
Measurement of the effectiveness of transitive
sequence comparison, through a third
‘intermediate’ sequence
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Abstract

Motivation: Transitive sequence matching expands the
scope of sequence comparison by re-running the results of a
given query against the databank as a new query. This
sometimes results in the initial query sequence (Q) being
related to a final match (M) indirectly, through a third,
‘intermediate’ sequence (Q → I → M). This approach has
often been suggested as providing greater sensitivity in
sequence comparison; however, it has not yet been possible
to gauge its improvement precisely.
Results: Here, this improvement is comprehensively
measured by seeing what fraction of the known structural
relationships transitive sequence matching can uncover
beyond that found by normal pairwise comparison (i.e.
direct linkage). The structural relationships are taken from
a well-characterized test set, the scop classification of
protein structure. Specifically, 2055 known structural simila-
rities (called ‘pairs’) between distantly related proteins
constitute the basic test set. To make the measurement of
transitive matching properly, special data sets, called
‘baseline sets’, are derived from this. They consist of pairs of
sequences that have a clear structural relationship that
cannot be found by normal sequence comparison (i.e. they
cannot be directly linked). Specifically, using standard
sequence comparison protocols (FASTA with an e-value
cut-off of 0.001), it is found that the baseline set consists of
1742 pairs. A third intermediate sequence can link 86 of
these indirectly (5%), where this third sequence is drawn
from the entire, current universe of protein sequences. The
number of false positives is minimal. Furthermore, when one
considers only the relationships within the test set that
correspond to a close structural alignment, the coverage
increases considerably. In particular, 862 of the baseline set
pairs fit to better than 2.6 Å RMS, and transitive matching
can find 62 of these (9%).
Availability: All the test data, including precise similarity
values calculated from structural alignment, are available in
tabular format over the Web from http://bioinfo.mbb.yale.
edu/align.

Contact: Mark.Gerstein@yale.edu

Introduction

Transitive sequence matching is an approach taken toward
improving sequence comparison. It entails taking the
matches found after running a sequence comparison and then
re-running them as new queries against the databank. The
resulting matches consist of many of the previous matches
plus (hopefully) some new ones. These new matches are, in
turn, related back to the initial query only indirectly through
an intermediate sequence (see TIL in Figure 1). This whole
process can be repeated again, iteratively, with these new
matches.

The idea of transitive matching has been previously sug-
gested and implemented. In particular, it has been used to
improve the sensitivity of single-sequence comparison and
to refine templates and hidden Markov models (HMMs)
(Gribskov et al., 1990; Tatusov et al., 1994; Yi and Lander,
1994, 1996; Eddy, 1996; Abagyan and Batalov, 1997; Alts-
chul et al., 1997; Park et al., 1997; Pearson, 1997; Son-
hammer et al., 1997; Wolf et al., 1997). In the latter applica-
tion, one forms a template from a small ‘seed’ alignment,
which is then used to find homologues. These are added to
the template, and the process is repeated. While this tech-
nique has been demonstrated to be effective to varying de-
grees on specific protein families, it can lead to incorrect as-
signments.

The objective here is to assess the effectiveness of a simple
form of transitive matching, in a comprehensive fashion. For
this assessment, the structural classification of proteins
(scop) (Murzin et al., 1995), which arranges all the known
structures in the protein databank into a few hundred do-
main-level, fold families, provides a ‘gold-standard’ refer-
ence dataset. Not all the structures in a given fold family are
highly similar to each other in terms of sequence, so one can
assess the usefulness of a given sequence comparison
method by seeing how many of the structural similarities be-
tween only marginally similar sequences the method is able
to detect.
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Fig. 1. Schematic illustrating transitive matching via indirect
linkage. This schematic illustrates direct and indirect linkage, and
how either linkage can result in a true or false positive. The black
shapes (square, triangle, diamond) indicate sequences with a known
structure (i.e. PDB sequences). For the purposes of the discussion
here, one imagines that each of these sequences is a representative
sequence drawn from scop-pair test sets and so it stands for a whole
sequence family. The four black squares indicate sequences that
share a common fold, the ‘square fold’, while the folds correspon-
ding to the black triangle and diamond are supposed to be different.
The line marked TDL (‘true direct linkage’) indicates a ‘true’
sequence similarity linking two of these sequences (Q1 and Q2). In
contrast, the line marked FDL indicates a ‘false’ direct linkage
between Q1 and M3, i.e. a linkage that is not a scop pair. False
linkages, indicated by ‘x’ in the figure, give rise to the false positives
in Table 1. It is possible for two direct linkages to join two PDB
sequences that are not linked directly. This is ‘indirect linkage’ and
is indicated by the dotted line between Q1 and M4 in the figure. Here,
Q2 is functioning as the ‘intermediate sequence’. One can expand the
possible intermediate sequences by considering sequences that do
not correspond directly to PDB structures, i.e. sequences from OWL
homologous to PDB sequences (the OWL sequences). These are
indicated by the small white circles linked to the black shapes. The
OWL sequences can function as intermediate sequences (denoted I)
linking two PDB sequences (the query Q and the match M) via
indirect linkages that are either true or false (i.e. TIL or FIL, ‘true or
false, indirect linkage’).

Brenner et al. (1995, 1998; Brenner, 1996) used this ap-
proach to assess the effectiveness of the popular FASTA and
BLASTP programs and their probabilistic scoring schemes
(i.e. the e-value) (Pearson and Lipman, 1988; Altschul et al.,
1990, 1994; Karlin and Altschul, 1993; Pearson, 1996). They
found that the FASTA e-value closely tracked the number of
false positives, i.e. the error rate, and that at a conservative
e-value cut-off of 0.001, the FASTA program could detect
nearly all the relationships that a full Smith–Waterman com-
parison would (Smith and Waterman, 1981). Specifically,
they found that FASTA with a 0.001 threshold would find
16% more of the structural relationships in scop than would
be found by standard sequence comparison with a 40%

identity threshold. Here, a similar approach is taken to assess
the effectiveness of transitive matching.

Methods

Data

Sequences with known structure were taken from the Protein
Databank (PDB) (Bernstein et al., 1977). Fold definitions
were taken from scop, Version 1.32 (May 1996) (Brenner,
1996; Murzin et al., 1996; Hubbard et al., 1997). Only the
superfamily pairs, as opposed to fold pairs, were used as
these have a much clearer structural relationship. It is the
intention of the creators of scop that the superfamily pairs
represent an evolutionary relationship between proteins with
no appreciable sequence similarity, i.e. link proteins that are
true homologues (Murzin et al., 1995; Hubbard, 1997).
However, this is necessarily speculative, and all one can
know for certain is that these pairs have a close structural
relationship. Furthermore, the scop pairs have been exten-
sively checked by both manual and automatic methods
(Gerstein and Levitt, 1998), and are believed not to contain
any false positives.

Based on the scop pairs, Brenner et al. (1995, 1998) clus-
tered the PDB into 905 representative sequences at 40%
identity (domains split between different chains are omitted
from this count), making a list denoted pdb40d, which is dis-
tributed through the scop website (http://scop.mrc-
lmb.cam.ac.uk/scop). The clustering employed a single-
linkage approach similar to that in Hobohm et al. (1992,
1994), i.e. ‘select until done’. For the indirect sequence
matching, pdb40d was compared against the 142 737 total
sequences in the OWL composite databank (Version 27.1)
(Bleasby et al., 1994). Low-complexity sequences were fil-
tered out of OWL using the SEG program (Wootton and Fed-
erhen, 1993).

The overall analysis was greatly expedited by using a
simple relational database implemented using DBM and
perl5 (Wall et al., 1996). A number of detailed tables relevant
to this paper will be made available over the Internet at
http://bioinfo.mbb.yale.edu/align.

Sequence comparison

All sequence matching was with the FASTA program (Ver-
sion 2.0) (Lipman and Pearson, 1985; Pearson and Lipman,
1988; Pearson, 1996, 1998; Pearson et al., 1997) with a k-tup
value of 1. This program was chosen for a number of reasons.

1. FASTA is commonly used in the comparison of se-
quences corresponding to structures; for instance, it
was used for the original definition of superfolds by
Orengo et al. (1994) and is the sequence comparison
method used by the PDB browser (Stampf et al., 1995).
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Consequently, FASTA forms an established standard
on which to base this work.

2. FASTA was used in the work of Brenner et al. (1998)
which forms a necessary background for this work.
Brenner et al. showed, furthermore, that FASTA per-
forms better than BLAST and essentially the same as
Smith–Waterman for the detection of distant simila-
rities between structurally similar proteins, obviating
the need to consider these other approaches here.

3. Assessing the improvement in indirect linkage is much
more straightforward for single-sequence comparison
methods, such as FASTA, than for multiple-sequence
methods, such as HMMs or PSI BLAST (Krogh et al.,
1994; Altschul et al., 1997), where the performance of
the method varies depending on the number of
members in the family.

Structure comparison

Structure matching was by the iterative dynamic program-
ming method from Gerstein and Levitt (1996, 1998). This
method aligns protein sequences on the basis of direct com-
parison of the corresponding three-dimensional structures.
Two numbers characterize the alignment: the number of resi-
dues aligned (N) and the RMS deviation in Cα positions after
these atoms are fit onto each other (RMS). Since an align-
ment with a higher RMS value can be more significant than
one with a lower RMS if there are more residues included in
the first alignment, Gerstein and Levitt (1998) define a scaled
RMS: RMS = 225 RMS/(N + 135). For an approximately
average match of 90 residues, the scaled RMS is nearly the
same as RMS (both quantities agree to within 10% for N be-
tween 70 and 110 residues). The distribution of scaled RMS
values has a median value of 2.65 Å (with a mean of 2.68 Å
and a SD of 0.87 Å), so 2.6 Å marks the approximate halfway
point in the range of values and a reasonable division point.
Levitt and Gerstein (1998), furthermore, show that this
scaled RMS threshold corresponds approximately to a struc-
tural similarity P value of 0.01.

Overlap on intermediate sequence

In the transitive matching procedure, two sequences corre-
sponding to structures (denoted Q for the query and M for the
match) are linked through an intermediate sequence I. One
has to take care that the region of match of Q on I overlaps
with that of I on M. The criterion for overlap used here was
quite conservative: the overlap region of Q on I must share
at least 60 residues with that of I on M. Other less stringent
criteria were tried. These tend to increase the number of
matches, both true and false, but not to affect the results
greatly, as long as they were reasonable.

As a practical matter, one can deal with the overlap when
performing a search as follows. One runs the query against
the whole databank, finding a number of direct matches Ii .
Then the precise matching regions of each Ii  are ‘cut out’ and
this is re-run against the databank again, producing matches
Mi ,j , which are then indirectly linked back to the original
query Q. While simple and elegant, this procedure has the
effect of changing the scores linking Ii  and Mi ,j  relative to
those found in an all-versus-all of the databank since the
length of the intermediate sequence Ii  is different when it is
matched by Q or used as the query to find Mi ,j .

Results

The test data: sets of structural relationships

The analysis begins with the 8330 domains in the PDB in-
dexed by the current version of scop. These are clustered into
905 representative sequences at a 40% identity level in the
publicly distributed PDB40D dataset (see Methods). About
400 000 pairs can be formed from these representative se-
quences (i.e. 408 156 = 970 × 969/2).

Test set 1. By definition, all these pairs have a distant (‘twi-
light-zone’) level of sequence similarity. However, accord-
ing to the scop classification (Murzin et al., 1995), 2055
(∼0.5%) of them have a significant structural relationship, in
being joined to one of 171 structural superfamilies (see
Methods). These 2055 form the first set of ‘scop pairs’. They
are not distributed equally amongst the scop superfamilies,
with one superfamily (the Rossmann fold) containing 231
pairs and 70 others with just a single pair (Table 2). Further-
more, not all the structural relationships in these pairs are of
equal weight, so it is worthwhile to consider two further
‘selections’ based on somewhat closer structural relation-
ships.

Test set 2. Because determining the structural similarity of
short sequences is particularly problematic, one can exclude
sequences of <60 amino acids. This gives 783 representative
sequences, 305 371 possible pairs and 1801 structural rela-
tionships, which constitute a selection of 2055 original scop
pairs. Gerstein and Levitt (1996, 1998) constructed structural
alignments for all the preceding 1801 structural similarities
of full-length sequences. These alignments allow one to de-
termine the precise degree of structural similarity by calcu-
lating an RMS value from fitting the aligned atoms. There are
862 pairs that align with a scaled RMS of <2.6 Å (see
Methods), and these form a second test set of scop pairs.
They are (roughly) the more structurally similar half of the
scop pairs.
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Table 1. Overall statistics for sequence matching

FASTA Type of Pairs in total: Linked Pairs remaining: Linked indirectly Linked indirectly
e-value

yp
pair test sets directly

g
baseline

y
within dataset

y
via OWL sequence

cut-off sets

1.0E-05 TPs 2055 220 11% 1835 19 1.0% 67 3.7%

Low-RMS TPs 862 162 19% 700 15 2.1% 62 8.9%

FPs 0 0 12

1.0E-04 TPs 2055 271 13% 1784 28 1.6% 73 4.1%

Low-RMS TPs 862 198 23% 664 17 2.6% 64 9.6%

FPs 1 0 13

1.0E-03 TPs 2055 313 15% 1742 23 1.3% 86 4.9%

Low-RMS TPs 862 219 25% 643 18 2.8% 74 12%

FPs 3 1 13

The table shows how many of the scop pairs can be found by direct linkage (i.e. normal sequence comparison) and indirect linkage (i.e. transitive matching through
an intermediate sequence). The rows show the number of true and false positive linkages (TPs and FPs) for various FASTA e-value thresholds. These linkages
are computed for two test sets: test set 1, which has 2055 scop pairs, and test set 2, which has 862 scop pairs, corresponding to more closely aligned structures
that have a structural alignment with atoms fitting to better than 2.6 Å RMS. The true positives for the latter test set are denoted by ‘low-RMS TPs’. There were
no false positives for test set 2 data (so there are no ‘low-RMS FPs’ rows). The first column (‘test sets’) shows the total number of pairs that one starts with. The
next column (‘linked directly’) shows the number of these pairs that can be found by direct linkage. These are subtracted away to give the baseline sets shown
in the third column (‘baseline sets’). The final two columns give the number of pairs from the baseline sets than can be found by indirect linkage. The first of
these (‘indirectly within dataset’) lists the transitive matches that can be found purely within a given baseline set. The next column (‘indirectly via OWL’) lists
the larger number of transitive matches that can be found if one allows any sequence in the large OWL database to function as an intermediate sequence. Note
that it is possible to have a pair linked directly, but not indirectly, if no suitable intermediate sequence exists. Also, a number of the false-positive linkages were
between scop class 8 sequences (‘peptides’). (In particular, the pairs d1tiv__-d1tvs__ and d1bba__-d1ppt__.) These were excluded from the statistics (but they
are still listed, for completeness, in the Web presentation).

Table 2. Matching statistics for the various scop superfamilies, divided by family size

Pairs per
f il

No. of super-
f ili

Total no. of
i

No. linked
di l

Frac. linked
di l

No. of indirect
di li k

Frac. linked
i d disuperfamily families scop pairs directly directly or dir. links ind. or dir.

231 1 231 21 9% 26 11%

171 1 171 5 3% 9 5%

153 1 153 3 2% 3 2%

120 2 240 22 9% 47 20%

91 1 91 36 40% 57 63%

78 1 78 4 5% 4 5%

55 3 165 12 7% 12 7%

36 3 108 22 20% 28 26%

28 8 224 21 9% 24 11%

21 6 126 45 36% 53 42%

15 4 60 7 12% 8 13%

10 11 110 15 14% 16 15%

6 17 102 29 28% 33 32%

3 42 126 42 33% 46 37%

1 70 70 29 41% 33 47%

Total 171 2055 313 15% 399 19%

This table shows the statistics for direct and indirect linkage for the 171 scop superfamilies. The statistics are broken down by the size of the superfamily. Details
on each column follow. (1) The number of pairs P in a superfamily, i.e. its size (using PDB40D in scop 1.32 as described in Methods). (2) The number N of superfa-
milies of this size in scop. (3) The total number of pairs then follows by multiplication, T = NP. (4) The number of pairs D that can be directly linked by sequence
comparison with FASTA and an e-value cut-off of 0.001. (5) The fraction of the total number of pairs that the number of directly linked pairs comprises, F = D/T.
(6) The number of pairs I that can be linked by either indirect or direct linkage. (7) The fraction that I is of the total (I/T).
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Direct linkage: the baseline for comparison

To measure the effectiveness of transitive matching, one can
look at how many of the scop pairs in each of the three sets
indirect linkage can find, relative to the number of false posi-
tives. However, before doing this, one has to determine how
many pairs normal sequence comparison can find, in order
to establish a baseline upon which transitive matching can
improve. Here, pairs found by normal sequence comparison
are called direct linkages since they involve no intermediate
sequences (TDL; Figure 1).

This is essentially what Brenner et al. (1995, 1998;
Brenner, 1996) did in asking how many of these real struc-
tural relationships could be found using the FASTA and
BLASTP programs with their probabilistic scoring schemes.
Here, these results are reproduced for the three specific sets
of scop pairs discussed above. As Brenner et al. found, at a
practical e-value threshold of 0.001, FASTA can find ‘direct
linkages’ for ∼15% of the relationships in the first set of the
scop pairs with only a few false positives.

Notice that when one considers just the 862 pairs with a
close structural alignment (test set 2), it is possible to find a
higher fraction of the pairs (25%). This last result is reason-
able, given the established relationship between divergence
in structure and sequence (Chothia and Lesk, 1986, 1987;
Chothia and Gerstein, 1997). That is, the pairs with greater
structural similarity are expected to have more sequence
similarity.

As shown in Table 2 and 3, the fraction of pairs found
varies considerably amongst the scop superfamilies, with a
larger fraction of pairs found in the smaller superfamilies.

Work on direct linkage provides a necessary background
against which to examine indirect linkage. Here, the idea is
to find out how many additional structurally related pairs can
be found by considering a third, intermediate sequence
linked to both. These indirect linkages, both true and false,
are illustrated schematically in Figure 1. To find them, it was
necessary to construct more sets of scop pairs, the same as
those described previously, but now with all the pairs found
by direct matching removed. These are called baseline sets.

Baseline set 1–3. This consists of 1742 pairs taken from the
2055 pairs in test set 1 with direct matches removed. It in-
volves 697 sequences in total. It is based on a FASTA e-value
cut-off of 10e-3. If this cut-off is changed, obviously the
number of pairs will change, so one also has baseline sets 1–4
and 1–5 for cut-offs of 10e-4 and 10e-5, and so on (see Table
1).

Baseline set 2–3. This consists of 643 pairs taken from the
862 closely aligned pairs in test set 2 with direct matches
removed. It involves 491 sequences in total. It is also derived
with a cut-off of 10e-3, and baseline sets 2–4 and 2–5 can be
defined in a similar fashion.

Indirect linkage: the improvement over the baseline

By definition, each of the sequences in the baseline sets has
no sequence similarity to any other sequence within the same
set. Consequently, it is now readily possible to gauge the im-
provement provided by transitive matching: any new pairs
found constitute the improvement. A transitive match could,
in principle, be through the sequences within the baseline
sets, i.e. if pair AB and pair BC exist in set 1–3, but not pair
AC, there would be an indirect link between A and C. As
shown in Table 1, this occurs, but not that frequently. For
instance, for baseline set 1–3, one can find 23 of the 1742
pairs.

One can find more transitive matches by considering the
entire population of protein sequences as candidate ‘inter-
mediate sequences’. Specifically, one can run the sequences
in each of the baseline sets against the OWL composite data-
bank (which contains all currently known protein sequences)
and determine whether any of the homologues found in
OWL linked a scop pair in the baseline sets. Used in this way,
the sequences in the baseline sets are better thought of as
cluster representatives for whole families than individual se-
quences. Each indirect link made between them is effectively
between all the members of two distant families.

The results are summarized in Table 1. For an e-value
threshold of 0.001 (baseline set 1–3), one can find 86 of the
1742 baseline pairs through indirect linkage (5%), with 13
false positives. This means that using both direct and indirect
linkage, sequence comparison with FASTA can find about a
fifth of the scop pairs (399 of 2055 in test set 1) with 16 total
false positives, about one for every 25 true positives.

On the 862 closely aligned scop pairs (test set 2), the cover-
age improves significantly. In particular, transitive matching
can find 74 of the 643 pairs in baseline set 2–3 (12%).

As shown in Table 2, the fraction of extra pairs found by
transitive matching varies somewhat among the 171 scop
superfamilies, with the larger families having a greater de-
gree of improvement relative to the smaller ones. This is per-
haps because direct matching was more successful with the
smaller superfamilies and because the larger superfamilies
are potentially associated with a larger and more diversified
collection of intermediate sequences. For instance, indirect
plus direct linkage can find 30% of the 120 pairs in the ‘FAD/
NAD(P)-binding domain’ superfamily (representative
identifier d2tpra2), whereas direct matching can only find
10% (Table 3). Likewise, for the globin superfamily
(d3sdha_), the comparable statistics are 63% of 91 pairs
found, improving on 40%. In contrast, for the 70 scop super-
families containing only a single pair, indirect plus direct
linkage finds 47% of pairs, only a small improvement over
the 41% found by direct matching alone.
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Table 3. Detailed matching statistics for the largest scop superfamilies

Superfamily
ID

No. of
scop pairs

No. of direct
links

Frac. linked
directly

No. of indirect
or dir. links

Frac. linked
ind. or dir.

d1pmy__ 55 4 7% 4 7%

d1r69__ 28 3 11% 3 11%

d1tssa1 28 0 0% 0 0%

d1yrnb_ 55 8 15% 8 15%

d2ebn__ 120 10 8% 11 9%

d2olba_ 28 1 4% 1 4%

d2pgd_2 231 21 9% 26 11%

d2tgf__ 28 13 46% 13 46%

d2tpra2 120 12 10% 36 30%

d2trxa_ 36 4 11% 4 11%

d2yhx_2 28 0 0% 1 4%

d3cd4_2 153 3 2% 3 2%

d3dpva_ 171 5 3% 9 5%

d3hhrb2 28 1 4% 1 4%

d3inkc_ 55 0 0% 0 0%

d3sdha_ 91 36 40% 57 63%

d3tgl__ 28 1 4% 2 7%

d4icb__ 36 8 22% 14 39%

d5cytr_ 28 2 7% 3 11%

d5p21__ 78 4 5% 4 5%

d5znf__ 36 10 28% 10 28%

This table shows the statistics for direct and indirect linkage for the 21 largest scop superfamilies, those with at least 28 pairs. Details on each column follow,
many of them being very similar to those in Table 2. (1) The first column gives the identifier for the superfamily. Here this is a scop identifier for a representative
domain in this superfamily. Scop identifiers have the following syntax: d1pdbcN, where ‘1pdb’ is a PDB id, ‘c’ is a chain identifier, and ‘N’ describes if this is
the first, second, or only domain in the chain. Thus, d1ggta1 is the first domain in the A chain of 1GGT. (2) The number of pairs P in the superfamily, i.e. its size
(using PDB40D in scop 1.32 as described in Methods). (3) The number of pairs D that can be directly linked by sequence comparison with FASTA and an e-value
cut-off of 0.001. (4) The fraction of the total number of pairs that the number of directly linked pairs comprises, F = D/P. (5) The number of pairs I that can be
linked by either indirect or direct linkage. (6) The fraction that I is of the total (I/P).

Qualifications

The specific ‘improvement’ values quoted here for the effect
of transitive sequence matching are intended to be represen-
tative of the performance of the method on a comprehensive
data set using reasonable parameters. They are, nevertheless,
contingent upon the selection of proteins in the test set (the
scop classification), the particular comparison baselines es-
tablished (i.e. an e-value cut-off of 0.001 for the direct link-
age baseline) and the precise criteria for overlap (as dis-
cussed in Methods). These parameters have been selected in
a reasonable fashion to exclude highly similar sequences and
give a sense of how indirect sequence matching performs
near the margin, in the ‘twilight zone’. The scop data set
(Murzin et al., 1995), in particular, is a popular and well-do-
cumented set of similarities. It has been validated by both

automatic and manual methods (Gerstein and Levitt, 1997),
and should give the most comprehensive possible indication
of how indirect matching performs on the whole range of
known similarities, rather than just on specific families.

Moreover, while the exact improvement values quoted
here may change somewhat with different choices for test
data, baselines and overlap criteria, with any reasonable
choices, transitive matching will be able to find additional
real pairs without generating many false positives. That is,
while the absolute values may change, the relative improve-
ment will remain. This is shown to some degree in Table 1,
where the improvement statistics for a variety of baselines
are collected, e.g. 0.0001 and 0.00001. (One could develop
this table further to build up a complete analysis of coverage
versus error rate.) Furthermore, the entire test set and related
data files (including all the precise similarity values from
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structural alignment) are available over the Web, thus enab-
ling the analysis to be easily repeated with any parameters of
one’s choice.

Conclusion

The results reported here show that transitive sequence
matching is an effective technique for improving the sensi-
tivity of standard sequence comparison methods in searching
for structural similarities. Specifically, one is able to find
considerably more of the known structural similarities in a
‘gold-standard’ set of test data (scop) by combining indirect
linkage via an intermediate sequence with direct linkage than
by direct matching alone. Moreover, there are few false posi-
tives. One can intuitively rationalize the success of transitive
sequence matching as this approach makes use of the (pre-
sumably) more diversified outliers of a cluster in a search,
instead of searching with the centroid (as is the case, for in-
stance, for profiles).

The effectiveness of transitive sequence matching was
measured here for the FASTA program, but a similar analysis
could easily be carried out for the other popular sequence
comparison approaches, such as profiles and HMMs (Bowie
et al., 1991; Johnson et al., 1993; Eddy et al., 1994; Krogh
et al., 1994). In fact, such analyses have recently been per-
formed successfully by other groups (C.Chothia and J.Park,
personal communication). It is expected that careful
measurement of the effectiveness of sequence comparison
methods for detecting structural similarities will allow these
methods to be used as a baseline for assessing more elaborate
fold recognition methods such as threading (Jones et al.,
1992; Bryant and Lawrence, 1993; Jones and Thornton,
1996).
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