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PERSPECTIVES: PAOTEOMILCS

Integrating Interactomes

Mark Gerstein, Ning Lan, Ronald Jansen

ith the human genome sequence
Was an intellectual inspiration and

practical scaffold, scientists are
ready to perform experiments on all genes.
Integrating the resulting genomewide infor-
mation into useful definitions of protein
function is a huge
challenge. Exactly

www.sciencemag.org/cgi/ what form such func-
content/full/295/5553/284 tional definitions will

284

take is still debatable,
but comprehensive networks of protein-pro-
tein interactions, or interactomes, should
prove valuable in helping to shape them.
On page 321 of this issue, Tong et al. (I,
2) describe a systematic approach for iden-
tifying protein-protein interaction networks
in which different peptide recognition do-
mains participate. They break new ground
in the way they combine “orthogonal” (that
is, fundamentally different) sets of genomic
information. Specifically, they study the in-
tersection of two different interactomes.
The first is derived from screening phage-
display peptide libraries to find consensus
sequences in yeast proteins that bind to par-
ticular peptide recognition domains. The re-
sulting network connects proteins with
recognition domains to those containing the
consensus. This network partially defines
binding sites in some of the proteins and
represents a clever use of phage display
technology. The second network is derived
from experimentally testing each peptide
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example, gene expression profiles) contain
so much noise that it can be difficult to draw
reliable conclusions for specific genes.
These data sets still offer much useful infor-
mation statistically, in terms of broad trends,

but they are useful only insofar as

the data can be aggregated. This can
be simply achieved by combining
replicates of an experiment, but
such a process does not remove sys-
tematic errors. It is also possible to
collect many individual measure-
ments on different proteins into ag-
gregate “proteomic classes,” for ex-
ample, functional categories, and to
compare these (3, 4).

Overlapping nets. Two different extremes in integrat-
ing interactomes. The combined network on the left is
the union of those interactomes with low false-positive
but high false-negative rates, whereas the combined
network on the right is the intersection of interactomes
with low false-negative but high false-positive rates.
Circles represent proteins; links, interactions; and dotted
lines, known associations. Thicker links indicate lower
false-positive rates. More effective rules for combining
networks than union and intersection take into account
the different error rates associated with each link type.

recognition module, using the yeast two-hy-
brid technique, for association with possi-
ble protein-binding partners. Tong et al. ap-
ply their approach to determine interacting
partners for SH3 domains in yeast proteins.
These domains make good targets because
of their prevalence and involvement in a
number of important biological processes,
from cytoskeleton reorganization to signal
transduction.

The power of Tong et als strategy (par-
ticularly for reducing noise) becomes mani-
fest when interpreting large genomic data
sets. One fallacy in dealing with genomic
data sets is ascribing too much meaning to
individual data points. Many data sets (for

The new work points to perhaps
the most powerful approach: inter-
relating and integrating orthogonal
information. In the abstract, it is
easy to demonstrate that combining
independent data sets results in a
lower error rate overall. For in-
stance, combining three indepen-
dent binary-type data sets with crror
rates of 10% (for false positives and
negatives) reduces the overall error
rate to 2.8% (for positives and nega-
tives) (5—7). Moreover, interrelating two dif-
ferent types of whole-genome data also en-
ables one to discover potentially important
but not obvious relationships—for example,
between gene expression and the position of
genes on chromosomes, or between genc
expression and the subcellular localization
of proteins (8, 9).

There have been a number of previous
attempts to interrelate information from dif-
ferent genomic data sets. For instance, gene
expression profiles were initially analyzed
by a variety of supervised and unsupervised
methods—hierarchical trees, k-means, self-
organizing maps, and support-vector ma-
chines—and compared with protein func-
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tion categories (/0-/4). Gene expression
data were also compared with data sets de-
scribing transcription factor binding sites,
protein families, protein-protein interac-
tions, and protein abundance (3-6, 15-19).
In a shorthand sense, much of this can be
thought of as interrelating the transcriptome
(population of mRNA transcripts) with oth-
er “omes” such as the proteome, trans-
latome, secretome, and interactome (3).

There are considerably fewer examples
of the synthesis of more than two types of
genomic information. One initial attempt
combined gene expression correlations,
phylogenetic profiles, and patterns of do-
main fusion to predict protein function
(20-22). Bayesian statistics were used to
integrate gene expression, “essentiality”
(the degree to which a gene is essential for
survival), and sequence motif data into a
uniform framework for the prediction of
protein subcellular localization (20}). Tong
et al’s strategy of overlapping interactomes
presents a new type of synthesis. It is par-
ticularly effective in that their two data sets
are orthogonal in many respects. Phage
display is based on in vitro binding of short
peptides, whereas the two-hybrid approach
assays in vivo binding between full-length
proteins. Moreover, the phage display net-
work is computationally predicted but uses
relatively unambiguous consensus se-
quences, whereas the two-hybrid network
is experimentally derived but suffers from
appreciable false positives (23, 24).

From a data-mining standpoint, the het-
erogeneous character and variable quality of
whole-genome information makes integra-
tion tricky. Consider combining “orthogo-
nal” interactome data sets, such as attempt-
ed by Tong et al., in a general sense. How
might one proceed formally? There are two
extremes (see figure, previous page). At one
extreme, the data sets have low false-nega-
tive but high false-positive error rates. That
is, each experiment almost never misses real
interactions but also finds many spurious
ones. In this situation, the benefit of integra-
tion comes from intersection: Only interac-
tions common to all are accepted, thus low-
ering the combined error rate. Tong et al’s
approach fits this to some degree. At the
other extreme are data sets with few false
positives but low coverage of the space of
interactions. The benefit of integration then
comes from the union: Any interaction
found in at lcast one data set is accepted. An
earlier interactome analysis followed this to
some degree (235).

In most practical situations, the optimal
way to integrate data sets is somewhere be-
tween these extremes. The task is to com-
bine data sets with varying error rates and
coverage. Accordingly, the rules for identi-
fying positives become more complicated.

www.sciencemag.org SCIENCE VOL 295

SCIENCE'S COMPASS

Instead of simple unions or intersections,
different combinations of positive and neg-
ative signals from the data sets should be
considered, taking into account their rela-
tive false-positive and -negative rates.

A practical illustration of the power of
interrelating genomic data for yeast (see
figure, this page) shows the degree to
which one can find protein-protein associ-
ations in known protein complexes (3, 6,
26) by stepwise integration of increasing
amounts of orthogonal genomic informa-
tion. We start by considering associations
that can be found from gene expression

A major challenge will be devising uni-
form frameworks for integrating informa-
tion from both high-throughput and tradi-
tional biochemical approaches. One aspect
of this will be developing better databases
for storing and querying heterogeneous in-
formation. In particular, databases will need
to be more precise in their treatment of er-
rors and also interface better with the infor-
mation in journals. Another aspect will be to
develop data-mining strategies that can op-
erate with these databases, integrating many
different genomic features into results perti-
nent to biology. Genomic features can be of

very different character (from hun-
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A net profit from intergation. Integrating progressively
more orthogonal information identifies more and more
associations (5-7). From the known complexes in yeast,
there are 8250 protein-protein associations (26). The y
axis shows the percentage of these identified by dis-
parate genomic data (that is, coverage). The x axis shows
the progressive addition of genomic data. The first two
bars represent the protein associations with the most
significant expression correlation in two different mi-
croarray sets (27, 28). The next two represent adding the
associations predicted because both proteins were simi-
larty essential for cell survival (“essentiality”) or had
similar subcellular localization (20, 29, 30). The color
shading on the bars roughly indicates false-positive rates
throughout the integration. Although it is reasonable
that associated components of complexes will have cor-
related expression and similar localization and "essen-
tiality,” this is only weakly predictive, generating many
spurious positives. Consequently, the “weak links” case in
the right hand panel of the top figure applies, and the
shading indicates how intersection lowers the error rate.

correlations over the cell cycle (27); then
we incorporate those derived from a sec-
ond but different microarray experiment,
which provides a series of gene expression
changes after specific genes have been
knocked out (28). Finally, we add associa-
tions predicted from genomic measure-
ments of essentiality and localization (20,
26, 29, 30). As we integrate more informa-
tion, the total number of correctly identi-
fied interactions rises (especially for the
union of the predicted associations). Si-
multaneously, the error rate decreases.
Moreover, if we focus just on the intersec-
tion of the predicted associations, the error
rate falls even more.

+Essentiality 4 Localization

dreds of “Booleans” for interac-
tions, to tens of thousands of real-
number vectors for expression pro-
files), and a central issue in integra-
tion is determining how to weight
each feature relative to the others.
In this regard, some machine-learn-
ing techniques, such as Bayesian
networks and decision trees, are
quite powerful, whereas others (for
example, support-vector machines)
are more problematic.

Finally, we will need to come
up with a more systematic defini-
tion of gene function, the ultimate
aim of proteomic investigation. To
many scientists, what constitutes
“function” is a phrase or name,
often in nonsystematic terminolo-
gy, “ATPase” or “suppressor of
white apricot” for example. Such
descriptions are sufficient for sin-
gle-molecule work but cannot be
scaled up to the genomic level.
More systematic attempts have
been made to place proteins with-
in a hierarchy of standard func-
tional categories or to connect
them in overlapping networks of
varying types of association (26,
31, 32). These networks can obvi-
ously include protein-protein in-
teractions, the subject of Tong et
al’s work. More broadly, they can
include pathways, regulatory systems, and
signaling cascades. How far are we able to
go with this network approach? Perhaps in
the future the systematic combination of
networks may provide for a truly rigorous
definition of protein function.
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