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ABSTRACT

Biological networks are a topic of great current
interest, particularly with the publication of a
number of large genome-wide interaction datasets.
They are globally characterized by a variety of
graph-theoretic statistics, such as the degree distri-
bution, clustering coef®cient, characteristic path
length and diameter. Moreover, real protein net-
works are quite complex and can often be divided
into many sub-networks through systematic selec-
tion of different nodes and edges. For instance,
proteins can be sub-divided by expression level,
length, amino-acid composition, solubility, second-
ary structure and function. A challenging research
question is to compare the topologies of sub-
networks, looking for global differences associated
with different types of proteins. TopNet is an auto-
mated web tool designed to address this question,
calculating and comparing topological characteris-
tics for different sub-networks derived from any
given protein network. It provides reasonable solu-
tions to the calculation of network statistics for
sub-networks embedded within a larger network
and gives simpli®ed views of a sub-network of
interest, allowing one to navigate through it. After
constructing TopNet, we applied it to the interaction
networks and protein classes currently available for
yeast. We were able to ®nd a number of potential
biological correlations. In particular, we found that
soluble proteins had more interactions than mem-
brane proteins. Moreover, amongst soluble
proteins, those that were highly expressed, had
many polar amino acids, and had many alpha heli-
ces, tended to have the most interaction partners.
Interestingly, TopNet also turned up some system-
atic biases in the current yeast interaction network:
on average, proteins with a known functional classi-
®cation had many more interaction partners than
those without. This phenomenon may re¯ect the

incompleteness of the experimentally determined
yeast interaction network.

INTRODUCTION

Protein±protein interactions play a role in nearly all events that
take place in a cell. An important idea, in fact, emerging in
post-genomic biology is that the cell can be understood as a
complex network of interacting proteins (1,2). The set of all
such interactions carried out by proteins encoded in a genome
has been dubbed the interactome. Complex networks are also
used to describe the structure of a number of wide-ranging
systems including the internet, power grids, the ecological
food web and scienti®c collaborations. Despite the seemingly
huge differences among these systems, it has been shown that
they all share common features in terms of network topology
(3±11). Thus, networks may provide a framework for
describing biology in a universal language understandable to
a broad audience.

Network de®nitions and theories

The topological analysis of the networks provides quantitative
insight into their basic organization. Four topological statistics
of particular interest in network analysis are as follows (3±11).
(i) Average degree (K). The degree of a node is the number of
links that this node has with other nodes. The average degree
of the whole network is the average of the degrees of all its
individual nodes. (ii) Clustering coef®cient (C). This is
de®ned as the ratio of the number of existing links between
a node's neighbors and the maximum possible number of links
between them (similar to an odds ratio). The clustering
coef®cient of a network is the average of all its individual
coef®cients. This statistic can be used to determine the
completeness of the network. (iii) Characteristic path length
(L). The graph-theoretical distance between two nodes is the
minimum number of edges that is necessary to traverse from
one node to the other. The characteristic path length of a
network is the average of these minimum distances. It gives a
measure of how closely nodes are connected within the
network. (iv) Diameter (D). The diameter of a network is the
longest graph-theoretical distance between any two nodes in
the graph. Table 1 explains, in detail, the formulas that are
used to calculate these statistics.
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Until recently, classical random network theory was used to
model complex networks. This was introduced by ErdoÈs and
ReÂnyi (6,12). It assumes that any two nodes in the network are
connected with random probability p and the degrees of the
nodes follow a Poisson distribution, which has a strong peak at
the average degree, K. Most random networks are highly
homogenous, in that most nodes have the same number of
links (degree), ki » K, where ki is the degree of the ith node.
The chance of having nodes with k links falls off exponentially
for large k [i.e. P(k) » e±k], meaning that it is very unlikely that
there will be any nodes of degree signi®cantly larger than
average.

To explain the heterogeneous nature of complex networks,
BarabaÂsi and colleagues recently proposed a `scale-free'
model in which the degree distribution in many large networks
follows a power-law [P(k) » k±r] (3,5). A remarkable point
about this distribution is that most of the nodes within these
networks have very few links, with only a few of them (hubs)
being highly connected. Many aspects of genomic biology
have such a scale-free structure (13±17). Concurrently, Watts
and Strogatz found that many networks can also be described
as having a `small-world' property (11), i.e. they are de®ned as
being both highly clustered and containing small characteristic
path lengths (large C and small L).

Complex networks, moreover, can be further divided into
two broad categories: directed and undirected. In an
undirected network, the statement `node A is linked to node
B' is the same as `node B is linked to node A'. However, the
edges of the directed networks have a de®ned direction. Thus,
the clustering coef®cient cannot be calculated for directed
networks (6).

Biological applications

Currently, large-scale experiments have created a great variety
of genome-wide interaction networks, especially in
Saccharomyces cerevisiae (18±21). Furthermore, there are
also a number of databases [i.e. MIPS (22), BIND (23) and DIP
(24)] that have many manually curated interactions for yeast.

Finally, beyond the experimentally derived protein±protein
interactions, there are also predicted interactions (25), litera-
ture-derived interactions (26) and regulatory interactions (27).

These different kinds of interactions give rise to many types
of networks. Protein±protein interaction networks are undir-
ected, as opposed to directed regulatory networks. Even for
the same network, many meaningful sub-networks can be
generated by selecting different types of edges. For example, it
has been known that interaction data produced by different
methods are of different quality. Thus, the topology of the
interaction network determined by yeast two-hybrid experi-
ments is quite different from that determined by in vivo pull-
down experiments (28,29). Secondly, proteins can be divided
into different classes based on their biological properties, such
as expression level, amino acid composition, sub-cellular
localization and solubility (see Table 2). Therefore, different
sub-networks can also be generated through selecting different
classes or groups of nodes (e.g. proteins).

This great variety of interaction networks presents an
interesting challenge: to compare these myriad networks and
sub-networks in terms of the topological statistics one has to
repeatedly perform the same set of calculations. Although
such comparisons are somewhat tedious, it is useful to see the
effects of different selections on the results, and comparison of
different network topologies could provide clues to basic
principles involved in pathway structure. Alternatively, com-
paring different networks can be used to assess their quality
(28,30).

In order to facilitate the analysis of interaction networks, we
constructed a web tool, TopNet, to perform comparisons
automatically. It is available from: http://genecensus.org/
TopNet.

TopNet takes an arbitrary undirected network and a group
of node classes as an input to create sub-networks. Then it
computes all four topological statistics mentioned above and
draws a power-law degree distribution for each sub-network.
The results of these calculations are plotted in the same format
for each statistic to facilitate direct comparison. TopNet also

Table 1. Overview of the interaction datasets and the analysis: topological statistics

Name Symbol Function Description Resultsa

Average degree K
X
i2N

ki

N

ki: degree of node i
i: ith node
N: total number of nodes

28.2

Clustering coef®cient C X
i2N

2ei

ki�ki ÿ 1�
N

ei: number of edges existing between the ki

nodes that connected to node i
0.189

Characteristic path length L 2�
X

i; j2N

dij

N�N ÿ 1�

dij: shortest path length between node i and node j 3.53

Diameter D max {dij; i, j Î N} Maximal shortest distance between any two nodes 10

Power-law distribution a P(k) = ak±g k: degree a = 2097
g P(k): probability of ®nding a node with degree k g = ±1.32

a: interception on Y axis on a log±log plot
g: slope of the distribution on a log±log plot

aThe values of the topological statistics for the whole yeast interaction network.
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enables the user to explore complex networks by sections. For
example, all neighbors of a certain node can be shown on a
simple graph. Alternatively, the user could select two nodes
and request that all paths not exceeding some speci®ed length
be displayed as an independent graph.

We immediately applied TopNet to the available interaction
data and a number of important structural and functional
classes for yeast proteins, which are summarized in Tables 2±
3. The results reveal several interesting relationships between
a protein's biological properties and its topological statistics
within the interaction network. We chose the results of several
most interesting and important protein classes for further
discussion below. For other results, please ®nd them through
the `download' page on the TopNet website.

RESULTS AND DISCUSSION

Overview of TopNet

TopNet consists of four major parts (see Fig. 1).

Upload. In the ®rst step (as shown in Fig. 1, `upload'), the user
can upload: (i) a set of edges and (ii) (optionally) different sub-
groups of nodes. The network must be undirected. The groups
are de®ned as the classes of the nodes if the network is
composed of unique sub-populations.

A variety of sample networks are available from the
website. This includes a comprehensive yeast interaction
network and many possible classes of yeast proteins. Because
the yeast interaction data produced by different methods differ
in many aspects (28), we also divided the yeast network into
three parts: (i) data produced by individual experiments
(compiled from MIPS, BIND and DIP databases (22±24); the
results from the large-scale experiments are excluded); (ii)
data produced by large-scale yeast two-hybrid experiments
(18,21); (iii) data produced by in vivo pull-down experiments
(19,20). Predicted or literature-derived interactions can also be
uploaded.

Calculation. As shown in Figure 1, `calculation', TopNet
automatically computes the four topological statistics de-
scribed above. The results are presented in a table for easy
downloading and in graphs for direct visualization. Because
many real networks are scale-free, the degree distributions for
different classes are plotted on a log±log scale. The degree
distribution of scale-free networks follows a power-law, i.e.
the distribution is a straight line on a log±log plot. The
parameters and the correlation coef®cients of the regression
lines are also given on the graph.

Navigation. As shown in Figure 1, `navigation', TopNet
explores the networks node by node, showing all the neighbors

Table 2. Overview of the interaction datasets and the analysis: biological categories

Category Reference URL No. ORFs
covered

No. of
groups

Description

Expression (47) http://171.65.26.52/yeast_cell_cycle/cellcycle.html 6130 13 Cell-cycle expression
data using affymetrix

Protein size (48) http://www.yeastgenome.org/ 6092 12 Derived from genome
sequence

Amino acid composition (33) http://us.expasy.org/tools/pscale/PolarityGrantham.html 6092 14 Derived from genome
sequence

Subcellular localization (49) http://bioinfo.mbb.yale.edu/genome/localize/ 2902 4 transposon tagging
Function (22) http://mips.gsf.de/proj/yeast/CYGD/db/index.html 3936 2 MIPS Functional

catalogs
Sequence conservation (50) http://www.ncbi.nlm.nih.gov/COG/ 4139 5 COG database
Tertiary structure (fold) (51) http://scop.mrc-lmb.cam.ac.uk/scop/ 3471 452 SCOP database
Fold class (51) http://scop.mrc-lmb.cam.ac.uk/scop/ 3471 7 SCOP database
Secondary structure (41) http://abs.cit.nih.gov/gor/ 6092 7 Predicted by GOR IV
Soluble protein versus
membrane protein

(40) http://www.cbs.dtu.dk/services/TMHMM/ 6092 14 Predicted by TMHMM
server v 2.0

Table 3. Overview of the interaction datasets and the analysis: interaction datasets

Dataset Reference URL No. ORFs
covered

No. of interac-
tions

MIPS complex catalogs (22) http://mips.gsf.de/proj/yeast/CYGD/db/index.html 871 8250
BIND (23) http://www.bind.ca/ 3789 5965
DIP (24) http://dip.doe-mbi.ucla.edu/dip/Main.cgi 4716 15113
Yeast two-hybrid (18) http://genome.c.kanazawa-u.ac.jp/Y2H/ 3278 4393
Yeast two-hybrid (21) http://www.nature.com/cgi-taf/DynaPage.taf?®le=/nature/

journal/v403/n6770/full/403623a0_fs.html
1044 981

In vivo pull-down (20) http://yeast.cellzome.com/ 1361 31304
In vivo pull-down (19) http://www.mdsp.com/yeast/ 1578 25333
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of each node as most of the real networks are too complex to
discern any information from a global view. Speci®cally, in
the yeast protein±protein interaction network example, differ-
ent colors are used to indicate the sources of the interaction
between a given node and the center node. Interactions that are
con®rmed by several independent methods haven been shown
to be of higher quality (29). TopNet can thus facilitate the
determination of reliable interaction partners of a speci®c gene
for use in further investigation.

Visualization. Finally, as discussed above, it is hard to depict
the whole network clearly. Although it is useful to show all the
neighbors of each node, the user sometimes wants to directly
view the topology of a sub-network, where the proteins that
the user is interested in are involved. Using TopNet, the user
could specify two nodes and a maximum path length. Then the
tool will show all possible paths connecting these nodes (as
shown in Fig. 1, `visualization') with length less than the
speci®ed maximum.

Algorithms in TopNet

Distance calculation. To calculate the diameter and the
characteristic path length of each network (or sub-network),
distances between any two connected nodes (disconnected
nodes are excluded) are calculated ®rst by a greedy algorithm.

Simply put, for each source node, all of its neighbors are
labeled as having a distance of 1. The nodes that are linked to
these neighbors are labeled as having a distance of 2, and so
on, until the ®nal node is encountered. Nodes that are
encountered multiple times are considered only the ®rst time.
This algorithm is referred to as a breadth-®rst search.

All possible paths calculation. To determine all possible paths
between any two nodes, we perform a breadth-®rst search
from the source node (as described above), then a second
breadth-®rst search from the target node, thus identifying all
nodes that could be on a path between the source and target of
appropriate length. All the neighbors of the source node are
placed on the same layer; the neighbors of these nodes are
placed on a further layer; and so on. By scoring each node with
its shortest distance from both source and target, we can use
the relation between the scores of a node and the scores of its
neighbors to identify edges on a shortest path in time
proportional to the number of edges in the graph.

Choices in embedding a sub-network in larger network. The
purpose of TopNet is to allow the researcher to divide the
network of interest into many sub-networks, and then compare
topological statistics of those sub-networks. However, the
issue of embedding a sub-network into a bigger network has a

Figure 1. Overview of TopNet. The whole website consists of four major parts: upload, calculation, navigation and visualization. For details, please refer to
the text.
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number of complexities. To resolve these complexities we
have to make a number of arbitrary but reasonable decisions.
Consider the calculation of node degree (a step on the way to
calculating the average node degree of a sub-network).
Suppose node s in sub-network A has three neighbors also in
A, and one neighbor that is not in A. Do we calculate the
degree of s as three or four? Likewise, consider the problem of
calculating the shortest distance between two nodes in the
same sub-network (a necessary step in calculating a sub-
network's diameter). What do we do if the shortest path makes
use of nodes not in the sub-network?

We have decided to calculate these values (as well as
analogous values for the clustering coef®cient) with respect to
the entire network. This is illustrated in Figure 2. So for the
examples above we calculate the degree as four, and we do use
a path involving the nodes outside the sub-network. As we are
ultimately interested in the statistics of the sub-networks as
they related to the network as a whole, it was logical to go in
this direction.

Application: analysis of different genomic features in
yeast

In a direct fashion, we can apply TopNet to the existing
interaction datasets and standard sets of protein classes
available for yeast. This enables us to ®nd some straightfor-
ward but interesting biological correlations. In particular we
focused on the following characteristics: (i) mRNA expres-
sion, (ii) amino acid composition, (iii) solubility, (iv) second-
ary structure, (v) function and (vi) protein size.

In order to perform a complete analysis of the whole yeast
interaction network, we merged all the available protein±
protein interaction datasets to create a comprehensive network

Figure 2. A certain sub-network is embedded in the whole network, when
the topological statistics for the nodes in this sub-network are calculated.
(A) Node s interacts with three other nodes in sub-network A (shown as
solid circles) and one node in sub-network B (shown as open circles). The
degree of s is therefore 4 instead of 3. (B) The shortest path between nodes
s and t could go through nodes in sub-network B (shown as the green line).
Thus, the distance between s and t is 2, not 3.

Figure 3. Relationships between expression levels and topological statistics. (A) Protein's average degree has an exponential relationship with its expression
level. The regression equation, R2 and P value are shown in the ®gure. The P value measures the statistical signi®cance of the correlation of regression [R].
(B) Protein's expression level has a positive relationship with its clustering coef®cient. (C and D) Protein's expression level has a negative relationship with
its diameter and characteristic path length.
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for yeast (see Table 3), which consists of 69592 interactions
among 4957 proteins (29). Given the high false positive rates
of many of the high-throughput interaction screen methods
(28), we divided this whole interaction dataset into three sub-
datasets (as described above) to further con®rm the biological
relevance of the results. (i) Two-hybrid sub-dataset, which
contains all the interacting pairs identi®ed by yeast two-hybrid
experiments (5202 interactions, 7.5% of the total) (18,21).
(ii) Pull-down sub-dataset, which contains all the interactions
identi®ed by in vivo pull-down techniques (54 663 inter-
actions, 78.5% of the total) (19,20). (iii) Manual sub-dataset,
which contains interacting protein pairs identi®ed by individ-
ual experiments from MIPS, BIND and DIP (interacting pairs
in the ®rst two sub-datasets are excluded; 14 837 interactions,
21.3% of the total) (22±24).

The two-hybrid sub-dataset is known to contain many false
positives (28) and it is <10% of our whole dataset. Therefore,
the results from the two-hybrid sub-dataset are not as reliable
as the manual sub-dataset, which is generally believed to be
the most reliable data available (28). Thus, if the result
calculated based on the manual sub-dataset agrees with that of
the whole dataset, we believe that the result is more
trustworthy than if calculated against the two-hybrid set. We

repeated all the calculations on these three sub-datasets
individually, performing a simple form of sensitivity analysis.
With one exception, the results are in strong agreement. Only
those results pertaining to protein size are different, as
discussed in detail below.

mRNA expression. Starting with a reference dataset for the
absolute expression level in yeast [a non-trivial combination
of different gene expression datasets (31)] we used TopNet to
investigate relationships between expression levels and
topological statistics of the network of known interacting
yeast proteins. The proteins are divided into 13 groups based
on their expression levels. As shown in Figure 3, sub-networks
consisting of highly expressed proteins tend to have higher
average degrees and clustering coef®cients, but smaller
diameters and characteristic path lengths. However, some
correlations (Fig. 3B±D; statistics C, L and D, respectively)
are very poor; therefore, we focused our analysis speci®cally
on relationships between the protein's biological properties
and its degree distribution for all biological features.

In Figure 3A, the curve shows an exponential distribution.
This result makes sense; proteins with more copies in the cell
have a greater possibility of interacting with other proteins by
chance alone, although the mRNA level and the abundance of
a protein do not always correlate perfectly (32). We also
looked at the relationship between expression ¯uctuation (i.e.
through the yeast cell cycle) and topological statistics, but did
not ®nd any strong correlations (see the `download' page).

Amino acid composition. As shown in Figure 4A, proteins
with more polar amino acids tend, on average, to have higher
degrees in the interaction network. [The polarity of a protein
can be determined from the average of the polarities of its
amino acids using the Grantham scale (33). A similar method
has been used to calculate the hydrophobicity of proteins
(34)].

Three major reasons for this phenomenon could be: (i) polar
amino acids tend to be on the protein's surface (35), therefore
the more polar amino acids a protein has, the larger the surface

Figure 5. Expected and observed frequencies of the membrane proteins and
the interactions between membrane proteins in the yeast genome. `EM',
expected frequency of the membrane proteins; `OM', observed frequency of
the membrane proteins; `EI', expected frequency of the interactions between
membrane proteins; `OI', observed frequency of the interactions between
membrane proteins.

Figure 4. Relationships between average degree and protein polarity, and
solubility. (A) Protein polarity is determined as the average polarity of all
its composing amino acids. Proteins are binned into 14 groups with approxi-
mately the same number of proteins in each group. The P value, calculated
by the Mann±Whitney test (a non-parametric T test) (46), measures the
difference between the protein groups of highest and lowest polarities.
(B) The number of trans-membrane helices is predicted by TMHMM server
2.0. The labels on the x-axis: S, Soluble proteins; the number means
different classes of proteins with corresponding number of trans-membrane
helices; >13, all the proteins with >13 trans-membrane helices. The
P value, calculated by the Mann±Whitney test, measures the difference be-
tween soluble and trans-membrane proteins, which consists of all the
proteins with trans-membrane helices.
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it could potentially have. (ii) One of the most important
protein±protein interaction forces is electrostatics. Polar
amino acids have a higher tendency to have this kind of
interaction (36). Previous studies have shown that, although
overall interaction interfaces are hydrophobic, polar amino
acid residues are conserved at speci®c positions as interaction
`hot spots' (37). (iii) Most proteins without many polar amino
acids are membrane proteins. Because of the inherent bias
against membrane proteins in the experimentally determined
interaction network, membrane proteins have less interaction
partners, as will be discussed in detail below.

In yeast two-hybrid experiments, protein baits have DNA-
binding domains and the preys have the activation domains.
When the protein baits interact with the preys, the interaction
will bring the activation domain to the DNA-binding domain,
which will turn on the reporter genes. However, some polar
protein baits have activation domain-like acidic regions. It has
been shown that these polar protein baits could turn on the
reporter genes in the absence of any preys (38,39). Therefore,
polar proteins might produce many false positive signals and
arti®cially have more interaction partners. However, we
performed the same calculations on the three sub-datasets
and the results remain the same. Most importantly, the result
based on the manual sub-dataset con®rms that the correlation
between protein polarity and its degree is real.

Protein solubility. In general, soluble proteins have many
more interaction partners than membrane proteins (see
Fig. 4B). The most important cause of this phenomenon is
that soluble proteins are relatively free to move within the cell
and therefore have the ability to interact with many more
proteins at different times and localizations. In contrast, a
membrane protein's mobility is largely limited to a two-
dimensional surface.

Another signi®cant reason for the large degree of soluble
proteins is that these proteins are much more amenable to
interaction determination experiments, speci®cally the yeast
two-hybrid (18,21). In the whole merged interaction dataset,
there are 463 interacting pairs among 863 membrane proteins.
The observed frequencies of the membrane proteins and the
interactions between them in the yeast genome are both much
lower than random expectation (see Fig. 5). Therefore, in
experimentally determined interaction networks the number of
interaction partners for membrane proteins is most probably
grossly underestimated.

Interestingly, the number of interaction partners for mem-
brane proteins does not seem to have any correlation with the
number of trans-membrane helices that they have, as predicted
by the TMHMM server 2.0 (40).

Secondary structure. The secondary structure of proteins was
predicted using the GOR IV algorithm (41). It is obvious from
Figure 6 that more helical proteins tend to have more
interactions. A good example of the involvement of helices
in interactions is coiled-coil domains, which consist of two or
more alpha-helices that wrap around each other with a slight
left-handed superhelical twist (42,43). In the yeast genome,
121 proteins containing coiled-coil regions were identi®ed
using the MULTICOIL algorithm (44). In the whole inter-
action dataset, there are 250 interacting pairs among 119 of
these 121 proteins.

Function. We also observed a very interesting phenomenon in
the experimentally determined interaction network: proteins
with at least one functional annotation in MIPS database (22)
on average had a much higher degree than those without any
functional annotation (Fig. 7). This re¯ects the bias in current
interaction datasets, i.e. proteins with functional annotation
are preferred as baits, even in large-scale experiments.

The calculations for the above ®ve characteristics have been
repeated for the three sub-datasets. The results remain the

Figure 6. Relationships between average degree and protein secondary
structures. The secondary structures of proteins are determined by the GOR
IV algorithm. The fraction (i.e. the x-axis) is calculated as the ratio of the
number of amino acids with a certain secondary structure over the total
length of the protein. Proteins are binned into seven groups with approxi-
mately the same number of proteins in each group. The P value in (A), cal-
culated by the Mann±Whitney test, measures the difference between the
protein groups of highest and lowest fraction of helices. The regression
equations, R2 and P values are shown in (B) and (C). The P values measure
the statistical signi®cance of the correlation of regression [R].
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same (see Supplementary Material, Figs 1±7), which con®rms
that they are reliable and free of artifacts of large-scale
interaction screen methods.

Protein size. To our surprise, the results of our algorithms as
applied to different datasets do not agree with each other with
respect to protein size (see Fig. 8). In the whole dataset, we
found that larger proteins tend to have more interaction
partners (see Fig. 8A). Subsequently, we repeated the
calculations on the three sub-datasets individually: (i) manual
sub-dataset (see Fig. 8B). Protein size has a negative
relationship with protein degree, i.e. the larger the protein is,
the less interaction partners it has on average. (ii) pull-down
sub-dataset (see Fig. 8C). There are no strong relationships
between protein size and degree. (iii) two-hybrid sub-dataset
(see Fig. 8D). Protein size has a positive relationship with
protein degree, i.e. the larger the protein is, the more
interaction partners it has on average, which agrees with the
result of the whole interaction dataset.

As discussed earlier, the manual sub-dataset is the most
reliable dataset (28), and the result calculated based on this
sub-dataset agrees well with our common knowledge, i.e.
some of the most promiscuous proteins are small unspeci®c
repeats such as ubiquitin (45).

The positive relationship observed in the two-hybrid sub-
dataset and the whole dataset are generated by the following
artifacts. (i) In yeast two-hybrid experiments, some large
proteins may not be able to fold correctly in a non-native
environment (i.e. nucleus). They might then expose hydro-
phobic groups and aggregate, producing a false positive

signal. (ii) Most importantly, in Figure 8 the proteins are
divided into 12 bins based on their lengths; each bin contains
approximately 500 proteins. Because of the nature of the
in vivo pull-down technique (i.e. identifying complexes
instead of binary interacting pairs), the average degree of
the proteins in this sub-dataset (47.9) is much higher than
those of the other two sub-datasets (2.9 for the two-hybrid
subset, 6.6 for the manual subset). Therefore, the average
degree of each bin in Figure 8 depends on the number of
proteins in the bin that are included in the pull-down subset.
The fact that there are few small proteins in the pull-down sub-

Figure 7. Proteins with at least one functional annotation have many more
interaction partners than those without any functional annotations based on
MIPS functional classi®cation. The P value, calculated by the Mann±
Whitney test, measures the difference between the two groups.

Figure 8. Relationships between average degree and protein length. Protein length is re¯ected in the number of amino acids it has. (A) Positive relationship
in the whole dataset. (B) Negative relationship in the manual sub-dataset. (C) No signi®cant relationships in the pull-down sub-dataset. (D) Positive
relationship in the two-hybrid sub-dataset. The regression equation, R2 and P value are shown in (A), (C) and (D). The P value measures the statistical
signi®cance of the correlation of regression [R].
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dataset leads to the arti®cial positive relationship observed in
the whole dataset (see Supplementary Material, Fig. 8).

Summary

In summary, we have given an overview of the design
principles and a wide range of possible applications of our
automated web tool: TopNet. This tool provides users with the
ability to compare the topological statistics of different sub-
populations within the same network and to explore complex
networks part by part. To demonstrate its use, we applied
TopNet to analyze the relationships between a variety of
biological classes and a protein's degree distribution within the
yeast protein±protein interaction network. The results illus-
trated several interesting trends, which could be used to predict
protein±protein interactions and ultimately protein function.
Furthermore, our analyses also discovered several systematic
errors existing in the current large-scale interaction data.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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