Proteomics: Net Profit from Integrating Interactomes
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With genome sequences as intellectual inspiration and practical scaffolds, scientists are increasingly performing experiments on all genes in a genome. The integration of the resulting genome-wide information into useful definitions of gene function constitutes a principle challenge for post-genomic biology.  Exactly what form such definitions will take is still an open question. Comprehensive networks of protein-protein interactions, interactomes, provide a valuable way of circumscribing and partially defining gene function.

On page ??? of this issue, Tong et al. (1) describe a systematic approach for identifying interaction networks for peptide-recognition domains.  They break new ground in the way they combine “orthogonal” datasets.  Specifically, they intersect two different interactomes.  The first is derived from screening phage-display peptide libraries to find consensus sequences that bind particular peptide-recognition domains.  The resulting network connects proteins containing recognition domains to those containing the consensus. It partially defines binding sites in some of the proteins and represents a novel use of phage-display technology. The second network comes from experimentally testing each peptide-recognition module for association with possible protein-binding partners using the two-hybrid approach. Tong et al. apply their approach to determine interacting partners for SH3 domains in yeast. These domains make good targets because of their prevalence and involvement in a number of important biological processes, from cytoskeleton reorganization to signal transduction.

The power of Tong et al.'s approach is manifest in interpreting large genomic datasets, particularly in reducing their noise.  One of the fallacies in dealing with genomic datasets is ascribing too much meaning to individual datapoints.  Many datasets (e.g. expression) contain so much noise that it can be difficult to draw reliable conclusions for specific genes. However, they still have much useful information statistically, in terms of broad trends.  To get at this, one must aggregate data.  This can be simply achieved by combining replicates of an experiment, but this does not remove systematic errors. Secondly, in somewhat more elaborate fashion, one can collect many individual measurements on different proteins into aggregate "proteomic classes" (e.g. functional categories) and compare these (2). Finally, Tong et al.'s study points to the perhaps most powerful approach: interrelating and integrating orthogonal (i.e. fundamentally different) information.  In the abstract one can easily demonstrate that combining independent datasets results in a lower error rate overall.  For instance, combining three independent binary-type datasets with error rates of 10% (for false positives and negatives) reduces the overall error rate to 2.8% (for positives and negatives) (5). Moreover, interrelating two different types of whole-genome data also enables one to discover non-obvious and potentially significant relationships -- e.g. between expression and chromosomal positioning or subcellular localization (3).

There have been a number of attempts at interrelating information from different genomic datasets before, much of it starting from expression experiments.  For instance, expression data were initially analyzed by a variety of supervised and unsupervised methods (e.g., hierarchical trees, k-means, self-organizing maps, and support-vector machines) and compared to functional categories (4). They were also interrelated with transcription-factor binding sites, protein families, protein-protein interactions, and protein abundance (2,5,6). In a shorthand sense, much of this can be thought of as interrelating the transcriptome with other "omes" -- e.g. proteome, translatome, secretome, and interactome (2).

There are considerably fewer examples of the synthesis of more than two types of whole-genome data.  One initial attempt combined expression correlations, phylogenetic profiles and patterns of domain fusion to predict protein function (7). A Bayesian framework integrated expression, essentiality, and sequence motif data for the prediction of protein subcellular localization (8). Tong et al.'s strategy of overlapping interactomes presents a new type of synthesis.  It is particularly effective in that their two datasets are orthogonal in many respects.  Phage-display is based on in vitro binding of short peptides, whereas two-hybrid uses in vivo binding and full-length proteins. Moreover, the phage-display network is computationally predicted but uses relatively unambiguous consensus sequences, whereas the two-hybrid one is experimentally derived but suffers from appreciable false positives (9).

From a data-mining standpoint, the heterogeneous character and variable quality of whole-genome information makes integration tricky. Consider combining "orthogonal" interactome datasets, such as attempted by Tong et al., in a general sense. How might one proceed formally? As indicated in the top figure, there are two extremes. On one, the datasets have low false-negative but high false-positive error rates. That is, each experiment almost never misses real interactions but also finds many spurious ones. In this situation the benefit of integration comes from intersection: only interactions common to all are accepted, thus lowering the combined error rate. Tong et al.'s approach fits this to some degree. On the other extreme are datasets with few false positives but low coverage of the space of interactions.  The benefit of integration then comes from the union: any interaction found in at least one dataset is accepted.  Another earlier interactome analysis followed this to some degree (10).

In most practical situations, the optimal way to integrate datasets is somewhere between these extremes.  The task is to combine datasets with varying error rates and coverage. Accordingly, the rules for identifying positives become more complicated.  Instead of simple unions or intersections, different combinations of positive and negative signals from the datasets should be considered, taking into account their relative false positive and negative rates.

The bottom figure provides a practical illustration of the power of interrelating genomic data for yeast.  It shows the degree to which one can find protein-protein associations in known protein complexes (11) based on integrating, in stepwise fashion, increasing amounts of orthogonal genomic information.  We start by considering associations that can be found from expression correlations over the cell cycle; then we incorporate those derived from a second but different microarray experiment, giving responses to knockouts (12). Finally, we add associations predicted from genomic measurements of essentiality and localization (8,11,13). As we integrate more information, the total number of correctly identified interactions rises (especially for the union of the predicted associations). Simultaneously, the error rate decreases. Moreover, if we focus just on the intersection of the predicted associations, the error rate falls even more.

A major future challenge will be devising uniform frameworks for integrating information, both from high-throughput and traditional biochemical approaches. One aspect of this will be developing better databases for storing and querying heterogeneous information. In particular, databases will need to be more precise in their treatment of errors and also interface better with journals. Another aspect will be developing datamining approaches to operate on these databases, integrating many different genomic features into results pertinent to biological function. Genomic features can be of very different character (from hundreds of "Booleans" for interactions to tens of thousands of real-number vectors for expression timecourses), and a central issue in integration is determining how to relatively weight each feature.  In this regard, some machine-learning techniques, such as Bayesian networks and decision trees, are quite powerful while others are more problematic (e.g. support-vector machines).   

Finally, we will also need to come up with a more systematic definition of gene function, the ultimate aim of proteomic investigation.  To many scientists, what constitutes "function" is a natural-language phrase or name, often in non-systematic terminology -- e.g. "ATPase" or "suppressor of white apricot".  This approach is sufficient for single-molecule work but does not scale to the genomic level.  More systematic attempts have been made to place proteins within a hierarchy of standard functional categories or to connect them into overlapping networks of varying types of association (11,14).  These networks can obviously include protein-protein interactions, the subject of Tong et al.'s work. More broadly, they can include pathways, regulatory systems, and signaling cascades. How far are we able to go with this approach?  Perhaps in the future the systematic combination of networks may provide for a truly rigorous definition of protein function.

Overlapping Nets.

(Top) Two different extremes in integrating interactomes.  On left, the combined network is the union of those with low false-positive but high false-negative rates, whereas the combined network on right is the intersection of ones with low false-negative but high false-positive rates.  Circles represent proteins; links, interactions; and dotted lines, known associations. (Thicker links indicate lower false-positive rates.) More effective rules for combining networks than union and intersection take into account the different error rates associated with each link type. (Bottom) How integrating progressively more orthogonal information identifies increasingly more associations (5). From the known complexes in yeast there are 8,250 protein-protein associations (11). The y-axis shows the percentage of these identified by disparate genomic data (i.e. coverage). The x-axis shows the progressive addition of genomic data. The first two bars represent the protein associations with most significant expression correlation in two different microarray sets (12). The next two represent adding the associations predicted because both proteins were similarly essential for cell survival or had similar localization (8,13). The shading on the bars roughly indicates false-positive rates throughout the integration. While it is reasonable that associated components of complexes will have correlated expression and similar localization and "essentiality", this is only weakly predictive, generating many spurious positives. Consequently, the "weak-links" case on the top-right applies, and one can see from the shading how intersection lowers the error rate.
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