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nosity during the same pe-
riod. Explaining this re-
sult constitutes a chal-
lenge for different models
of galaxy evolution (8).

The exploration of dis-
tant galaxies requires accu-
rate and well-defined pro-
jects. In the past, many
surveys were concerned
with mapping the whole
sky. In contrast, the sur-
veys of the future will have
to concentrate on well-defined areas at
maximum resolution and with a range of in-
struments. In this spirit, the Great Observa-
tories Origins Deep Survey (GOODS) aims
to survey a small area of the sky with sever-
al major astronomical facilities (including

the Chandra X-ray Telescope, the Hubble
Space Telescope, and the ESO VLT tele-
scope), covering the entire range of wave-
lengths at our disposal (9). The total area to
be surveyed is only 300 square arc min—
similar to that subtended by the full Moon—

but large enough to give us an idea of what
happened at the beginning of the universe.
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W
ith the human genome sequence
as an intellectual inspiration and
practical scaffold, scientists are

ready to perform experiments on all genes.
Integrating the resulting genomewide infor-
mation into useful definitions of protein

function is a huge
challenge. Exactly
what form such func-
tional definitions will
take is still debatable,

but comprehensive networks of protein-pro-
tein interactions, or interactomes, should
prove valuable in helping to shape them. 

On page 321 of this issue, Tong et al. (1,
2) describe a systematic approach for iden-
tifying protein-protein interaction networks
in which different peptide recognition do-
mains participate. They break new ground
in the way they combine “orthogonal” (that
is, fundamentally different) sets of genomic
information. Specifically, they study the in-
tersection of two different interactomes.
The first is derived from screening phage-
display peptide libraries to find consensus
sequences in yeast proteins that bind to par-
ticular peptide recognition domains. The re-
sulting network connects proteins with
recognition domains to those containing the
consensus. This network partially defines
binding sites in some of the proteins and
represents a clever use of phage display
technology. The second network is derived
from experimentally testing each peptide

recognition module, using the yeast two-hy-
brid technique, for association with possi-
ble protein-binding partners. Tong et al. ap-
ply their approach to determine interacting
partners for SH3 domains in yeast proteins.
These domains make good targets because
of their prevalence and involvement in a
number of important biological processes,
from cytoskeleton reorganization to signal
transduction.

The power of Tong et al.’s strategy, par-
ticularly for reducing noise, becomes mani-
fest when interpreting large genomic data
sets. One fallacy in dealing with genomic
data sets is ascribing too much meaning to
individual data points. Many data sets (for

example, gene expression profiles) contain
so much noise that it can be difficult to draw
reliable conclusions for specif ic genes.
These data sets still offer much useful infor-
mation statistically, in terms of broad trends,

but they are useful only insofar as
the data can be aggregated. This can
be simply achieved by combining
replicates of an experiment, but
such a process does not remove sys-
tematic errors. It is also possible to
collect many individual measure-
ments on different proteins into ag-
gregate “proteomic classes,” for ex-
ample, functional categories, and to
compare these (3–6). 

The new work points to perhaps
the most powerful approach: inter-
relating and integrating orthogonal
information. In the abstract, it is
easy to demonstrate that combining
independent data sets results in a
lower error rate overall. For in-
stance, combining three indepen-
dent binary-type data sets with error
rates of 10% reduces the overall er-
ror rate to 2.8% (for both false posi-
tives and negatives) (7). Moreover,

interrelating two different types of whole-
genome data also enables one to discover
potentially important but not obvious rela-
tionships—for example, between gene ex-
pression and the position of genes on chro-
mosomes, or between gene expression and
the subcellular localization of proteins (8,
9).

There have been a number of previous
attempts to interrelate information from dif-
ferent genomic data sets. For instance, gene
expression profiles were initially analyzed
by a variety of supervised and unsupervised
methods—hierarchical trees, k-means, self-
organizing maps, and support-vector ma-
chines—and compared with protein func-

P E R S P E C T I V E S : P R O T E O M I C S

Integrating Interactomes
Mark Gerstein, Ning Lan, Ronald Jansen

The authors are in the Department of Molecular Bio-
physics and Biochemistry, Yale University, New Haven,
CT 06520, USA. E-mail: mark.gerstein@yale.edu 

Enhanced online at

www.sciencemag.org/cgi/

content/full/295/5553/284

Overlapping nets. Two different extremes in integrat-

ing interactomes. The combined network on the left is

the union of those interactomes with low false-positive

but high false-negative rates, whereas the combined

network on the right is the intersection of interactomes

with low false-negative but high false-positive rates.

Circles represent proteins; links, interactions; and dotted

lines, known associations. Thicker links indicate lower

false-positive rates. More effective rules for combining

networks than union and intersection take into account

the different error rates associated with each link type.
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Galaxies near and far.

The slope of the Tully-

Fisher relation for 1200

local spiral galaxies (pink)

is steeper than that for

60 spiral or irregular

galaxies at intermediate

redshift (green). The re-

sult provides insights into

how galaxies of different

mass and luminosity may

have evolved over time.
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tion categories (10–14). Gene expression
data were also compared with data sets de-
scribing transcription factor binding sites,
protein families, protein-protein interac-
tions, and protein abundance (3–6, 15–20).
In a shorthand sense, much of this can be
thought of as interrelating the transcriptome
(population of mRNA transcripts) with oth-
er “omes” such as the proteome, trans-
latome, secretome, and interactome (3).

There are considerably fewer examples
of the synthesis of more than two types of
genomic information. One initial attempt
combined gene expression correlations,
phylogenetic profiles, and patterns of do-
main fusion to predict protein function (21,
22). Bayesian statistics were used to inte-
grate gene expression, “essentiality” (the
degree to which a gene is essential for sur-
vival), and sequence motif data into a uni-
form framework for the prediction of pro-
tein subcellular localization (20). Tong et
al.’s strategy of overlapping interactomes
presents a new type of synthesis. It is par-
ticularly effective in that their two data sets
are orthogonal in many respects. Phage
display is based on in vitro binding of short
peptides, whereas the two-hybrid approach
assays in vivo binding between full-length
proteins. Moreover, the phage display net-
work is computationally predicted but uses
relatively unambiguous consensus se-
quences, whereas the two-hybrid network
is experimentally derived but suffers from
appreciable false positives (23, 24).

From a data-mining standpoint, the het-
erogeneous character and variable quality of
whole-genome information makes integra-
tion tricky. Consider combining “orthogo-
nal” interactome data sets, such as attempt-
ed by Tong et al., in a general sense. How
might one proceed formally? There are two
extremes (see the figure, previous page). At
one extreme, the data sets have low false-
negative but high false-positive error rates.
That is, each experiment almost never miss-
es real interactions but also finds many spu-
rious ones. In this situation, the benefit of
integration comes from intersection: Only
interactions common to all are accepted,
thus lowering the combined error rate. Tong
et al.’s approach fits this to some degree. At
the other extreme are data sets with few
false positives but low coverage of the space
of interactions. The benefit of integration
then comes from the union: Any interaction
found in at least one data set is accepted. An
earlier interactome analysis followed this to
some degree (25).

In most practical situations, the optimal
way to integrate data sets is somewhere be-
tween these extremes. The task is to com-
bine data sets with varying error rates and
coverage. Accordingly, the rules for identi-
fying positives become more complicated.

Instead of simple unions or intersections,
different combinations of positive and neg-
ative signals from the data sets should be
considered, taking into account their rela-
tive false-positive and -negative rates.

A practical illustration of the power of
interrelating genomic data for yeast (see
the figure, this page) shows the degree to
which one can find protein-protein associ-
ations in known protein complexes (5, 6,
26) by stepwise integration of increasing
amounts of orthogonal genomic informa-
tion. We start by considering associations
that can be found from gene expression

correlations over the cell cycle (27); then
we incorporate those derived from a sec-
ond but different microarray experiment,
which provides a series of gene expression
changes after specif ic genes have been
knocked out (28). Finally, we add associa-
tions predicted from genomic measure-
ments of essentiality and localization (20,
26, 29, 30). As we integrate more informa-
tion, the total number of correctly identi-
fied interactions rises (especially for the
union of the predicted associations). Si-
multaneously, the error rate decreases.
Moreover, if we focus just on the intersec-
tion of the predicted associations, the error
rate falls even more.

A future challenge will be to devise uni-
form frameworks for integrating informa-
tion from both high-throughput and tradi-
tional biochemical approaches. One aspect
of this will be to develop better databases
for storing and querying heterogeneous in-
formation. In particular, databases will need
to be more precise in their treatment of er-
rors and also interface better with the infor-
mation in journals. Another aspect will be to
develop data-mining strategies that can op-
erate with these databases, integrating many
different genomic features into results perti-
nent to biology. Genomic features can be of

very different character (from hun-
dreds of “Booleans” for interac-
tions, to tens of thousands of real-
number vectors for expression pro-
files), and a central issue in integra-
tion is determining how to weight
each feature relative to the others.
In this regard, some machine-learn-
ing techniques, such as Bayesian
networks and decision trees, are
quite powerful, whereas others, for
example, support-vector machines,
are more problematic. 

Finally, we will need to come
up with a more systematic defini-
tion of gene function, the ultimate
aim of proteomic investigation. To
many scientists, what constitutes
“function” is a phrase or name of-
ten in nonsystematic terminology,
such as “ATPase” or “suppressor
of white apricot.” Such descrip-
tions are suff icient for single-
molecule work but cannot be
scaled up to the genomic level.
More systematic attempts have
been made to place proteins with-
in a hierarchy of standard func-
tional categories or to connect
them in overlapping networks of
varying types of association (26,
31, 32). These networks can obvi-
ously include protein-protein in-
teractions, the subject of Tong et
al.’s work. More broadly, they can

include pathways, regulatory systems, and
signaling cascades. How far are we able to
go with this network approach? Perhaps,
in the future, the systematic combination
of networks may provide for a truly rigor-
ous definition of protein function.
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S
exually dimorphic organisms employ the
services of epigenetics—heritable
changes in gene expression that are inde-

pendent of DNA sequence—to balance genet-
ic differences between the two sexes. A superb
model of this relationship, X-chromosome in-
activation, has evolved uniquely in mammals
to ensure equal gene dosage between females,
who have two X chromosomes, and males,
who have only one X. This precise pathway
results in the silencing of the majority of
genes on one X chromosome early in female
development. This outcome requires a female
cell to undergo a highly orchestrated set of
events when it differentiates. A cell must
count the X chromosomes, choose one X to
inactivate (usually in a random manner), initi-
ate and propagate chromosome-wide silenc-
ing, and finally maintain this inactive state
throughout subsequent cell divisions (1).
Shortly after the discovery of X inactivation
by Mary Lyon in 1961, geneticists hypothe-
sized that cis-acting factors (acting on the
same chromosome) encoded by the X must
be important in this process. Likewise, trans-
acting factors (acting on different chromo-
somes) encoded by chromosomes other than
the X or Y were presumed to be equally
important (2). Yet until recently, all
known regulators of X inactivation were
cis-acting elements residing on the X
chromosome. The drought surrounding
the identification of trans-acting factors
has now ended. According to Chao et al.
(3) on page 345 of this issue, the insula-
tor and transcription regulator CTCF is a
key trans-acting factor in the X-inactiva-
tion pathway.

Early studies on X inactivation
demonstrated that a region of the X
chromosome, designated the X-inactivation

center (Xic), is required for silencing of ad-
jacent sequences (4). As a result, a chromo-
somal fragment containing the Xic can be-
come inactive, whereas one that does not, by
default, must remain active. In addition to
delineating the Xic as the principal cis-act-
ing silencing center, early experiments un-
covered a genetic element within the Xic
that affects X-chromosome choice in the
mouse (5). Alleles of this element, named
the X controlling element (Xce), vary in
strength such that a strong Xce allele is more
likely to reside on an active X chromosome
than a weak Xce allele. Surprisingly, Xce has
escaped molecular identification.

The major molecular breakthrough for the
X-inactivation field came with the identifica-
tion of the Xist gene within the Xic (6). Clues
to the function of Xist came from its unique
transcription pattern and cellular localization.

Xist, a gene that does not encode a protein, is
transcribed from the inactive X chromosome
(Xi) and is silent on the active X chromosome
(Xa). It codes for a large untranslated RNA
that coats the Xi. Genetic experiments have
demonstrated that Xist is required for initia-
tion and promulgation of silencing, and that it
is involved in X-chromosome choice (1).
These findings invoked a compelling molecu-
lar model of initiation and propagation events,
with the Xist RNA acting as the major inacti-
vating element. Despite this progress, molecu-
lar candidates directing the initial events of
counting and selection remained elusive. 

Studies of the antisense gene Tsix, the
most recent addition to the cis-acting family
of factors within the Xic, have begun to illu-
minate these early events (7). Tsix overlaps
with Xist, but is transcribed from the anti-
sense strand. Like Xist, Tsix codes for an un-
translated RNA, yet contrary to Xist, Tsix is
transcribed from the Xa. This pattern sug-
gests that the two genes are coordinately
regulated and that Tsix blocks Xist activity.
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