts the average molecular weight per ORF
(in units of kDa) and the right panel, the average molecular weight per amino acid (in units of Daltons) in each of the three stages of gendg
expression. The numbers inside the circles indicate the average molecular weights. The values next to the arrows indicate the enrichme
in biomass between different populations. Both the circle diameters and the arrow widths are functions of the corresponding values (thd
hollow arrow indicates a positive value). It is very clear that the average molecular weight per ORF is much lower in the translatome (by 20
or 15%) and transcriptome (by 29%) than in the genome. This relative depletion of biomass mainly takes place as a result of transcription
the effect of translation is less clear, depending on the populations compared. On the other hand, the depletion in the average molecul
weight per amino acid-(3.3% from genome to translatome) is an order of magnitude smaller than in the average weight per ORF. This
shows that the yeast cell favors the expression of shorter ORFs over longer ones, and agrees with our earlier observation that there is|
negative correlation between maximum ORF length and mRNA expres&msén and GersteiB000); it seems that this effect mainly
takes place during transcription rather than translation. (d) This plot shows that the amino acid enrichments are statistically significant. W¢
have assessed significance by randomly permuting the expression levels among the genes and then recomputing the amino acid enrichme
This procedure can be repeated and used to generate distributions of random enrichments that can then be compared against the obse
enrichments. In the plot the gray bars represent the observed enrichments already gfigwairOn top of the gray bars we show standard
boxplots of enrichment distributions based on 1000 random permutations. (The middle line represents the distribution median. The uppe
and lower sides of the box coincide with the upper and lower quartiles. Outliers are shown as dots and defined as data points that are outsig
the range of the whiskers, the length of which is 1.5 the interquartile distance.) Based on the random distributions, we can compute one-side
p-values for the observed enrichments. Amino acids for whictpthalues are less than 1®are shown in bold font.
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Flg. 3. Breakdown of the transcriptome and translatome in terms of broad categories relating to structure, localization,
and function. All of the subfigures are analogous to the schematic illustratfeig.il (a) Represents the composition
of secondary structure in the different populations. (b) Represents the distribution of subcellular localizations associate(
with proteins in the various populations. We used standardized localizations developed Paaligd (and Gerstein
2000, which, in turn, were derived from the MIPS, YPD, and SwissProt datab&®@so¢h and Apweiler2000
Costanzeet al,, 200Q Meweset al, 2000. The subcellular localization has been experimentally determined for less
than half of the yeast proteins, so our analysis applies only to this subset. (c) Shows the division of ORFs into different]
functional categories (according to the MIPS classification) in the various populations. Only the largest functional
categories of the top level of the MIPS classification are shown. The group ‘other’ contains the smaller top-level
categories lumped together. This ‘other’ group is different from the group ‘unclassified, which contains genes without
any functional description.
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Discussion and conclusion

Introduction

We developed: (i) a methodology for integrating many different types of gene ik
expression and protein abundance into a common framework and applied this tQisllE
a preliminary analysis; (ii) a procedure for scaling and merging different mRNA
and protein sets together; and (iii) an approach for computing the enrichmen
of various proteomic features in the population of transcripts and proteins.
We showed that by analyzing broad categories instead of individual noisy
data points, we could find logical trends in the underlying data. For example,
individual transcription factors might have higher or lower protein abundance
than one expects from their mMRNA expression, but the category ‘transcription
factors’ as a whole has a similar representation in the transcriptome ang
translatome.

We found, as previously describelutcheret al,, 1999 Gygi et al,, 19994
Greenbaunet al,, 2007), a weak correlation between individual measurements
of MRNA and protein abundance. The outliers of this correlation tend to be
associated with cellular organization. One might conceive of using these outlierg
(i.e. those with significantly different transcriptional and translational behavior)
to find consensus regulatory sequences. One possible method would involv
using predicted mRNA structuredaegeet al., 1990 Zuker, 2000 to find and
investigate consensus structural elements in these outliers to which the yeas
translational machinery is known to be sensitiveCarthy, 1999.

In relation to functional categories, we found three trends that were
particularly notable: (i) the ‘cellular organization,’ ‘protein synthesis,’ and
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Limitations given the small size of the protein abundance data

. ., . . . . Abstract
energy production’ categories were increasingly enriched as we moved from

genome to transcriptome to translatome. In the transcriptome and translatom
population relative to the genome; (ii) proteins with ‘unclassified function’ FFESEEEEEEES
are significantly depleted, perhaps reflecting a bias against studying them [ --——-—-_——""
(i) proteins in the ‘transcription’ and ‘cell growth, cell division, and DNA  [FSaS_

synthesis’ categories were consistently depleted. This reflects the fact that ma
of these proteins, such as transcription factors, act as ‘switches’ such tha
only small quantities of the protein are necessary to activate or deactivate 4
process. These results concur with previous calculatidassen and Gerstein
2000 wherein we found the transcriptome is enriched specifically with proteins
involved in protein synthesis and energy.

Introduction
Methods

Even with the extended coverage made possible by merging many data se
together into reference sets, the analysis is still limited by the minimal data.
This was most applicable to the protein abundance measurements, potentiall
biasing our statistical results towards certain protein families. Moreover, the 18
proteins inGpyo; dO Not represent a random sample. They are skewed towards
highly expressed, well-studied proteins. Our methodology attempts to control
for this gene-selection bias through our enrichment formalism, which allows
one to rather precisely gauge various aspects of the bias. Conversely, ma
protein features in both the translatome and the transcriptome are dominate
by highly expressed proteins. Under these circumstances, it is often sufficien



1 . . . . b
to look at this smaller number of dominating proteins to characterize the whole Abstract

population. This is similar to the development of the codon adaptation index for
yeast Gharp and Li1987). While based on only 24 highly expressed proteins, FFESEESEEEEEs
it has proven to be robust in predicting expression levels for the entire genome [y S_———

We believe that the essential formalism and approach that we develop will [z
remain quite relevant for future data sefs(ith 2000.

Introduction
Methods
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