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The complexity of biological systems provides for a great diversity of relationships 
between genes. The current analysis of whole-genome expression data focuses on 
relationships based on global correlation over a whole time course, identifying clusters of 
genes whose expression levels simultaneously rise and fall. There are, of course, other 
potential relationships between genes, which are missed by such global clustering. These 
include activation, where one expects a time-delay between related expression profiles, 
and inhibition, where one expects an inverted relationship. Here we propose a new 
method, which we call local clustering, for identifying these time-delayed and inverted 
relationships. It is related to conventional gene-expression clustering in a fashion 
analogous to the way local sequence alignment (the Smith-Waterman algorithm) is 
derived from global alignment (Needleman-Wunsch).  An integral part of our method is 
the use of random score distributions to assess the statistical significance of each cluster. 
We applied our method to the yeast cell-cycle expression dataset and were able to detect 
a considerable number of additional biological relationships between genes, beyond those 
resulting from conventional correlation. We related these new relationships between 
genes to their similarity in function (as determined from the MIPS scheme) or their 
having known protein-protein interactions (as determined from the large-scale two-
hybrid experiment); we found that genes strongly related by local clustering were 
considerably more likely than random to have a known interaction or a similar cellular 
role. This suggests that local clustering may be useful in functional annotation of 
uncharacterized genes. We examined many of the new relationships in detail. Some of 
them were already well-documented examples of inhibition or activation, which provide 
corroboration for our results. For instance, we found an inverted expression profile 
relationship between genes YME1 and YNT20, where the latter has been experimentally 
documented as a bypass suppressor of the former. We also found new relationships 
involving uncharacterized yeast genes and were able to suggest functions for many of 
them. In particular, we found a time-delayed expression relationship between J0544 
(which has not yet been functionally characterized) and four genes associated with the 
mitochondria. This suggests that J0544 may be involved in the control or activation of 
mitochondrial genes. We have also looked at other, less extensive datasets than the yeast 
cell-cycle and found further interesting relationships. Our clustering program and a 
detailed website of clustering results is available at 
bioinfo.mbb.yale.edu/expression/cluster or genecensus.org/expression/cluster . 
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Introduction 
 
The massive datasets generated by microarray experiments present a challenge to those 
interested in studying the regulatory relationship between genes 1-5. Up to now, one of the 
main challenges has been to devise methods for grouping together genes that have similar 
expression profiles; this is done to determine clusters of genes that are transcribed 
together as cellular conditions vary. The most obvious use of such clusters is an 
improved understanding of transcription regulatory networks within genomes. Genes 
with similar expression profiles are likely to be subject to identical, or related, 
transcriptional control. This fact has been used to search for binding site motifs common 
to corregulated genes 6-8. 
 
There are further applications for expression clustering, especially in combination with 
other information about genes such as their subcellular localizations, metabolic functions, 
and intermolecular interactions 9-13. In particular, microarray technology allows for 
studying the entire genome, while other types of gene annotation (e.g. biochemical 
functions) are often available only for a fraction of the genes. Therefore, researchers have 
attempted to predict protein function and interaction by expression clustering. This is 
based on ‘guilt by association’ 14, the premise that proteins with similar expression 
profiles (i.e., synexpression relationship) have similar functions 15-18.   
 
Given the central importance of gene clusters in the studies just described, computational 
methods have been devised to (i) assess the similarity between pairs of expression 
profiles from different genes, and then (ii) group together those genes with similar 
profiles.  Effectively, the two aims are analogous to approaches in protein sequence 
analysis, where there are methods for assessing sequence similarity between pairs of 
sequences (e.g. BLAST 19) and then grouping them into homologous families (e.g. Pfam 
20 or Protomap 21). 
 
The most common algorithms for grouping genes with related profiles are hierarchical 
clustering 17,22, self-organizing maps 23,24, and K-means clustering 25. Hierarchical 
methods were originally derived from algorithms used to construct phylogenetic trees, 
and group genes in a “bottom-up” fashion; genes with the most similar expression 
profiles are clustered first, and those with more diverse profiles are included iteratively. 
In contrast, the self-organizing maps and K-means methods employ a “top-down” 
approach in which the user predefines the number of clusters for the dataset. The clusters 
are initially assigned randomly, and the genes are regrouped iteratively until they are 
optimally clustered. Bayesian and neural networks provide additional approaches toward 
clustering 26. 
 
Prior to clustering, users must define all the pair-wise similarities between the individual 
expression profiles. Up to now, the most popular measure that has been employed is the 
Pearson correlation coefficient; given a pair of genes, this method compares the 
expression levels at each time-point and measures the variation across the whole profile. 



The score, the coefficient r, ranges from –1 to 1, where –1 signifies perfect negative 
correlation, 0 indicates no correlation and 1 a perfect positive correlation. Gene pairs 
with scores approaching 1 are considered to have similar expression profiles, as shown in 
Figure 1A. Other measures include squared Pearson correlation coefficient, Spearman 
rank correlation, jackknife correlation coefficient, and Euclidean distance 22,27,28.  
  
A major drawback in these measures is that they ignore many additional relationships 
implicit in expression time courses. For instance, a gene may control or activate another 
gene downstream in a pathway; in this case, their expression profiles may be staggered, 
indicating a time-delayed response in the transcription of the second gene. Other genes 
may have an inhibitory relationship -- i.e. as one rises the other falls in response -- and 
we can expect their expression profiles to be inverted with respect to each other (or 
inverted with a time-delay). The current methods using correlation coefficients fail to 
detect these important relationships. First, they only assess global similarities between 
expression profiles, thereby missing staggered relationships. Second, negative 
correlations have not previously been considered, thus ignoring inhibition. Here, we 
propose a new algorithm; it is based on the dynamical programming method for local 
sequence alignment 29 and hence we call it local clustering.  Its development from 
traditional gene expression clustering method 17 is strongly suggested by the way local 
sequence alignment 29 followed on the original global approach 30. 
 
Using local clustering, we can identify expression profiles that have one of the following 
relationships: 
 
1) Simultaneous correlation (Figure 1A) – The expression profiles of the two genes are 
synchronous and coincident.  Genes with such profiles are expected to be subject to 
identical transcriptional regulation, which are sometimes called synexpression 16. This is 
the only type of relationship currently detected using the traditional correlation 
coefficient. 
 
2) Time-delayed correlation (Figure 1B) – The profiles of the two genes are similar, but 
one is time shifted, or out of phase with respect to the other. The expression of some 
genes may be delayed, compared to others due to a time lag in their transcription control.  
 
3) Inverted correlation (Figure 1C) – The profiles of the two genes are inverted (i.e. one 
of the profiles flipped on the time axis relative to the other). These profiles may exist 
where the expression of one gene inhibits or suppresses the expression of the other. 
These relationships have not been previously analyzed. However, they can be detected by 
the traditional correlation coefficient, if one looks at the correlation coefficients near –1. 
 
4) Inverted and time-delayed correlation – This combines time-shifted and inverted 
correlations, so in addition to being inverted, the profile of one gene is staggered with 
respect to the other.  
 
As a test of the effectiveness and accuracy of our algorithm, we applied it to a yeast cell 
cycle dataset.31 and a less extensive worm development dataset 32. Affirmatively, our 



algorithm detected simultaneous correlations, as well as time-shifted, inverted and 
inverted-time-shifted relationships. Many of our predicted interactions were confirmed 
with published gene pair relationships. Furthermore, the algorithm proposes highly 
correlated gene pairs representing novel pairs of gene relationships.   
 
To make this comparison clear, throughout the paper we will refer to the results from our 
method as derived from "local clustering" and contrast these with results from 
"traditional, global clustering". The later approach, which is, for instance, used in Eisen 
et al. 17 and Tamayo et al. 23, is based on computing a distance matrix only from 
simultaneous correlations between expression profiles (i.e. the traditional correlation 
coefficient).  
 
 
Algorithms and Datasets  
 
 
Local Alignment between Pairs of Expression Profiles 
 
We use a degenerate dynamical programming algorithm to find time-shifted and inverted 
correlations between expression profiles. The algorithm does not allow gaps between 
consecutive time points in the current version. However, there are some obvious 
extensions, which we explore later in the discussion section. 
  
Suppose there are n (1,2,…n) time-point measurements in the profile. First, the 
expression ratio is normalized in "Z-score" fashion, so that for each gene the average 
expression ratio is zero and standard deviation is 1. The normalized expression level at 
time point i for gene x is denoted as ix . Consider a matrix of all possible similarities 
between the expression ratio for gene x and gene y. This matrix can also be called a 
“score matrix”. In our algorithm, it is defined as M(xi,yi) = xiyj . For simplification, it will 
be referred as Mi,j for comparison of any two genes. 
 
Then, two sum matrices E and D are calculated as Ei,j = max(Ei-1,j-1+Mi,j, 0) and Di,j = 
max(Di-1, j-1–Mi,j, 0). The initial conditions are E0,j = 0 and Ei,0 = 0, and the same initial 
conditions are also applied to the matrix of D.  The central idea is to find a local segment 
that has the maximal aggregated score, i.e., the sum of Mi,j in this segment. This can be 
accomplished by standard dynamic programming as in local sequence alignment 29 and 
results in an alignment of l aligned time points, where l<n. 
 
Finally, an overall maximal value S is found by comparing the maximums for matrices E 
and D. This is the match score S for the two expression profiles. If the maximum is off 
diagonal in its corresponding matrix, the two expression profiles have a time-shifted 
relationship. This involves an alignment over a smaller number of time points l than the 
total number n. A maximal value from matrix D indicates these two profiles have an 
inverted relationship. 
 



At the end of this procedure, one obtains a match score and a relationship, i.e., 
"simultaneous," "time-delayed," "inverted," or "inverted time-delayed". Obviously, for 
the gene pairs with a very low match score, even though they are also assigned a 
relationship, we can classify them as “unmatched”. 
 
Figure 1E is the corresponding matrix E for the expression profiles shown in Fig. 1B. 
The matrix D for these expression profiles is not shown here because the maximal value 
is not in this matrix. The match score for these expression profiles, a score of S=19, is 
highlighted in the black cell.  There is a time delay (time shift) in their relationship 
because the match score of 19 is not on the main diagonal of the matrix. Figure 1F is the 
corresponding matrix D for the profiles shown in Fig. 1C. The match score is S=20; and 
because the maximum value is from matrix D rather than E (not shown), these expression 
profiles are correlated in an inverted fashion.  
 
Cell Cycle Dataset and Generation of Similarity Matrix  
 
We extensively tested our algorithm on the yeast whole genome oligonucleotide 
expression array data generated by Cho et al 31, which included over 6,000 ORFs and 17 
time points.  The data set consists of yeast cultures that were synchronized and sampled 
at intervals covering nearly two full cell cycles.  This experiment was done using an 
Affymetrix oligonucleotide array 33 containing oligos complementary to each of the yeast 
ORFs.  The raw data was then scaled to account for the experimental differences between 
the four arrays used, and the scaled intensities are reported in the Cho data. (Of course, 
our algorithm can also be applied to a cDNA microarray 1, which measures changes 
relative to a reference state creating an expression ratio, rather than the measurement of 
mRNA expression levels as detected in oligonucleotide arrays.) After eliminating the 
negative expression levels in the Cho scaled measurements, 5,911 genes are included in 
our calculation.  
 
We applied our local alignment procedure to all possible pairs of gene expression 
profiles. The match score and type of relationship (simultaneous, time-delayed or 
inverted) were calculated and assigned for each expression profile pair. This gave a 
matrix of all pairwise similarities that can be used as raw input of clustering algorithm. 
 
Significance Statistics 
 
If we divide the maximal match score by the number of time points (S/n), the resulting 
ratios are comparable with traditional correlation coefficients. This is strictly true for a 
global alignment resulting from a full-length simultaneous or inverted relationship. It is 
only approximately true, however, for local alignments, since these extend over a smaller 
number of matched positions l than n. This suggests that we could alternatively normalize 
the match by dividing by the total number aligned positions (S/l). Doing so will tend to 
emphasize scores of the local time-shifted relationships in contrast to the global 
simultaneous relationships. Because of this normalization ambiguity we decide to simply 
report the unnormalized match score S and the number of aligned and total time points (l 
and n, where n is always 17 from the cell-cycle data). Then for further clarification of  the 



significance of each match, we thought it better to calculate proper P-values from the 
distribution of scores (as is conventionally done in sequence and structural alignment 34-

38). 
 
In order to estimate a P-value for a given match score, a set of random expression profiles 
was generated by shuffling the normalized expression levels at different time points (e.g. 
interchanging the expression level at time points 3 and 7, x3 and x7). The resulting 
profiles still satisfied our earlier normalization conditions with an average ratio of zero 
and a standard deviation of one. Using the local alignment procedure, we calculated 
optimal match scores S for each random expression profiles pair and then tabulated their 
distribution. This distribution is meant to approximate that of true negatives; through 
integration, we could calculate a conventional P-value, P(s>S). This is defined as the 
probability of obtaining a match score s larger than S from the random profiles. The 
smaller the P-value is, the more significant the match score. Since we did not explicitly 
take into account length dependence, our P-value statistics are quite conservative, tending 
to de-emphasize local alignments in favor of global ones.  
 
The distributions of random match scores in comparison the actual observed ones P(S) 
for the cell-cycle are shown in Fig. 2A, and the relationship between the match score and 
P-value is shown in Fig. 2B. 
 
Single-linkage Clustering 
 
To define a network from the distance matrix, we used single-linkage neighbor joining 
clustering, with appropriate thresholds based on the significance statistics. Of course, 
based on the distance matrix, we could use other clustering methods, e.g. multiple 
linkage or K-means. However, as the focus of this paper is the determination of the 
distance matrix between genes rather than the clustering algorithm, we just choose a 
simple clustering method. 
 
We have developed a distributed software package for clustering gene expression data 
sets with our local alignment algorithm. The package also incorporates global clustering 
and spectral analysis for comparison and is available from our website, 
http://bioinfo.mbb.yale.edu/expression/cluster or 
http://genecensus.org/expression/cluster. 
 
Overall Network Topology  
 
To provide a global view of the relationships detected by local clustering, we show in 
Figure 3A the network resulting from clustering the yeast cell-cycle data. In the diagram, 
the threshold used to define connected genes is a match score of 16, which corresponds to 
a P-value of 10-6 and correlation coefficient (S/n) of 0.94. The network consists of 673 
nodes (genes) and several large clusters.  Dynamic navigation of the network can be 
obtained from our website. Figure 3B is a close up view of part of a large cluster in the 
rectangle outlined in Figure 3A. Different types of relationships can be seen in this plot. 
A gray solid line signifies the conventional simultaneous correlation relationship between 



two genes, an arrow denotes a time-delayed relationship with the arrow pointing to the 
delayed gene, and a dashed line denotes an inverted profile relationship.  It is clear that 
by using our algorithm, new relationships are found. For instance, additional nodes such 
as YMR320m and YKL177W are joined to a large central cluster, making it even larger 
than if it were formed from simultaneous correlations alone. On the other hand, our 
method also generates many new clusters such as SCH9-YFL067W, as shown in the 
figure, which are very small. These two competing factors, growing a big clustering and 
forming new small clusters, can affect the overall connectivity and number of clusters in 
the network. 
 
To quantitatively compare the network defined by local clustering to one based on the 
traditional correlation coefficient, it is useful to compute some quantities. We calculated 
the average number of connections per node C (the average number of genes related to 
any particular gene). It is obvious that this quantity depends on the size of the network 
size N (number of nodes in the network), which in turn is controlled by the P-value 
threshold used to define the correlation. The top panel of Figure 4 shows how C varies as 
a function of N (and P-value cutoff), for networks generated both by local clustering and 
the traditional correlation coefficient. In both networks, the average number of 
connections per node C increases with network size N and has approximately the same 
value, for small networks (N<200). This suggests that the highest ranked correlations 
detected by two algorithms are the same. However, for large networks, the average 
connections per node C diverges, which suggests that the configurations of these two 
networks are topologically different.  Overall, nodes have fewer connections in the local-
clustering network. One way of understanding this difference is through plotting the 
number of clusters versus network size N, as shown in the bottom panel of Figure 4. For 
a given network size, there are slightly more clusters in the local-clustering network than 
the global-clustering one.  
 
Examples of Relationships Found by Local Clustering  
 
Here we present some specific examples of profile relationships detected by our 
algorithm that have been classified as simultaneous, time-delayed or inverted.  In 
addition to looking at how our procedure finds already known and well-documented 
relationships, we also explore some novel relationships, showing how they can shed light 
on the function of uncharacterized genes. 
 
Simultaneous Relationships 
 
Well-documented relationships: The majority of the correlated expression profiles have a 
simultaneous profile relationship, which is the same type of relationship detected by 
methods based on the simple correlation coefficient 17. Figures 5A and B show two 
examples. The expression profiles of RPS11A and RPS11B are shown in Figure 5A.  
Both of the genes code for the ribosomal protein S11 and are 100 percent identical in 
sequence 39. RPS11A is located on yeast chromosome IV, and RPS11B is located on yeast 
chromosome II.  Figure 5B contains the expression profiles of HXT6 and HXT7, which 



are high-affinity hexose transporters nearly one hundred percent identical in sequence 
and have nearly identical functions 40.  
 
Inverted Relationships 
  
Well-documented relationship: Figure 5C shows the profiles of YME1 and YNT20, which 
display an inverted relationship. Yme1p (yeast mitochondrial escape) is a metal and ATP 
dependent protease. It is associated with the inner mitochondrial membrane as part of a 
larger complex of proteins, which is thought to control the assembly and degradation of 
multi-subunit protein complexes 41. YNT20 has been identified as a bypass suppressor of 
Yme1p; it is believed to be a part of the Yme1-mediated mitochondrial DNA escape 
pathway by metabolizing RNA or mitochondrial DNA due to its 3'-5' exonuclease 
activity 41.  This is a classic example of an inhibitor with an inverted relationship to what 
it inhibits, and it demonstrates the ability of our algorithm to find a known inverted 
relationship. 
 
New, Suggested Relationship: Local clustering also detects a previously unknown but 
highly plausible relationship. Figure 5D displays the inverted gene expression profile 
relationship of PUT2 and SER3, which are both enzymes of amino-acid metabolism. 
Put2p is a P5C dehydrogenase that carries out the second step in proline degradation to 
glutamate, allowing proline to be used as a nitrogen source 42.  Ser3p is a 3-
phosphoglyerate dehydrogenase that is involved in the synthesis of serine from glycolytic 
intermediates 43. It has already been found that Put2p could be inhibited by serine (and 
other amino acids) 44. Therefore, even though it has not been directly shown that Ser3p 
inhibits Put2p, based on the related evidence between serine inhibition of Put2p, it is 
highly likely that this specific enzyme in serine synthesis could also inhibit Put2p as 
shown by our algorithm. 
 
Time-delayed Relationships  
 
Strongly Documented Suggested Relationship: The expression profiles of ARC35 and 
ARP3 are shown in Figure 5E. Both these genes are part of the Arp2/3 complex in yeast 
and are thus clearly related. This complex, which comprises a total of 6 proteins, is 
involved in endocytosis and actin cytoskeleton organization 45.  The expression profiles 
of ARC35 and ARP3 show a time-delayed relationship, with the expression of ARC35 
being one time point (20 minutes) delayed compared to ARP3. This fits in well with 
Arc35p being required late in G1 for the cytoskeleton-organization functionality 46.   
 
New, Suggested Relationship: In addition to shedding light on known interactions, local 
clustering can also suggest possible interactions or roles of proteins with unknown 
functions. J0544 is a yeast protein of unknown function -- based the documentation in the 
MIPS, YPD, and SGD databases 39,47,48. Analysis of the mRNA expression of this ORF 
with our algorithm showed that it has a time-delayed profile relationship with four ORFs 
associated with the mitochondria - ATP11, MRPL17, MRPL19 and YDR116C. They are 
all time-delayed by approximately the same phase as compared to J0544. The expression 
profile relationships between J0544 and these genes are shown in Figure 5F. Atp11p has 



been found in mitochondria, and is an F1-ATP synthase assembly protein 49.   Mrpl17p 
and Mrpl19p are mitochondrial ribosomal proteins of the large ribosomal subunit 50. 
YDR116C has similarity to prokaryotic ribosomal protein L1 and is a probable 
component of mitochondrial ribosomes, as its mRNA abundance in DNA microarray 
analysis shows the same change patterns to a variety of drug treatments and mutations as 
do many mitochondrial proteins 51. The profile relationship between J0544 and these four 
mitochondrial ORFs suggests that J0544 may be involved in mitochondrial processes, 
perhaps as an activator or some other type of component.       
 
 
Additional Relationships  
 
Our procedure can obviously uncover many more relationships than we have space to 
discuss in detail here. Additional time delayed and inverted relationships, with discussion 
of relevant publications, for the cell-cycle dataset can be obtained from our web site. 
 
Overall Relationship of Local Clustering to Protein Function  
 
Early work has surveyed the ability of expression data to predict functions, interaction, or 
localization 6,10,12-14,16,18; similar expression profiles may indicate similar cellular roles or 
physical interactions. In particular, it is quite plausible that tightly interacting proteins 
should have correlated patterns of gene expression. However, it is obviously the case 
(and demonstrated above) that genes with quite different (i.e. inverted or time-delayed) 
expression profiles may interact or have related cellular roles. It is interesting to evaluate 
how many additional new, functionally relevant relationships can be uncovered by local 
clustering as compared to traditional, global clustering.   Above, we have looked at 
specific examples identified by our method that were inverted or time-delayed, but it is 
also important to look at the percentage of newly detected relationships on a global level. 
 
General Formalism 
 
In general terms, we want to assess here whether there is a "global" relationship between 
expression profiles and a known biological association (e.g. similar functions or protein-
protein interactions). A simple quantitative way to address this issue is to look at the 
conditional probability P(k|S), the probability of that a pair of genes has a known 
biological association (k) given their expression profile match score (S). As diagrammed 
in figure 6A, P(k|S) corresponds to the population density of known biological 
associations in all pairs with match score S. However, the number of known biological 
associations varies considerably depending on what type of associations one is focusing 
on. For example, there are relative few associations based on the two-hybrid data and 
other physical and genetic interactions 52,53 but many based on MIPS the function classes 
(5385 vs. 826,000). Therefore, it is useful to normalize P(k|S) so it more generally 
comparable between different types of associations. We normalize P(k|S) by calculating 
the odds ratio  
 
                                                 R = P(k|S)/P(k)                                                 (1) 



 
P(k) is the chance of having the known interaction, regardless of match score. It is 
essentially the number of known interactions divided by the number of all possible 
pairwise interactions, ~18 million in yeast. As shown in figure 6A, the odds ratio R is 
essentially the ratio of population density of biological association between the subgroup 
(with a given S) and whole genome (for any S).  
 
To better understand the meaning of the odds ratio, we can rewrite it applying Bayes' 
rule: R = P(k|S)/P(k) = P(S|k)/P(S). We can see that the right-hand side of the equation 
represents the distribution of match scores of the pairs with known biological interactions 
divided by the distribution of match scores of all possible pairs of genes in this genome 
(i.e. essentially the distribution in Fig. 2).  
 
Likelihood of Local Clustering Finding Known Protein-Protein Interactions 
 
Now we apply our formalism above explicitly to protein-protein interactions. Figure 6B 
shows the odd ratio that two genes interact genetically or physically for a given match 
score. The interaction data is based on the union of the yeast two-hybrid data 52,53 and 
genetic and physical interaction data from MIPS 39, a similar combination to that used in 
other computational studies of protein-protein interactions 54. There are 5385 total 
interactions in this dataset.  One can observe that in the high match score region (S > 14, 
P-value better than 3.8e-4), the overall likelihood of having interactions for two genes is 
much higher than expected because their odds ratios are much larger than 1. For instance, 
gene pairs with a match score of 16 are found to interact with each other about 20 times 
more often than random expectation. On the other hand, in the low match score region (S 
< 8), the likelihood of finding interactions is either close to or lower than expected 
according to their odds ratios. The likelihood of finding an interaction increases 
monotonically with the expression-profile match score.  
 
One advantage of the odds-ratio normalization is that it is not that sensitive to the number 
of associations currently known, a fact particularly important for the interaction data. 
Specially, as new known protein-protein interactions are uncovered by various 
experimental techniques, the probability P(k|S) increases, but so does P(k), keeping R 
relatively constant.  
 
Likelihood of Local Clustering Finding Proteins with the Same Cellular Role  
 
In figure 6C, we apply the odds-ratio formalism to protein function, i.e. we want to see 
whether genes clustered together by expression have a similar cellular role. We calculate 
probabilities that a pair of genes have the same cellular role based on the MIPS 
functional classification 39. We use the second level of MIPS; for example, “amino-acid 
metabolism” is at this level whereas “metabolism” is at highest (most general) MIPS 
level. Figure 6C shows the odds ratio for function versus match score. Very similar 
observations can be made to those above concerning interactions; the higher matched 
scores are definitely enriched in pairs of genes that have the same cellular role.  
 



Composition of Different Relationships  
 
As shown in Table 1, in the high match score region (P-value better than .01), there are a 
considerable number of time-delayed and inverted relationships found that would not be 
detected with global clustering. Even though the raw number of time-delayed or inverted 
relationships is smaller than that from simultaneous relationships, we believe that each 
additional relationship is important in thoroughly understanding biological systems. 
Moreover, we would like to emphasize that given our (conservative) statistical scoring 
scheme, all these new relationships are by definition significant. 
 
Table 1 also shows that many of the significant time-delayed and inverted relationships 
uncovered by our procedure correspond to known interactions for similar cellular roles. 
Again, the number is obviously less than that for simultaneously clustering but one still 
uncovers many new statistically significant relationships.  
 
Extension to Other Datasets Beyond the Yeast Cell-Cycle 
 
Currently there are not that many long time course microarray experiments available in 
the public databases for analysis (see our website for the list of the available microarray 
time courses). The yeast cell cycle is by far the best of existing sets for local clustering, 
with the largest number of timepoints (16+), high-quality data (including Affymetrix), 
and multiple experimental repetitions. There are no other experiments with more than 
half this many timepoints; the next best set contains less than 7 points. Moreover, the 
time intervals in many of the other datasets are not uniform, which is not suitable for the 
current method without further extensions (see below). 
 
However, it is anticipated that in the near future there will be a large number of long time 
courses available and being able to successfully deal with this type of data will be very 
important for expression analysis. This is especially true for development of multi-
cellular organisms such as the worm and fly 55, and soon a fly developmental time course 
with more than 70 time points should be available (K White, personal communication).  
 
For the present, to get some sense for how local clustering handles deal with a different 
data set we applied it in a preliminary fashion to a short time course from another 
organism: a seven-point C. elegans developmental time course 32. Overall, we found 
about 12,885 significant inverted relationships and 677 shifted ones (with a P-value 
better than .001), corresponding to 0.5% and 0.03% of all the identified significant 
relationships, respectively. The corresponding numbers for the yeast cell cycle are 
~72,000 inverted relationships and ~36,000 shifted ones, corresponding 32% and 16% of 
the identified relationships. While we found many significant non-simultaneous 
relationships for the worm, it seems we found proportionately fewer of them in this 
organism than for yeast. This perhaps reflects the smaller size of the time course, which 
necessarily will give rise to fewer potential shifted relationships.   
 
We also found that several of the time-shifted and inverted relationships represented 
documented or plausible biological associations. These tend to involve a transcription 



activator or repressor and their regulated genes. The results are available on our website, 
in terms of specific relationships and detailed network navigation.  
 
Summary and Discussion 
 
Microarray technology presents a new type of data for bioinformaticians to analyze, and 
given its large and growing scale, such analysis will clearly be centrally important in the 
near future.  In order to detect relationships other than simultaneous ones, we developed 
an alternative similarity measure distinct from the traditional correlation coefficient. Our 
approach, which we call local clustering, can be used to identify new relationships 
between genes that have time-delayed or inverted expression profiles, as well as to detect 
conventional simultaneous profile relationships. It improves upon "traditional" gene-
expression clustering in an analogous fashion to how for protein sequences local 
alignment 29 is derived from global alignment 30.  We related our newly found gene 
relationships to their similarity in function or known protein-protein interactions; we find 
that genes strongly related by local clustering were considerably more likely than random 
expectation to have a known interaction or a similar cellular role.  
 
On a reasonable level, one would not expect all relationships in gene expression data to 
be simple correlations, so there is an obvious justification for many of the new 
relationships turned up by our procedure. While some of time-delayed and inverted 
relationships found by our method are justified by published biological experiments, 
local clustering was also able to identify many additional pairs of genes whose functions 
and relationships need to be further explored. We described a number of examples in 
detail and provide others on our website.  
 
In addition, in an overall comparison of the global clustering to our method, it is clear 
that different network configurations result.  For the gene pairs with the highest match 
score based on our algorithm, the percentage of time-delayed and inverted relationships 
are low because most gene pairs with the same function also have very similar 
simultaneous correlated expression profiles. However, we believe that the new 
relationships are important for the understanding of a whole biological system.  
 
Possible Extensions to Algorithm 
 
In analogy with local sequence alignment 29, we could easily extend our local clustering 
method to handle "gaps" in the aligned expression profiles. These would be useful if time 
points are not uniformly sampled, as often happens in the long time series such as during 
the development of Drosophila or other organisms 55.  The inclusion of gaps into the 
alignment effectively adds some pseudo-time points to the real expression profile, 
making the time points uniformly sampled.  
 
As for score schema, similarity functions other than direct multiplication could be 
defined; these might include Mi,j = (xiyj)2 or rank correlation coefficient, both of which  
might be a useful way to handle particularly noisy expression data. 



 
Finally, the similarity of two expression profiles could be measured in the frequency 
space. In other words, we would compare the spectra of the expression profiles generated 
by Fourier transformation. We implemented this extension and present some results on 
our website. However, we found that for the cell-cycle dataset spectral comparisons did 
not reveal as many new but well documented relationships as local clustering -- i.e. the 
odds ratio plots as in Fig. 6 showed fewer known relationships at high match scores. 
Hence, we decided not to emphasize them here. However, the spectral methods may have 
suffered comparatively from the relatively few time points in the cell-cycle dataset 
(which gives rise to poor Fourier transformations) and may be more successful on longer 
time series that will be available in the future.   
 
Limitations and Future Directions 
 
Local clustering can most usefully be applied to time series.  It may not apply under other 
conditions, especially for the detection of time-delay relationships that would only be 
meaningful in a time-dependent array study.  It would be better to use normal clustering 
methods for non-time series data -- e.g. for the yeast knockout study 51.  
 
In addition, while the analysis of the highly scored pairs found by local clustering can 
shed light on novel biological relationships, it is limited by the quality of the information 
available on protein function and protein-protein interactions. There are many 
ambiguities in the current functional classifications 56,57 and there is a problem with false 
positives in many of the protein-protein interaction studies, particularly the two-hybrid 
52,53. Thus, the novel relationships we uncovered should be viewed as potential 
hypotheses until they are validated by appropriate biological experiments.  In order to 
more accurately predict gene interactions and relationships, it is important to combine the 
clustering results with other experimental information. As a future direction, this type of 
hybrid computational and experimental analysis may allow the investigation of gene 
networks or regulatory pathways. 
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Figure captions: 
 
Figure 1: Two examples showing simultaneous (A), time-delayed (B), and inverted (C) 
relationships in the expression profiles. Note there are only 8 time points for each profile, 
while in the real yeast cell-cycle data there are 17 time points. Also, the expression ratio 
is not normalized, whereas in the real data each profile is normalized so that the averaged 
expression ratio is 0 and the standard deviation is 1. The thick segments of the expression 
profiles are the matched part. (D) The corresponding matrix E for the expression profile 
shown in (A). The corresponding matrix D

 
is not shown because in this case the match 

score (the maximal score) is from E and not D. The numbers outside the border of the 
matrix are the expression ratio shown in (A). The black cell contains the overall match 
score S for these two expression profiles, and the light gray cells indicate the path of the 
optimal alignment between the expression profiles. The path starts from the match score 
and ends at the first encountered 0. (E) The corresponding matrix E for the expression 
profile shown in (B). Note the time-shifted relationship and how the length of the overall 
alignment can be shorter than 8 positions. (F) The corresponding matrix D for the 
expression profiles shown in (C). The matrix E is not shown because the best match 
score is not from this matrix in this case. 

  
 

 
Figure 2: Relationship between the match score S and P-value. The top panel shows the 
distribution of match score for the cell-cycle expression dataset and a random dataset. 
Each random profile also has 17 time points and average 0 and standard deviation 1. The 
bottom panel shows how the P-value can be calculated by integrating the random 
distribution.   
 
Figure 3:  Network view of relationships defined by the algorithm. This figure was 
prepared using a software program based on the graph-drawing library "AGD" 
(http://www.mpi-sb.mpg.de/AGD). (A) A global view of the network formed by 
relationships detected by the algorithm.  The threshold used for this network is a match 
score of 16 (P-value of 10-6). (B) A close-up view of the rectangle outlined in Fig 2A.  A 
solid line signifies a simultaneous profile relationship, an arrow denotes a time delay in 
the relationship with the arrow pointing to the delayed gene, and a dashed line denotes an 
inverted profile relationship.  
 
Figure 4: Quantitative comparisons between networks generated by local clustering 
algorithm and the traditional correlation coefficient. The top panel shows the graph of the 
average connections per node C as a function of the number of nodes in the network N. 
The bottom panel shows the graph of the number of clusters as a function of the size of 
the network N. In both panels the indicated black and red dots highlight the thresholds 
used for different sizes of network. The numbers in the parentheses are the effective 
correlation coefficient for the match score. 
 
Figure 5: Examples of different profile relationships found by the algorithm. (A) 
Simultaneous expression profile relationship of RPS11A and RPS11B.  (B) Simultaneous 



expression profile relationship of HXT6 and HXT7.  (C) Inverted expression profile 
relationship of YME1 and YNT20. (D) Inverted gene expression profile relationship of 
PUT2 and SER3.   (E) Time-delayed profile relationship between ARC35 and ARP3. The 
arrow indicates the time shift between two profiles. (F) Time-delayed relationship 
between J0544 and ATP11, MRPL17, MRPL19 and YDR116C. The arrow indicates the 
time shift between two profiles. 
 
Figure 6: Odds ratio of having the same function or interaction between two genes. (A) 
A hypothetical example illustrating the logic behind the odds-ratio calculation. To check 
whether a biological interaction is related to expression profile relationships, we calculate 
the probability for finding the interaction between the gene pairs given a particular 
expression profile match score, say 16. A dot or a cross indicates the gene pairs, and the 
crosses indicate pairs with known biological association. The conditional probability 
P(k|S) for finding an interaction for a given match score is the “density of crosses” in the 
different subgroup, e.g. the subgroup of match score 16. The odds ratio is the “density of 
crosses” in different subgroups normalized by the density for whole genome (big outer 
circle). Imagine an experiment where 2000 known interactions were detected among 
6000 yeast genes. There are theoretically ~18 million ((60002-6000)/2), possible 
interactions among these 6000 genes. Therefore, the expected probability of finding an 
interaction if one randomly selects pairs from the 6000 genes is about 10-4 
(=2000/18,000,000).  To check whether this is related to expression profile relationships, 
we calculated the probability for the gene pairs with different expression profile match 
scores. Suppose 1000 gene pairs have a match score of 16, and 10 of these were found to 
have known interactions.  Therefore, the probability of finding an interaction with match 
score 15 is 16/1000=0.01, which corresponds to an odds ratio R 100 times higher 
(0.01/10-4) than expected purely by chance. If the odds ratio is equal to 1, then the 
probability of finding an interaction is just as expected.  (B) Graph of the odds ratio that 
two genes interact genetically or physically for a given match score of their expression 
profiles.  The inverted relationships and the inverted time-delayed relationships are 
pooled into "inverted" in conditional probability analysis. (C) Graph of the odds ratio that 
two genes have the same function for a given match score.  
 
Table Caption 
 
The actual number of new types of relationships found by local clustering (time-shifted 
and inverted) for a given match score. The table also gives a breakdown into the various 
types of non-simultaneous relationships by association. Note that the division of non-
simultaneous relationships by associations does not sum up to the total number of non-
simultaneous relationships since it is possible to have a relationship with both a known 
function and a known interaction.  


