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ABSTRACT
Motivation: Protein abundance is related to mRNA
expression through many different cellular processes.
Up to now, there have been conflicting results on how
correlated the levels of these two quantities are. Given that
expression and abundance data are significantly more
complex and noisy than the underlying genomic sequence
information, it is reasonable to simplify and average them
in terms of broad proteomic categories and features (e.g.
functions or secondary structures), for understanding their
relationship. Furthermore, it will be essential to integrate,
within a common framework, the results of many varied
experiments by different investigators. This will allow one
to survey the characteristics of highly expressed genes
and proteins.
Results: To this end, we outline a formalism for merging
and scaling many different gene expression and protein
abundance data sets into a comprehensive reference
set, and we develop an approach for analyzing this in
terms of broad categories, such as composition, function,
structure and localization. As the various experiments are
not always done using the same set of genes, sampling
bias becomes a central issue, and our formalism is
designed to explicitly show this and correct for it. We apply
our formalism to the currently available gene expression
and protein abundance data for yeast. Overall, we found
substantial agreement between gene expression and
protein abundance, in terms of the enrichment of structural
and functional categories. This agreement, which was
considerably greater than the simple correlation between
these quantities for individual genes, reflects the way
broad categories collect many individual measurements
into simple, robust averages. In particular, we found
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that in comparison to the population of genes in the
yeast genome, the cellular populations of transcripts and
proteins (weighted by their respective abundances, the
transcriptome and what we dub the translatome) were both
enriched in: (i) the small amino acids Val, Gly, and Ala;
(ii) low molecular weight proteins; (iii) helices and sheets
relative to coils; (iv) cytoplasmic proteins relative to nuclear
ones; and (v) proteins involved in ‘protein synthesis,’ ‘cell
structure,’ and ‘energy production.’
Supplementary information: http://genecensus.org/
expression/translatome
Contact: mark.gerstein@yale.edu

INTRODUCTION
High throughput experimentation, measuring mRNA
(Schena et al., 1995; Eisen and Brown, 1999; Ferea
and Brown, 1999; Lipshutz et al., 1999) and protein
expression (Anderson and Seilhamer, 1997; Futcher et al.,
1999; Gygi et al., 1999a; Ross-Macdonald et al., 1999;
Lopez, 2000; MacBeath and Schreiber, 2000; Nelson
et al., 2000; Zhu et al., 2000) are currently the single
richest source of genomic information. However, how to
best interpret this data is still an open question (Bassett
et al., 1996; Wittes and Friedman, 1999; Zhang, 1999;
Gerstein and Jansen, 2000; Searls, 2000; Sherlock, 2000;
Claverie, 1999; Einarson and Golemis, 2000; Epstein and
Butow, 2000; Shapiro and Harris, 2000). Understanding
how protein abundance is related to mRNA transcript
levels is essential for interpreting gene expression, protein
interactions, structures and functions in a cellular sys-
tem (Hatzimanikatis et al., 1999). Moreover, as protein
concentration is the more relevant variable with respect
to enzyme activity, it connects genomics to the physical
chemistry of the cell (Kidd et al., 2001). Protein abun-
dance may also be invaluable for diagnostics and for
determining drug targets (Corthals et al., 2000).
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Previously, we surveyed the population of protein
features—such as folds, amino acid composition, and
functions—in yeast, and other recently sequenced
genomes (Gerstein, 1997, 1998a,b; Gerstein and Hegyi,
1998; Hegyi and Gerstein, 1999; Das and Gerstein,
2000; Lin and Gerstein, 2000), and we extended this
concept to compare the population of features in the
yeast transcriptome to that in the genome (Drawid et
al., 2000; Jansen and Gerstein, 2000). Others have also
done related work (Frishman and Mewes, 1997; Tatusov
et al., 1997; Jones, 1998; Wallin and von Heijne, 1998;
Frishman and Mewes, 1999; Wolf et al., 1999). Here, we
present a new methodology to compare the features of the
mRNA expression population with the protein abundance
population.

Precise terminology is essential for this comparison.
Unfortunately, ‘proteome’ is used inconsistently. Pro-
teome can logically be used to describe all the distinct
proteins in the genome (Qi et al., 1996; Cavalcoli et al.,
1997; Fey et al., 1997; Garrels et al., 1997; Gaasterland,
1999; Jones, 1999; Sali, 1999; Tekaia et al., 1999;
Bairoch, 2000; Cambillau and Claverie, 2000; Doolittle,
2000; Pandey and Mann, 2000; Rubin et al., 2000) and,
in this context, it is equivalent to what others may refer
to as the coding part of the genome. However, in papers
on two-dimensional (2D) electrophoresis, it is often used
to describe the sum total of proteins in a cell, taking
into account the different levels of protein abundance
(Shevchenko et al., 1996; Gygi et al., 2000a; Lopez,
2000; Washburn and Yates, 2000). In an effort to be clear,
we propose the term ‘translatome’ for this second usage
of proteome.

With this definition, we are able to refer compactly to
three different cellular populations. These are illustrated
in Figure 1.

(i) We use the term genome when we refer to the
population of open reading frames, where each ORF
counts once.

(ii) We use the term transcriptome when we refer to
the population of mRNA transcripts. This term was
originally coined by Velculescu et al. (1997). Note
that each ORF may give rise to different numbers
of transcripts. Consequently, the transcriptome is
essentially the same as the genome but with each
ORF weighted by its expression level.

(iii) The next level is the cellular population of proteins.
As each protein represents a translated transcript,
we make an analogy with the term transcriptome
and use the term translatome as described above
to describe this third population. Thus, the trans-
latome is a subset of the genome where each
ORF is weighted by its associated level of protein
abundance.

Note that one could also less compactly call the trans-
latome a ‘weighted proteome.’ However, doing so assumes
one of the two aforementioned definitions of proteome. To
avoid ambiguity, we studiously avoid the use of proteome
altogether in the paper.

Differences between the translatome and the transcrip-
tome exist given that transcripts from different genes
can give rise to different numbers of proteins, due to
different rates of translation and protein degradation.
Post-transcriptional modifications further affect the
translatome.

In our analysis of the transcriptome and translatome, we
focus on global protein features rather than the compari-
son of individual genes. Previous analyses have shown that
differences between mRNA expression and protein abun-
dance levels can be quite dramatic for individual genes.
This may either be due to the noise in the data or to funda-
mental biological processes. However, our analyses show
that the variation between transcriptome and translatome
is much smaller for global properties that are computed by
averaging over the properties of many individual genes.

METHODS
Data sources used
For our analysis we culled many divergent data sets,
representing protein abundance and mRNA expression
experiments and also other sources of genome annotation.
These are all summarized in Table 1.

Biases in the data
The databases that annotate the specific genes may
not always be accurate (Ishii et al., 2000). Gene Chip
experiments suffer with regard to cross hybridization
and the saturation of probes. SAGE data degrades for
lowly expressed mRNAs. 2D gels are unable to resolve
membrane proteins (approximately 30% of the genome)
and basic proteins (Gerstein, 1998c; Krogh et al., 2001).
In addition, the procedures for identification and quan-
tification of the protein spots are subject to uncertainties
(Haynes and Yates, 2000). Human biases include the
lack of low abundance proteins (Fey and Larsen, 2001;
Gygi et al., 2000b; Harry et al., 2000) and the differences
between laboratories in sample preparation. Our reference
expression data set attempts to resolve these problems.

Data set scaling
A reference set for mRNA expression. With many differ-
ent mRNA expression data sets available, it is worthwhile
to integrate them into a single unified reference set, with
the intention of reducing the noise and errors contained in
the individual data sets and to obtain a unified estimate of
the normal expression state in a cell.

We adopt an iterative scaling and merging formalism,
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Fig. 1. Schematic overview of the analysis. On the left-side we outline the terms we use to describe the process of gene expression. The
coding section of the genome is transcribed into a population of mRNA transcripts called the ‘transcriptome.’ The transcripts in turn are
translated to a population of proteins; we use the term ‘translatome’ for this protein population rather than the alternative ‘proteome’ because
the latter term may be confounded with the protein complement of the genome (which is not necessarily associated with a quantitative
abundance level).
The matrix in the middle schematically shows an analysis of the three stages of expression. In general, we define a protein ‘population’ as
a set of genes associated with a corresponding number of expression or abundance levels (‘weights’). In the matrix each row represents a
weight and each column a gene set. In particular, we differentiate between the mRNA reference expression set (GmRNA = GGen), which
essentially covers the complete genome, and the reference protein abundance set (GProt) which contains the proteins in data sets 2-DE #1 and
2-DE #2 (see Table 1) because the protein abundance set is a significantly smaller subset of the genome. By definition, this subset contains
only proteins that can be identified by 2-D gel electrophoresis and is therefore biased in this sense. The enrichment figures throughout this
paper, through a comparison of the right- and left-sides of this figure, show the results of the experimental biases of 2D gels on the data set.
Each pie chart represents a composition of a particular protein feature F (for instance, an amino acid composition) in a population (represented
by the symbol µ). We can further look at the ‘enrichment’ of this feature in one population relative to another (represented by the symbol �,
see Section ‘Methods’ for an explanation of the formalism).

which we summarize below. We present a more detailed
review of the methods on our web site.

We start with the values of one gene chip data set Ui
where i is used throughout as a subscript to denote gene
number. We then transform the values of the next Gene
Chip data set Xi to Yi with the following non-linear regres-
sion: min

∑
i (Yi − Ui )

2 with Yi = AX B
i where A and B

are the parameters of the regression. Note that two Gene
Chip sets may not be defined for the same set of genes,
so we have to perform the fit only over the genes com-
mon to both sets. The motivation for scaling is that the
dynamic range of observed expression levels varies some-
what between different data sets, although cell types and
growth conditions are very similar. Reasons for dispar-
ity may include different calibration procedures for relat-
ing fluorescence intensity to a cellular concentration (mea-
sured in copies of transcripts per cell) or different pro-
tocols for harvesting and reverse-transcribing the cellular
mRNA.

We then merge and average the data to create a new

reference set V as follows:

If Ui and Yi are both defined for gene i and
|Yi − Ui |
Yi + Ui

< α

Then Vi = 1
2 (Yi + Ui )

Else if only Yi exists, Vi = Yi

Else Vi = Ui .

As presented above, where only one data set has a value
for the corresponding ORF, we incorporated that value
and did not exclude it. When both data sets have values
for an ORF, we averaged the values if they were within
15% of each other; otherwise, we just stayed with the
original chip data set Ui . We used α = 15% in order to
prevent outliers from skewing the result. This 15% value is
a reasonable threshold for excluding outliers though other
values (e.g. 10 or 20%) would give similar results (data
not shown). Other data sets are subsequently included in
the same procedure, continuing the iteration from the new
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expression values Vi . The initial iteration starts with the
Young Expression Set, as Ui , since we have the highest
confidence in its accuracy.

The SAGE data (Velculescu et al., 1997) was not
included in the above procedure since it is of a funda-
mentally different nature. An advantage of the SAGE
technology over Gene Chips is that there is no possible
signal saturation for high expression levels, as is possible
for chips (Futcher et al., 1999). Conversely, SAGE values
are less reliable for lowly expressed genes since there
is a chance that one might not sequence a SAGE tag
corresponding to such a gene altogether. Therefore, if
after the last iteration, the average Gene Chip expression
level Vi was both above a certain threshold β and below
the SAGE expression level Si for the same gene, it was re-
placed with the SAGE value; otherwise the average Gene
Chip value was kept. This gave us our final expression
set wmRNA. Our treatment of the SAGE data is modeled
after that in Futcher et al. (1999), and like them, we used
β = 16.

This incorporation of the SAGE data into the reference
data set ensures that the highly expressed outliers are as
accurate as possible.

Rather than plain arithmetic averaging, this overall scal-
ing procedure with the α cutoff avoids ‘artificial averages’
that combine very different values for a particular gene.
Some expression values might be statistical outliers. In
addition, it may be possible that the expression levels of
a variety of genes can only be within mutually exclusive
ranges or modes, such as when two alternative pathways
are switched on or off. Simply averaging these would give
values that are less representative of the particular mode
values. This situation is analogous to that in averaging
together an ensemble of protein structures (i.e from NMR
structure determination). Each structure could be stereo-
chemically correct, with all side-chain atoms in predefined
rotamer configurations. However, an average of all struc-
tures could yield one that is stereochemically incorrect if
this involved averaging over particular side-chains in dif-
ferent rotameric states.

With regard to our regression analysis, we have investi-
gated both non-linear and linear fits but found a non-linear
procedure to be more advantageous. The non-linear rela-
tionship between different expression data sets perhaps
reflects saturation in one or more of the Gene Chips—not
an uncommon phenomenon. This non-linearity is imme-
diately evident on scatter plots of two data sets against
one another (see website). Accordingly, the non-linear
fit produces a smaller residual than the linear fit: 98 297
(non-linear) versus 122 182 (linear) for the scaling of the
Church data set and 59 828 (non-linear) versus 67 462
(linear) for the Samson data set.

A reference set for protein abundance. We followed a
similar procedure to calculate a reference protein abun-
dance set from the two gel electrophoresis data sets. We
first scaled the two data sets against the mRNA expres-
sion reference data set, getting regression parameters C j
and D j :

min
∑

i

(Pi, j − C jw
D j
mRNA,i )

2

where the subscript j indicates the data set 2-DE #1 or
2-DE #2 respectively; Pi, j is the protein abundance value
in data set j , and wmRNA,i the corresponding reference
expression value, and C j and D j are the parameters of
the non-linear regression.

Using these parameters, we transformed the values of set
2-DE #2 onto 2-DE #1. Then we combined both sets into
the reference protein set wProt by averaging them, if both
values existed. Otherwise, by using the existing value, viz:

Qi,2 ≡ C1

(
Pi,2

C2

)D1/D2

wProt,i = (Pi,1 + Qi,2)/2 if both Pi,1 and Qi,2 exist.

Else if only Pi,1 exists, wProt,i = Pi,1

Else if Qi,2 exists, wProt,i = Qi,2.

Enrichment of features
Formalism. In the next part of our analysis, we want
to group a number of proteins together into various
categories based on common features and characterize
those features that are enriched in one population relative
to another, i.e. the translatome population of proteins
as measured by 2D gels relative to the transcriptome
population of transcripts or the genome population of
genes. To this end, we set up a formalism that could
be applied universally to all the attributes that we were
interested in. Due to the limitations of the experiments,
the translatome, transcriptome, and genome populations
are defined on different sets of genes, and sometimes we
want to remove this ‘selection bias’ by forcing them to be
compared on exactly the same set of genes. This is a key
aspect of our formalism as presented in Figure 1.

We call an entity like [w, G] a ‘population,’ where G
is a set describing a particular selection of genes from the
genome and w is vector of weights associated with each
element of this population. In particular, we focus on three
main populations here:

(i) [1, GGen] is the population of genes in the genome,
all 6280 genes weighted once (w = 1);

(ii) [wmRNA, GmRNA] is the observed population of the
transcripts in the transcriptome, i.e. the 6249 genes
in the reference expression set weighted by their
reference expression value;
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(iii) [wProt, GProt] is the observed cellular population of
the proteins in the translatome, i.e. the 181 genes
in the reference abundance set weighted by their
reference abundance value.

(The set of genes in the genome GGen is approximately
equal to the genes in set GmRNA, such that we can use
both symbols interchangeably.) We can also use this nota-
tion to describe specific experiments—e.g. [wlacZ, G lacZ]
describes the gene set and weights relating to the transpo-
son abundance set.

Furthermore, we define Fj as the value of a feature F
in ORF j . For example, F could be the composition
of leucine (a real number) or a binary value (0 or 1)
indicating whether an ORF contains a trans-membrane
segment. Given these definitions, the weighted average of
feature F in population [w, G] is:

µ(F, [w, G]) ≡
∑

j∈G w j Fj∑
j∈G w j

.

The weighted averages of two populations [w, G] and
[v, S] can be compared by simply looking at their relative
difference �:

�(F, [v, S], [w, G]) = µ(F, [v, S]) − µ(F, [w, G])
µ(F, [w, G])

where v and w are weights for the sets of ORFs S and G
respectively. We call � the ‘enrichment’ of feature F
because it indicates whether F is enriched (if � is
positive) or depleted (if � is negative) in population [v, S]
relative to [w, G].

Usually, the gene set G is defined by the particular
experiment, for which the weight w was measured.
However, it is also possible to combine the gene set
associated with one experiment with expression levels
from another set. One may want to do this to compute
the enrichment only on the genes common to both
populations, for which there are defined values for both w
and v, viz: �(F, [v, S ∩ G], [w, S ∩ G]). In practice,
this is most relevant for comparing GProt and GmRNA.
Since GProt is completely a subset of GmRNA, we need
not explicitly deal with intersections if we calculate all
statistics directly over GProt.

One can adjust the weight vectors to take into account
different types of averaging. For instance, when com-
puting the amino acid composition (F = aa) from the
amino acid compositions of individual ORFs Fj = aa j
(∀ j ∈ G), we weight by ORF length. In the case of
expression weights, we have:

w j = N jwmRNA, j ∀ j ∈ G

where N j is a measure of the length of ORF j (such as the
number of amino acids).

On the other hand, when computing the average molec-
ular weight per amino acid, we need to normalize by the
number of amino acids per ORF, which is equivalent to
choosing the following weights:

w j = wmRNA, j

N j
∀ j ∈ G.

Application of methodology to quantitative
abundance sets
Having defined our formalism, we applied it to a diverse
set of protein features in yeast.

Amino acid enrichment. As shown in Figure 2a, we used
our methodology to measure the enrichment of individual
amino acids in both the translatome and the transcriptome
relative to the genome. We found that three amino acids—
valine, glycine and alanine—were consistently enriched in
both transcriptome and translatome populations.

In Figure 2a we compare different gene sets. In Fig-
ure 2b we focus mainly on the variation in enrichments
when all the comparisons are restricted to the set of 181
genes (GProt ∩ GmRNA = GProt) common to all data sets.
Thus, the differences between the populations now only
reflect the effects of differential transcription of certain
genes and differential translation of certain transcripts.
We find here an enrichment specifically of cysteine in the
translatome in relation to the transcriptome.

To measure the statistical significance of the results on
amino acid enrichment, we have performed a control anal-
ysis on a randomized data set (Figure 2d). We randomly
permutated the expression values of the ORFs 1000 times
and then recomputed the enrichments. This allowed us to
compute distributions for the amino acid enrichments and,
from integrating these, one-sided p-values indicating the
significance of the observed enrichments.

Amino acid enrichment in Transposon data set. We
also tried to extend our methodology, ineffectively, to
cope with the semi-quantitative Transposon set. We used
only those 450 ORFs that consistently yielded either no
expression or high expression, as binary data, on or off. We
show the enrichments of amino acids computed from this
filtered Transposon abundance set in Figure 2a. Overall,
the enrichments from this set seemed to be attenuated in
comparison to other data.

Biomass enrichment. A corollary to amino acid enrich-
ments is the determination of the average biomass of the
transcriptome and translatome populations (shown in Fig-
ure 2c). We found that the average molecular weight of
a protein in both populations was, on average, lower than
in the genome population. These preliminary observations
suggest a cell preference to use less energetically expen-
sive proteins for those that are highly transcribed or trans-
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Fig. 2. Amino acid and biomass enrichment. (a) Shows the amino acid enrichments between different populations as indicated by the legend
to the right of the plot (the legend is ordered in the same way as the schematic illustration in Figure 1). The bars indicate the enrichment of the
transcriptome relative to the genome, whereas the circles indicate the enrichment of the translatome relative to the genome. In addition, we
also show the enrichment for protein abundance from the Transposon abundance set, represented by the circles with the line through them.
(b) Shows a different view of amino acid enrichment from that contained in (a), now focusing on changes, and thus restricting the comparison
to the genes common to all the data sets. The graph is ordered according to the enrichment from transcriptome to translatome (black squares).
We focus here only on the changes for the abundance gene set (GProt) to exclude the effects that arise from looking at different subsets. In this
view the enrichments from genome to transcriptome (white squares) and from genome to translatome (white diamonds) look more similar
than do the analogous sets in (a). To make comparison with (a) easier we again show the enrichment from genome to the transcriptome for
the complete gene set (GGen, shown in bars). (c) Shows biomass enrichment. The left panel depicts the average molecular weight per ORF
(in units of kDa) and the right panel, the average molecular weight per amino acid (in units of Daltons) in each of the three stages of gene
expression. The numbers inside the circles indicate the average molecular weights. The values next to the arrows indicate the enrichments
in biomass between different populations. Both the circle diameters and the arrow widths are functions of the corresponding values (the
hollow arrow indicates a positive value). It is very clear that the average molecular weight per ORF is much lower in the translatome (by 20
or 15%) and transcriptome (by 29%) than in the genome. This relative depletion of biomass mainly takes place as a result of transcription; the
effect of translation is less clear, depending on the populations compared. On the other hand, the depletion in the average molecular weight
per amino acid (−3.3% from genome to translatome) is an order of magnitude smaller than in the average weight per ORF. This shows
that the yeast cell favors the expression of shorter ORFs over longer ones, and agrees with our earlier observation that there is a negative
correlation between maximum ORF length and mRNA expression (Jansen and Gerstein, 2000); it seems that this effect mainly takes place
during transcription rather than translation. (d) This plot shows that the amino acid enrichments are statistically significant. We have assessed
significance by randomly permuting the expression levels among the genes and then recomputing the amino acid enrichments. This procedure
can be repeated and used to generate distributions of random enrichments that can then be compared against the observed enrichments. In
the plot the gray bars represent the observed enrichments already shown in Figure 3a. On top of the gray bars we show standard boxplots
of enrichment distributions based on 1000 random permutations. (The middle line represents the distribution median. The upper and lower
sides of the box coincide with the upper and lower quartiles. Outliers are shown as dots and defined as data points that are outside the range
of the whiskers, the length of which is 1.5 the interquartile distance.) Based on the random distributions, we can compute one-sided p-values
for the observed enrichments. Amino acids for which the p-values are less than 10−3 are shown in bold font.

lated. However, we also found that the average molecu-
lar weight per amino acid differed much less between the
transcriptome and the translatome on the one hand, and the

genome on the other hand (though it was still slightly less).
This finding indicates that lower molecular weights in the
translatome and transcriptome relative to the genome are
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Fig. 2. Cont.

predominantly due to greater expression of shorter pro-
teins rather than the incorporation of smaller amino acids.

Secondary structure composition. We also used our
methodology to study the enrichment of secondary-
structural features. Secondary structural annotation was
derived from structure prediction applied uniformly to all
the ORFs in the yeast genome as described in Table 1.
As shown in Figure 3a, all three populations—genome,
transcriptome, and translatome—had a fairly similar
composition of secondary structures—sheets, helices, and
coils. The differences between populations were marginal
and based only on the small subset of genes.

We also found that Transmembrane (TM) proteins
were significantly depleted in the transcriptome (see
website and caption). These results are consistent with
our previous analyses (Jansen and Gerstein, 2000). The
protein abundance data does not have any membrane
proteins.

Subcellular localization. Figure 3c shows the enrich-
ment of proteins associated with the various subcellular
compartments. For clarity, we divided the cell into five
distinct subcellular compartments, (see Table 1). We
found that, in comparison to the genome, both the tran-
scriptome and translatome are enriched in cytoplasmic
proteins. This is true whether we make our comparisons in

relation to the relatively large reference mRNA expression
set or the smaller reference protein abundance set. As
Figure 3c shows, the 2D gel experiments are clearly
biased towards proteins from the cytoplasm. However, in
the biased subset GProt transcription and translation lead
to an even higher fraction of cytoplasmic proteins in the
translatome.

Functional categories. Finally, we compared the enrich-
ment of various functional categories in both the trans-
latome and the transcriptome (see Figure 3b). This gives
us a broad yet informative view of the cell as a whole. As
described in Table 1, we used the top-level of the MIPS
scheme for the functional category definitions. We found
broad differences between the various populations, with
some of the functional categories showing strikingly high
enrichments.

DISCUSSION AND CONCLUSION
We developed: (i) a methodology for integrating many dif-
ferent types of gene expression and protein abundance into
a common framework and applied this to a preliminary
analysis; (ii) a procedure for scaling and merging different
mRNA and protein sets together; and (iii) an approach for
computing the enrichment of various proteomic features in
the population of transcripts and proteins. We showed that
by analyzing broad categories instead of individual noisy
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Fig. 3. Breakdown of the transcriptome and translatome in terms of broad categories relating to structure, localization, and function. All
of the subfigures are analogous to the schematic illustration in Figure 1. (a) Represents the composition of secondary structure in the
different populations. (b) Represents the distribution of subcellular localizations associated with proteins in the various populations. We used
standardized localizations developed earlier (Drawid and Gerstein, 2000), which, in turn, were derived from the MIPS, YPD, and SwissProt
databases (Bairoch and Apweiler, 2000; Costanzo et al., 2000; Mewes et al., 2000). The subcellular localization has been experimentally
determined for less than half of the yeast proteins, so our analysis applies only to this subset. (c) Shows the division of ORFs into different
functional categories (according to the MIPS classification) in the various populations. Only the largest functional categories of the top level
of the MIPS classification are shown. The group ‘other’ contains the smaller top-level categories lumped together. This ‘other’ group is
different from the group ‘unclassified,’ which contains genes without any functional description.

data points, we could find logical trends in the underlying
data. For example, individual transcription factors might
have higher or lower protein abundance than one expects
from their mRNA expression, but the category ‘transcrip-
tion factors’ as a whole has a similar representation in the
transcriptome and translatome.

We found, as previously described (Futcher et al., 1999;
Gygi et al., 1999b; Greenbaum et al., 2001), a weak
correlation between individual measurements of mRNA

and protein abundance. The outliers of this correlation
tend to be associated with cellular organization. One
might conceive of using these outliers (i.e. those with
significantly different transcriptional and translational
behavior) to find consensus regulatory sequences. One
possible method would involve using predicted mRNA
structures (Jaeger et al., 1990; Zuker, 2000) to find and
investigate consensus structural elements in these outliers
to which the yeast translational machinery is known to be
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Table 1. Data sets

Data set Description Size [ORFs] Reference

mRNA expression

Young Gene chip profiles yeast cells with 5455 Holstege et al. (1998)
mutations that affect transcription

Church Gene chip profiles of yeast cells 6263 Roth et al. (1998)
under four different conditions

Samson Comparing gene chip profiles for 6090 Jelinsky and Samson (1999)
yeast cells subjected to alkylating agent

SAGE Yeast cells during vegetative growth 3778 Velculescu et al. (1997)

Reference expression Scaling and integrating the mRNA 6249 –
expression set into one data source

Protein abundance

2-DE #1 Measurement of yeast protein 156 Gygi et al. (1999a,b)
abundance by 2D gel
electrophoresis and mass spectrometry

2-DE #2 Similar to 2-DE set #1 71 Futcher et al. (1999)

Transposon Large-scale fusions of yeast genes 1410 Ross-Macdonald et al. (1999)
with lacZ by transposon insertion

Reference abundance Scaling and integrating the 2-DE 181 –
data sets into one data source

Annotation

Annotated localization Subcellular localizations of yeast 2133 Drawid and Gerstein (2000)
proteins (6280)

TM segments Predicted TM and 2710 Gerstein (1998a,b,c)
soluble proteins in yeast (6280)

MIPS functions Functional categories for yeast 3519 Mewes et al. (2000)
ORFs (6194)

GOR secondary structure Predicted secondary structure 6280 Gerstein (1998a,b,c)
yeast ORFs

This table provides an overview of the data sets used in our analysis. The table is divided into three sections. The top section lists different mRNA expression
sets. The middle section shows the protein abundance data sets used. The bottom section contains different annotations of protein features. The column ‘Data
set’ lists a shorthand reference to each data set used throughout this paper. The next columns contain a brief description of the data sets, the number of ORFs
contained in each of them, and the literature reference. In contrast to the other data we investigated, the reference expression and abundance data sets have
been calculated for the purpose of our analysis (see text). An expanded version of the table is available on our web site.

Some further information on the genome annotations:

Localization. Protein localization information from YPD, MIPS and SwissProt were merged, filtered and standardized (Bairoch and Apweiler, 2000;
Costanzo et al., 2000; Mewes et al., 2000) into five simplified compartments—cytoplasm, nucleus, membrane, extracellular (including proteins in ER and
golgi), and mitochondrial—according to the protocol in Drawid et al. (2000). This yielded a standardized annotation of protein subcellular localization for
2133 out of 6280 ORFs.

TM segments. In 2710 out of 6280 yeast ORFs TM segments are predicted to occur, ranging from low to high confidence (732 ORFs). The TM prediction was
performed as follows: the values from the scale for amino acids in a window of size 20 (the typical size of a TM helix) were averaged and then compared
against a cutoff of −1 kcal mol−1. A value under this cutoff was taken to indicate the existence of a TM helix. Initial hydrophobic stretches corresponding to
signal sequences for membrane insertion were excluded. (These have the pattern of a charged residue within the first seven, followed by a stretch of 14 with
an average hydrophobicity under the cutoff.) These parameters have been used, tested, and refined on surveys of membrane protein in genomes. ‘Sure’
membrane proteins had at least two TM-segments with an average hydrophobicity less than −2 kcal mol−1 (Rost et al., 1995; Gerstein et al., 2000; Santoni
et al., 2000; Senes et al., 2000).

Functions. MIPS functional categories have been assigned to 3519 out of 6194 ORFs. (The remainder are assigned to category ‘98’ or ‘99,’ which
corresponds to unclassified function.)

sensitive (McCarthy, 1998).
In relation to functional categories, we found three

trends that were particularly notable: (i) the ‘cellular

organization,’ ‘protein synthesis,’ and ‘energy production’
categories were increasingly enriched as we moved from
genome to transcriptome to translatome. In the transcrip-
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tome and translatome population relative to the genome;
(ii) proteins with ‘unclassified function’ are significantly
depleted, perhaps reflecting a bias against studying them;
(iii) proteins in the ‘transcription’ and ‘cell growth, cell
division, and DNA synthesis’ categories were consistently
depleted. This reflects the fact that many of these proteins,
such as transcription factors, act as ‘switches’ such that
only small quantities of the protein are necessary to
activate or deactivate a process. These results concur with
previous calculations (Jansen and Gerstein, 2000) wherein
we found the transcriptome is enriched specifically with
proteins involved in protein synthesis and energy.

Limitations given the small size of the protein
abundance data
Even with the extended coverage made possible by
merging many data sets together into reference sets, the
analysis is still limited by the minimal data. This was
most applicable to the protein abundance measurements,
potentially biasing our statistical results towards certain
protein families. Moreover, the 181 proteins in GProt do
not represent a random sample. They are skewed towards
highly expressed, well-studied proteins. Our methodology
attempts to control for this gene-selection bias through
our enrichment formalism, which allows one to rather
precisely gauge various aspects of the bias. Conversely,
many protein features in both the translatome and the
transcriptome are dominated by highly expressed proteins.
Under these circumstances, it is often sufficient to look at
this smaller number of dominating proteins to characterize
the whole population. This is similar to the development of
the codon adaptation index for yeast (Sharp and Li, 1987).
While based on only 24 highly expressed proteins, it has
proven to be robust in predicting expression levels for the
entire genome.

We believe that the essential formalism and approach
that we develop will remain quite relevant for future data
sets (Smith, 2000).
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