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ABSTRACT

We analyzed 10 genome expression data sets by
large-scale cross-referencing against broad structural
and functional categories. The data sets, generated
by different techniques (e.g. SAGE and gene chips),
provide various representations of the yeast transcrip-
tome (the set of all yeast genes, weighted by transcript
abundance). Our analysis enabled us to determine
features more prevalent in the transcriptome than the
genome: i.e. those that are common to highly
expressed proteins. Starting with simplest categories,
we find that, relative to the genome, the transcriptome
is enriched in Ala and Gly and depleted in Asn and
very long proteins. We find, furthermore, that protein
length and maximum expression level have a roughly
inverse relationship. To relate expression level and
protein structure, we assigned transmembrane
helices and known folds (using PSI-blast) to each
protein in the genome; this allowed us to determine
that the transcriptome is enriched in mixed α–β
structures and depleted in membrane proteins relative
to the genome. In particular, some enzymatic folds,
such as the TIM barrel and the G3P dehydrogenase
fold, are much more prevalent in the transcriptome
than the genome, whereas others, such as the
protein-kinase and leucine-zipper folds, are depleted.
The TIM barrel, in fact, is overwhelmingly the ‘top
fold’ in the transcriptome, while it only ranks fifth in
the genome. The most highly enriched functional
categories in the transcriptome (based on the MIPS
system) are energy production and protein
synthesis, while categories such as transcription,
transport and signaling are depleted. Furthermore,
for a given functional category, transcriptome
enrichment varies quite substantially between the
different expression data sets, with a variation an
order of magnitude larger than for the other categories
cross-referenced (e.g. amino acids). One can readily
see how the enrichment and depletion of the various
functional categories relates directly to that of

particular folds. Further information can be found at
http://bioinfo.mbb.yale.edu/genome/expression

INTRODUCTION

Whole-genome expression experiments have become impor-
tant tools in functional genomics. The result of these experi-
ments, the expression levels of all the genes in the genome, has
been dubbed the transcriptome (1). Many of the initial expres-
sion experiments have focused on the eukaryote yeast for tech-
nical reasons as well as the fact that it is a widely studied model
organism with a known genome sequence (2). Quantitative
profiles of the yeast transcriptome have been determined for a
variety of conditions using serial analysis of gene expression
(SAGE) (1) as well as gene chip technology (8–11). Brown
and colleagues have developed cDNA microarrays to conduct
time-course experiments measuring the expression changes of
yeast genes in response to a variety of conditions (3–7).
Researchers have also started to investigate quantitative
protein abundance profiles for yeast, using such approaches as
fusion proteins (12) and two-dimensional gels (13).

Various approaches have been proposed to interpret the
wealth of data generated by these experiments. Algorithms to
cluster genes into functionally related groups have been
proposed (14–17). Roth et al. (10), van Helden et al. (18) and
Brazma et al. (19) have introduced new ways to identify regu-
latory regions located upstream of genes. Gerstein (20)
proposed an initial ranking of protein folds in terms of their
expression levels. A number of proposals have been made for
the archiving and management of expression data (21).

Here we present another way to interpret gene expression
data. We perform large-scale ‘cross-referencing’ of expression
data against a number of structural and functional categories.
These categories include (i) simple characteristics shared by all
proteins, their amino acid composition and length, (ii) aspects
of protein structure, fold family and number of transmembrane
helices and (iii) broad functional classes. The correlation of
expression level with these categories gives us insight into the
characteristics of highly expressed proteins and also suggests
some interesting conclusions about the overall biochemistry of
the yeast cell. More specifically, we compare the composition
of all our categories in the transcriptome with that in the
genome. We find that the transcriptome is notably enriched
with certain types of proteins (e.g. those rich in Ala and Gly,
those with a mixed α–β structure and those associated with
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energy production and protein synthesis) and depleted in
others (e.g. Asn-rich proteins, membrane proteins, very long
proteins, and transcription factors and transport proteins).

Expression data

We based our analysis of the yeast transcriptome on a diverse
set of publicly available expression experiments, which are
summarized in Table 1a. Including data sets derived from
different experimental techniques potentially reduces the bias

introduced by focusing on one particular experiment. We
focused more on data from DNA chips and SAGE technology
rather than cDNA microarray experiments, since DNA chips
and SAGE allow a better measurement of the absolute number
of transcript copies for an open reading frame (ORF), facili-
tating direct comparisons between ORFs. In contrast, cDNA
microarrays mainly measure expression level changes of a
given ORF as ratios to a reference point, and ORF-to-ORF
comparisons at a given time point are more problematic.

Table 1. Overview of the expression data sets used in our analysis

(a) Overview of the expression data sets used in our analysis. The columns ‘reference’ and ‘URL’ provide the
literature reference and the Internet address of the data sets. Column ‘# ORFs covered’ shows for how many
different yeast ORFs expression levels were measured in the respective experiment. The column labeled ‘technology’
shows the technology with which the data sets were obtained. All the data from the expression experiments as
well as the soluble and membrane fold assignments were homogenized and relationalized and stored in a simple
database. We focused more on data from DNA chips (9–11) and the SAGE technology (1) than that from cDNA
microarray experiments (5) since the former techniques allow a better measurement of the absolute number of
transcript copies for a gene. In presenting our data, we decided, for convenience, to use the data set generated by
Holstege et al. (9) as the main reference. For the SAGE data set we only considered SAGE tags that occur at most
once per genome and fall into an ORF (rather than upstream regions) (1). (b) The general approach in our calculations.
First, we calculate the genome composition of a specific feature F, G(F). Then, we compute the composition of
feature F in the transcriptome, T(F); this is achieved by weighting the count of feature F with the expression level ei of
the corresponding ORF i. Finally, D(F) yields the transcriptome enrichment of feature F, the relative difference
between its transcriptome and genome compositions. The table shows the calculation of the transcriptome enrichment
D(F) for the amino acid Ala and the TIM barrel fold as examples based on the data set by Holstege et al. (9). To
be consistent, we include only those ORFs in our calculations (of both the transcriptome and the genome composition)
for which an expression level ei exists. Because the set of ORFs for which expression levels were measured vary
between the different experiments [see (a)], different genome compositions are obtained for each experiment.
However, these differences are generally very small and do not influence the results significantly.

a
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In presenting our data, we decided, for convenience, to use
the data set generated by Holstege et al. (9) as the main refer-
ence. This data set represents the average of two transcript
abundance level measurements for most yeast genes. Further-
more, the authors report that 99% of these transcripts exhibited
a less than 2-fold change in the two measurements. We also
extensively used the SAGE data sets (1), which give expres-
sion profiles of a large but less complete subset of the yeast
genome in different conditions, the gene chip data generated
by Roth et al. (10), which represent profiles of the yeast tran-
scriptome for different conditions, and the gene chip data by
Jelinsky et al. (11), who investigated expression profiles
before and after the yeast cell is subjected to an alkylating
agent (we only used the first, more typical, profile).

General approach

Most of our analyses have the same basic structure, which is
schematized in Table 1b. First, we compute the genome
composition of a specific category, then we compute its
composition in the transcriptome and finally we determine its
enrichment in the transcriptome, that is, the relative difference
between transcriptome and genome composition. For
computing transcriptome compositions we weight each gene
with its respective expression level. With the term ‘genome’
we refer, strictly speaking, only to the set of ORFs which are
covered by each particular expression experiment. In this
sense, the ‘genomes’ covered by two different expression
experiments might include different yeast ORFs, and therefore
their composition (of a particular amino acid, for instance)
might be different, though in practice these differences are
generally very small.

Our complete results and additional information (such as
genome and transcriptome compositions, and number of
proteins per category) are available at http://
bioinfo.mbb.yale.edu/genome/expression

RESULTS

Transcriptome composition of amino acids

One of the simplest attributes associated with a protein is its
amino acid composition. The amino acid compositions of the
genome and the transcriptome differ significantly for some
amino acids (shown in Fig. 1a). The amino acids are ordered
along the x-axis in the order of increasing transcriptome
enrichment for the reference data set by Holstege et al. (9).
Although the results vary between the different expression data sets,
they all follow a general trend. Most notably, the composition of
Ala increases by ~30–40% whereas the composition of Asn
decreases by ~20%. The transcriptome is also significantly
enriched in Gly and Val and the positively charged amino
acids, Arg and Lys.

As mentioned previously, the data from cDNA microarrays,
as given by ratios of red and green fluorescence intensities, is
primarily used for the measurement of expression level
changes. These data are less suitable for absolute expression
level measurements. For purely illustrative purposes, we
analyzed amino acid enrichment in the transcriptome using the
red fluorescence intensity less the background intensity of the
cDNA microarray data set as a crude approximation of the
absolute expression level (Fig. 1b). Although the results for the

enrichment of amino acid composition have a trend similar to
that in Figure 1a, the magnitudes are much smaller (as
expected). It can also be observed that there appears to be little
difference in the amino acid composition of the transcriptome
for different time points measured during the diauxic shift
experiment, suggesting that even though the precise proteins
that make up the transcriptome change in different conditions,
the overall amino acid composition remains very similar. This
is also suggested by the fact that there is little variance in tran-
scriptome amino acid composition between DNA chip experi-
ments in different conditions: i.e. between the different data
sets of Roth et al. (10).

Relationship between gene length and expression level

Figure 2 shows the relationship between protein length (meas-
ured by the number of residues in the sequence) and expression
level for the reference data set. It is obvious that there is no
direct relationship between these two quantities. However, it
seems that protein length is in some way an upper limit for the
expression level of the corresponding gene. The straight line in
Figure 2 represents the fit of a hyperbolic function through the
maximum protein length at a given expression level. If the
maximum protein length for a given expression level was
inversely proportional to the expression level, the slope of this
line would be equal to about –1. We find the slope to be about
–0.7 for the data set of Holstege et al. (9). We find similar rela-
tionships for the other data sets (details in the legend to Fig. 2).
The expression level of a short gene is dependent on the rate of
transcription of RNA polymerase in relation to the rate of
mRNA degradation. However, for a long gene, the overall rate
of transcription might also be affected by the processivity of
RNA polymerase: i.e. by the chance that the polymerase falls
off.

Transcriptome composition of membrane proteins

Another aspect of protein structure we analyzed was the occur-
rence of membrane proteins in the transcriptome. Membrane
proteins are often classified in terms of the number of hydro-
phobic transmembrane (TM) helices they contain. We identi-
fied yeast ORFs coding for membrane proteins using a
standard hydropathy scale and a sliding window, as described
previously (20) (further details in the legend to Fig. 3a). Based
on their most hydrophobic segment, we divided the predicted
membrane proteins into ‘sure’ and ‘marginal’ candidates
(using the MaxH approach also described in the legend) and
then classified them further based on the number of TM helices
they contain. Figure 3a shows how the composition of ORFs
with ‘sure’ transmembrane regions changes from genome to
transcriptome. For comparison we also show the relative
enrichment of soluble proteins (for which no transmembrane
region is predicted). The results show that, in general, helical
membrane proteins are underrepresented in the transcriptome
relative to the genome, whereas soluble proteins are enriched
by ~22%. Furthermore, some classes of membrane proteins are
more highly enriched than others: for instance, those with four
TM helices are more enriched than those with one or two TM
helices. However, for many of the membrane structure catego-
ries there is considerable variation between the different
experiments.
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Transcriptome composition of fold classes

In the previous section we compared the transcriptome enrich-
ment of membrane and soluble proteins. Here we subdivide
soluble proteins further according to their folds. To do this, we
matched the PDB structure database (22) against the yeast
genome using an iterative database search program (PSI-blast)
(23) (see legend to Fig. 3b for more details on our fold assign-
ment methods). Overall we found a total of 2305 domain level
matches in 1710 distinct ORFs (~27% of the genome). We
classified these structure matches into one of 344 folds using
the structural classification of proteins (SCOP) (24). In
addition, each fold is further grouped into one of six soluble
protein classes: for instance, all α, all β, α/β, etc. (25).

For each domain match we looked at the expression level of
the corresponding ORF. Figure 3b shows the relative differ-
ences of the composition of protein fold classes between

genome and transcriptome. The fold classes are sorted along
the x-axis in the order of increasing transcriptome enrichment
for the reference data set. We observe an increase in the frac-
tion of mixed α and β folds (α+β and α/β) while the fraction of
the other fold classes decreases. It is also interesting to note
that while the all α class is depleted in the transcriptome, the
most helix-favoring amino acid, Ala (26), is greatly enriched
(see Fig. 1a).

For fold class composition, the results for the SAGE experi-
ments and the gene chip experiments differ significantly. This
may be attributed to the substantially smaller number of ORFs
covered by the SAGE experiments, which sample the structure
matches in a somewhat biased fashion. Furthermore, the much
greater enrichment of mixed helix and sheet structures in the
SAGE experiments may, to some degree, result from the fact
that these proteins tend to be longer (27) and the SAGE exper-
iment is somewhat weighted towards longer proteins.

Figure 1. Transcriptome enrichment of amino acids. (a) Amino acids are ordered along the x-axis according to the transcriptome enrichment found for the
reference data set of Holstege et al. (9). Although the results vary between the different expression data sets, they all follow a general trend. Most notably, the
composition of Ala increases by ~30–40% whereas the composition of Asn decreases by ~20%. The transcriptome is also significantly enriched in Gly and the
positively charged amino acids, Arg and Lys. (b) Transcriptome enrichment calculated for the cDNA microarray expression data of the diauxic shift in yeast (5).
The data from this experiment is primarily used for the measurement of expression level changes and we show the transcriptome enrichment only for purely
illustrative purposes. Here we use the red fluorescence intensity minus the background intensity as measured by DeRisi et al. (5) as a crude approximation of the
absolute expression level of a given ORF. We look at both time point 1 (fermentation) and time point 7 (respiration) of the experiment.

a

b
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Top folds in the transcriptome

Figure 4 shows the 10 most highly expressed protein folds in
yeast. Their exact fractions in the transcriptome are listed for
the reference data set of Holstege et al. (9) and schematized
with rankings for the other sets. The ranking of the most
common folds in the transcriptome and the genome are very
different. The most common transcriptome fold, by a large
margin, is the TIM barrel (8 versus 5% for the second ranked
fold), which is by contrast only ranked fifth in the genome.
Many of the other common folds in the transcriptome also have
a mixed α/β structure and are associated with enzymatic func-
tions: for instance, the P-loop NTP hydrolase, ferrodoxin,
Rossmann, thioredoxin and G3P dehydrogenase folds. In
particular, the G3P dehydrogenase fold is greatly enriched in
the transcriptome relative to the genome, increasing from 0.2
to 2.7%. Common folds in the genome that are depleted in the
transcriptome include the protein kinase (catalytic core), long
helix oligomers (the Leu-zipper fold) and the Zn2–C6 DNA
binding domain. This makes sense since these folds act as
‘switches’ in signaling and transcription-factor functionality
and thus do not need to be present in large quantities. In contrast,
cytosolic enzymes are needed in bulk to ensure high throughput in
synthetic and energy-producing pathways (see Fig. 5).

Figure 2. Dependence of expression level on gene length. We plotted protein
length versus expression level for the reference data set of Holstege et al. (9)
(for the other data sets, see http://bioinfo.mbb.yale.edu/genome/expression ).
Each point on the graph represents one ORF and the axes of the graph are on a
logarithmic scale. It is obvious that there is no strong positive or negative cor-
relation between protein length and expression level (correlation coefficient is
–0.16). However, it seems that protein length is related to the upper limit of the
expression level possible for a given group of ORFs. A rough way to characterize
this upper limit is to fit the hypberbolic function L = (K/E)A through the maximum
protein lengths L (in units of amino acid residues) at given expression levels E
(in units of transcripts per cell); K and A are constants. For the reference set of
Holstege et al., parameter A was determined to be ~0.7 and K ~4.7 × 104. The
following table lists the values for parameters A and K for all data sets.

As can be seen in Figure 2 (especially on the left-hand side), the expression
data is discrete, which makes the functional fit possible; this is due to the reso-
lution limit of the experimental data [0.1 copies per cell for the data set of
Holstege et al. (9)]. Different data discretizations affect the slope of the
straight line somewhat (that is, parameter A), but the general trend can always
be observed.

Figure 3. Transcriptome enrichment of structural classes. (a) Transcriptome
enrichment of membrane proteins compared with soluble proteins. We identified
yeast ORFs coding for membrane proteins using the GES hydrophobicity scale
(33). The values from this scale in a window of size 20 (the typical size of a trans-
membrane helix) were averaged and then compared against a cut-off of –1 kcal/mol.
A value under this cut-off was taken to indicate the existence of a transmembrane
helix. Initial hydrophobic stretches corresponding to signal sequences for
membrane insertion were excluded (these have the pattern of a charged residue
within the first seven, followed by a stretch of 14 with an average hydrophobicity
under the cut-off). These parameters have been used, tested and refined in surveys
of membrane proteins in genomes (20,34–36). ‘Sure’ membrane proteins had
at least one TM segment with an average hydrophobicity less than –2 kcal/mol.
‘Marginal’ membrane proteins had GES-identified TM helices but did not fulfil
this ‘MinH’ criteria. This approach is similar to Boyd and Beckwith’s MaxH
criteria (37) and to the approach of Klein et al. (38). (b) Transcriptome enrichment
of soluble fold classes. The fold classes are sorted along the x-axis in the order
of increasing transcriptome enrichment for the reference data set. To assign
folds to the yeast genome, we followed a protocol similar to the one described
previously, matching the PDB structure database against the yeast genome
using both PSI-blast and FASTA (23,31,39–43). We used the following parameters
in our PSI-blast searches: an inclusion threshold (h) of 10–5, the maximum number
of iterations (j) of 10 and a final e-value cut-off of 10–4. These parameters are some-
what stricter than those used in previous PSI-blast analyses: e.g. our inclusion param-
eter is ~1/20 of that in Teichmann et al. (1998) (44) (who used 5 × 10–4 and j = 20);
the inclusion parameter determines to which degree further homologs of a sequence
are included at the next PSI-blast iteration. (A higher value leads to the inclusion of
more sequences and greater coverage. However, an inclusion too high can lead to a
corrupted profile and spurious matches.) We monitored our parameter settings by
looking at how many domains were assigned to two different protein folds (obviously
an erroneous assignment) and made sure this number was virtually nil. For the FASTA
searches we used the usual e-value cut-off of 10–2 used in previous analyses (43).
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The top-folds analysis is a relatively ‘fine-grained’ measure-
ment, dividing the transcriptome into many categories, thus
making the differences between the various experiments more
apparent. Some of these differences may be explained by the
different conditions probed by each experiment; others may
reflect the natural variability of the experiments. However, in
all cases the most common transcriptome fold that always
remains is the TIM barrel. These fine-grained differences are
also evident in the analysis of cDNA microarray data for the
diauxic shift in yeast (5), which shows that the fold class
composition does not change much over the time course of the
experiment, but the ranking of the most common folds by
expression level does (data not shown, related data in 19;
absolute expression levels are approximated as explained in
the legend to Fig. 1b).

It is well known that protein abundance can vary quite signif-
icantly for a given mRNA transcript abundance level. Recent
large-scale studies suggest that there is only a weak linear rela-
tionship between mRNA and protein abundance for many
genes, especially for weakly expressed genes (13). On the
other hand, mRNA abundance is certainly still a better measure
of protein abundance than genome content. From our results it
seems clear that the distribution of folds in the cell’s proteins is
very different from that in the genome complement.

Transcriptome composition of functions

To analyze the transcriptome in terms of broad functional cate-
gories, we used the functional categorization of the Munich
Information Center for Protein Sequences (MIPS) (28–30),
which divides proteins amongst a hierarchy of functional cate-
gories (for instance, ‘synthesis’, ‘metabolism’ etc. on the top
level of the hierarchy).

Figure 5 shows the transcriptome enrichment of the various
functional categories at the top level of the MIPS system. The
functional categories are sorted along the x-axis in the order of
increasing transcriptome enrichment for the reference data set.
We observe an increase in the number of the proteins in the
category ‘protein synthesis’ of ~200–500% depending on the
data set. This is considerably larger than the change for the
structural categories or simpler categories such as amino acid
composition (5-fold versus 40%). The transcriptome is also
notably enriched in proteins associated with energy production,
cell structure and protein synthesis (most often ribosomal
proteins). None of the other broad categories are as greatly
depleted as these are enriched. However, it is worth noting that
the depleted categories include transcription factors and sign-
aling and transport proteins. Furthermore, the fraction of
unclassified proteins in the transcriptome is lower than in the
genome, perhaps because the more highly expressed genes are
easier to study experimentally. There is also great variability

Figure 4. The 10 most highly expressed protein folds in yeast. The folds are listed from top to bottom in the order of decreasing transcriptome composition for the
reference data set of Holstege et al. (9). In the left half of the table we first list the protein fold, then its fold class and the identifier for a representative structure in
the Protein Data Bank (PDB) (22). In the columns ‘genome’, ‘transcriptome’ and ‘transcriptome enrichment’ we list the genome and transcriptome compositions
and the transcriptome enrichment of each fold, respectively. The right half of the table shows the rankings of each fold based on its transcriptome composition in
the different expression data sets. For comparison we also show the ranking in the genome: i.e. based purely on the level of duplication within the genome. The
genome compositions are calculated with respect to the ORFs for which expression levels in the reference data set exist. Their exact fractions in the transcriptome
are listed for the reference data set and are schematized with rankings for the other sets. The ranking of the most common folds in the transcriptome and the genome
are different. For instance, the most common transcriptome fold by a large margin (8 versus 5% for the 2nd ranked fold) is the TIM barrel, which is only ranked
fifth in the genome. The second domain of this two-domain protein represents a G3P dehydrogenase-like fold.
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between the different experiments; depending on the experi-
ment, the most highly enriched MIPS category is different [for
instance, the most highly enriched category is ‘protein
synthesis’ for the reference data set by Holstege et al. (9), but
‘energy’ for some of the SAGE data sets].

DISCUSSION AND CONCLUSION

It is clear from our results that the structural and functional
categories we investigated are differently distributed in the
transcriptome and the genome. That is, the proteins of highly
transcribed genes have on average different characteristics
than the unweighted protein complement in the genome. There
are variations between the different expression experiments,
but we can observe some general trends in how structural and
functional features occur in the transcriptome. In particular, we
find that the transcriptome is enriched in Ala, Gly and, to a
lesser extent, positively charged residues, soluble folds with
combinations of helices and sheets, and proteins involved in
protein synthesis (in particular ribosomal proteins), cell struc-
ture and energy production. Likewise, it is depleted in
membrane proteins, transport, transcription and signaling
proteins, very long proteins and those rich in Asn. Common
sense, as well as a number of previous surveys, suggests that
many of these structural and functional categories are interre-
lated (31,32). Thus, for instance, proteins involved with
protein synthesis or energy production are often enzymes,
which tend to be associated with α/β architectures. Likewise,
membrane proteins tend to have less charged residues than
soluble ones and also tend to have transport or signaling func-
tions.

Looking at the variability of the transcriptome enrichment
between experiments, it is particularly interesting to note that
the greatest variability can be observed for the MIPS func-
tional categories while the variability of amino acid composi-
tion is an order of magnitude lower. It seems that the usage of
amino acids is very similar even when differential gene

expression occurs to accommodate different functional tasks in
the cell. This indicates that the cell might have to meet general
requirements in its amino acid usage.

One requirement might be energy expenditure. In the metab-
olism of the yeast cell, Ala, which is the most enriched amino
acid in the transcriptome, is synthesized directly in one step
from pyruvate, a precursor of the TCA cycle. In contrast, Asn,
the most depleted amino acid in the transcriptome, follows a
more involved route. It is synthesized in two steps from
oxaloacetate, the last component in the TCA cycle; in addition,
the conversion of Asp to Asn involves conversion of ATP to
AMP. This is the only step in amino acid biosynthesis in which
two pyrophosphates are consumed at the same time. Thus, by
strongly favoring Ala over Asn in highly expressed proteins, it
seems that the cell has adapted to these energetic realities in the
course of evolution. Further research could elaborate on this
anecdotal evidence by looking comprehensively at the meta-
bolic network in the cell.

In the context of Asn, it is also interesting to note that in
some organisms (notably some archeons) Asn-tRNA is
produced by an alternative pathway (transamidation) from
Asp-tRNA (45). In the mitochondria of yeast, Gln-tRNA is
synthesized by transamidation from Glu-tRNA; this might be
related to the depletion of Gln in the yeast transcriptome.

It is worth emphasizing that this study uses mRNA abun-
dance rather than protein abundance in the cell. It is to be
hoped that techniques for large-scale protein abundance meas-
urement will be developed that will provide us with a better
view of the cellular machinery.
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Figure 5. Transcriptome enrichment of MIPS categories. To analyze the transcriptome in terms of broad functional categories, we categorized the yeast ORFs using
the functional categorization provided by MIPS (28–30). The functional categories are sorted along the x-axis in the order of increasing transcriptome enrichment
for the reference data set.
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