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The complexity of biological systems provides for a great diversity of relationships
between genes. The current analysis of whole-genome expression data focuses on
relationships based on global correlation over a whole time course, identifying clusters of
genes whose expression levels simultaneously rise and fall. There are, of course, other
potential relationships between genes, which are missed by such global clustering. These
include activation, where one expects a time-delay between related expression profiles,
and inhibition, where one expects an inverted relationship. Here we propose a new
method, which we call local clustering, for identifying these time-delayed and inverted
relationships. It is related to conventional gene-expression clustering in a fashion
analogous to the way local sequence alignment (the Smith-Waterman algorithm) is
derived from global alignment (Needleman-Wunsch). An integral part of our method is
the use of random score distributions to assess the statistical significance of each cluster.
We applied our method to the yeast cell-cycle expression dataset and were able to detect a
considerable number of additional biological relationships between genes, beyond those
resulting from conventiona correlation. We related these new relationships between
genes to their similarity in function (as determined from the MIPS scheme) or their
having known protein-protein interactions (as determined from the large-scale two-hybrid
experiment); we found that genes strongly related by local clustering were considerably
more likely than random to have a known interaction or a similar cellular role. This
suggests that local clustering may be useful in functional annotation of uncharacterized
genes. We examined many of the new relationships in detail. Some of them were already
well-documented examples of inhibition or activation, which provide corroboration for
our results. For instance, we found an inverted expression profile relationship between
genes YMEL and YNT20, where the latter has been experimentally documented as a
bypass suppressor of the former. We aso found new relationships involving
uncharacterized yeast genes and were able to suggest functions for many of them. In
particular, we found a time-delayed expression relationship between J0544 (which has
not yet been functionally characterized) and four genes associated with the mitochondria.
This suggests that J0544 may be involved in the control or activation of mitochondrial
genes. We have also looked at other, less extensive datasets than the yeast cell-cycle and
found further interesting relationships. Our clustering program and a detailed website of
clustering results is avalable a bioinfo.mbb.yae.edu/expression/cluster or
genecensus.org/expression/cluster .
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I ntroduction

The massive datasets generated by microarray experiments present a challenge to those
interested in studying the regulatory relationship between genes °. Up to now, one of the
main challenges has been to devise methods for grouping together genes that have similar
expression profiles; this is done to determine clusters of genes that are transcribed
together as cellular conditions vary. The most obvious use of such clustersis an improved
understanding of transcription regulatory networks within genomes. Genes with similar
expression profiles are likely to be subject to identical, or related, transcriptional control.
8This fact has been used to search for binding site motifs common to corregulated genes &

There are further applications for expression clustering, especially in combination with
other information about genes such as their subcellular localizations, metabolic functions,
and intermolecular interactions **3. In particular, microarray technology alows for
studying the entire genome, while other types of gene annotation (e.g. biochemical
functions) are often available only for a fraction of the genes. Therefore, researchers have
attempted to predict protein function and interaction by expression clustering. This is
based on ‘guilt by association’ **, the premise that proteins with similar expression
profiles (i.e., synexpression relationship) have similar functions 2,

Given the central importance of gene clusters in the studies just described, computational
methods have been devised to (i) assess the similarity between pairs of expression
profiles from different genes, and then (ii) group together those genes with similar
profiles. Effectively, the two aims are analogous to approaches in protein sequence
anaysis, where there are methods for assessing sequence similarity between pairs of
sequences (e.g. BLAST *°) and then grouping them into homologous families (e.g. Pfam
2 or Protomap 2.

The most common algorithms for grouping genes with related profiles are hierarchical
clustering "%, self-organizing maps %%, and K-means clustering *°. Hierarchical
methods were originally derived from algorithms used to construct phylogenetic trees,
and group genes in a “bottom-up” fashion; genes with the most similar expression
profiles are clustered first, and those with more diverse profiles are included iteratively.
In contrast, the self-organizing maps and K-means methods employ a “top-down”
approach in which the user predefines the number of clusters for the dataset. The clusters
are initially assigned randomly, and the genes are regrouped iteratively until they are
optimally clustered. Bayesian and neural networks provide additional approaches toward

clustering %.

Prior to clustering, users must define al the pair-wise similarities between the individual
expression profiles. Up to now, the most popular measure that has been employed is the
Pearson correlation coefficient; given a pair of genes, this method compares the



expression levels at each time-point and measures the variation across the whole profile.
The score, the coefficient r, ranges from —1 to 1, where —1 signifies perfect negative
correlation, O indicates no correlation and 1 a perfect positive correlation. Gene pairs with
scores approaching 1 are considered to have similar expression profiles, as shown in
Figure 1A. Other measures include squared Pearson correlation coefficient, Spearman
rank correlation, jackknife correlation coefficient, and Euclidean distance %%,

A magor drawback in these measures is that they ignore many additional relationships
implicit in expression time courses. For instance, a gene may control or activate another
gene downstream in a pathway; in this case, their expression profiles may be staggered,
indicating a time-delayed response in the transcription of the second gene. Other genes
may have an inhibitory relationship -- i.e. as one rises the other fallsin response -- and we
can expect their expression profiles to be inverted with respect to each other (or inverted
with a time-delay). The current methods using correlation coefficients fail to detect these
important relationships. First, they only assess global similarities between expression
profiles, thereby missing staggered relationships. Second, negative correlations have not
previously been considered, thus ignoring inhibition. Here, we propose a new algorithm;
it is based on the dynamical programming method for local sequence aignment % and
hence we call it local clustering. Its development from traditional gene expression
clustering method %’ is strongly suggested by the way local sequence alignment
followed on the original global approach .

Using local clustering, we can identify expression profiles that have one of the following
relationships:

1) Simultaneous correlation (Figure 1A) — The expression profiles of the two genes are
synchronous and coincident. Genes with such profiles are expected to be subject to
identical transcriptional regulation, which are sometimes called synexpression *°. Thisis
the only type of relationship currently detected using the traditional correlation
coefficient.

2) Time-delayed correlation (Figure 1B) — The profiles of the two genes are similar, but
one is time shifted, or out of phase with respect to the other. The expression of some
genes may be delayed, compared to others due to atime lag in their transcription control.

3) Inverted correlation (Figure 1C) — The profiles of the two genes are inverted (i.e. one
of the profiles flipped on the time axis relative to the other). These profiles may exist
where the expression of one gene inhibits or suppresses the expression of the other. These
relationships have not been previously analyzed. However, they can be detected by the
traditional correlation coefficient, if one looks at the correlation coefficients near —1.

4) Inverted and time-delayed correlation — This combines time-shifted and inverted
correlations, so in addition to being inverted, the profile of one gene is staggered with
respect to the other.




As atest of the effectiveness and accuracy of our algorithm, we applied it to a yeast cell
cycle dataset.® and a less extensive worm development dataset *2. Affirmatively, our
agorithm detected simultaneous correlations, as well as time-shifted, inverted and
inverted-time-shifted relationships. Many of our predicted interactions were confirmed
with published gene pair relationships. Furthermore, the algorithm proposes highly
correlated gene pairs representing novel pairs of gene relationships.

To make this comparison clear, throughout the paper we will refer to the results from our
method as derived from "local clustering” and contrast these with results from
"traditional, global clustering”. The later approach, which is, for instance, used in Eisen et
ad. ¥ and Tamayo et al. %, is based on computing a distance matrix only from
simultaneous correlations between expression profiles (i.e. the traditional correlation
coefficient).

Algorithms and Datasets

Local Alignment between Pairs of Expression Profiles

We use a degenerate dynamical programming agorithm to find time-shifted and inverted
correlations between expression profiles. The algorithm does not allow gaps between
consecutive time points in the current version. However, there are some obvious
extensions, which we explore later in the discussion section.

Suppose there are n (1,2,...n) time-point measurements in the profile. First, the expression
ratio is normalized in "Z-score" fashion, so that for each gene the average expression ratio
is zero and standard deviation is 1. The normalized expression level at time point i for
gene x is denoted asx . Consider a matrix of al possible similarities between the

expression ratio for gene x and geney. This matrix can also be called a“score matrix”. In
our algorithm, it is defined as M(x;,y:) = Xiy; . For ssimplification, it will be referred as M;;
for comparison of any two genes.

Then, two sum matrices E and D are calculated as E;; = max(Ei.1j-1+M;j, 0) and D;; =
max(Di.1, j-1—Mij, 0). The initial conditions are Eg; = 0 and Ejp = O, and the same initial
conditions are also applied to the matrix of D. The central ideaisto find alocal segment
that has the maximal aggregated score, i.e., the sum of M;; in this segment. This can be
accomplished by standard dynamic programming as in local sequence alignment % and
resultsin an alignment of | aligned time points, where I<n.

Finally, an overall maximal value Sis found by comparing the maximums for matrices E
and D. This is the match score S for the two expression profiles. If the maximum is off
diagona in its corresponding matrix, the two expression profiles have a time-shifted
relationship. This involves an alignment over a smaller number of time points | than the



total number n. A maximal value from matrix D indicates these two profiles have an
inverted relationship.

At the end of this procedure, one obtains a match score and a relationship, i.e.,
"simultaneous,” "time-delayed,” "inverted,” or "inverted time-delayed". Obviously, for the
gene pairs with a very low match score, even though they are also assigned a relationship,
we can classify them as “unmatched”.

Figure 1E is the corresponding matrix E for the expression profiles shown in Fig. 1B. The
matrix D for these expression profilesis not shown here because the maximal valueis not
in this matrix. The match score for these expression profiles, a score of S=19, is
highlighted in the black cell. There is a time delay (time shift) in their relationship
because the match score of 19 is not on the main diagonal of the matrix. Figure 1F is the
corresponding matrix D for the profiles shown in Fig. 1C. The match score is S=20; and
because the maximum value is from matrix D rather than E (not shown), these expression
profiles are correlated in an inverted fashion.

Cell Cycle Dataset and Generation of Similarity Matrix

We extensively tested our agorithm on the yeast whole genome oligonucleotide
expression array data generated by Cho et a =, which included over 6,000 ORFs and 17
time points. The data set consists of yeast cultures that were synchronized and sampled at
intervals covering nearly two full cell cycles. This experiment was done using an
Affymetrix oligonucleotide array ** containing oligos complementary to each of the yeast
ORFs. The raw data was then scaled to account for the experimental differences between
the four arrays used, and the scaled intensities are reported in the Cho data. (Of course,
our algorithm can also be applied to a cDNA microarray *, which measures changes
relative to a reference state creating an expression ratio, rather than the measurement of
MRNA expression levels as detected in oligonucleotide arrays.) After eliminating the
negative expression levels in the Cho scaled measurements, 5,911 genes are included in
our calculation.

We applied our local alignment procedure to all possible pairs of gene expression
profiles. The match score and type of relationship (smultaneous, time-delayed or
inverted) were calculated and assigned for each expression profile pair. This gave a
matrix of al pairwise similarities that can be used as raw input of clustering algorithm.

Significance Statistics

If we divide the maximal match score by the number of time points (Sn), the resulting
ratios are comparable with traditional correlation coefficients. This is strictly true for a
global alignment resulting from a full-length simultaneous or inverted relationship. It is
only approximately true, however, for local alignments, since these extend over a smaller
number of matched positions | than n. This suggests that we could aternatively normalize
the match by dividing by the total number aligned positions (S1). Doing so will tend to



emphasize scores of the local time-shifted relationships in contrast to the global
simultaneous relationships. Because of this normalization ambiguity we decide to simply
report the unnormalized match score S and the number of aligned and total time points (|
and n, where nis aways 17 from the cell-cycle data). Then for further clarification of the
significance of each match, we thought it better to calculate proper P-values from the

distribution of scores (as is conventionally done in sequence and structural alignment
38
).

In order to estimate a P-value for a given match score, a set of random expression profiles
was generated by shuffling the normalized expression levels at different time points (e.g.
interchanging the expression level at time points 3 and 7, X3 and x7). The resulting profiles
still satisfied our earlier normalization conditions with an average ratio of zero and a
standard deviation of one. Using the local alignment procedure, we calculated optimal
match scores S for each random expression profiles pair and then tabulated their
distribution. This distribution is meant to approximate that of true negatives; through
integration, we could calculate a conventional P-value, P(s>S). This is defined as the
probability of obtaining a match score s larger than S from the random profiles. The
smaller the P-value is, the more significant the match score. Since we did not explicitly
take into account length dependence, our P-value statistics are quite conservative, tending
to de-emphasize local alignmentsin favor of global ones.

The distributions of random match scores in comparison the actual observed ones P(S) for
the cell-cycle are shown in Fig. 2A, and the relationship between the match score and P-
valueisshownin Fig. 2B.

Single-linkage Clustering

To define a network from the distance matrix, we used single-linkage neighbor joining
clustering, with appropriate thresholds based on the significance statistics. Of course,
based on the distance matrix, we could use other clustering methods, e.g. multiple linkage
or K-means. However, as the focus of this paper is the determination of the distance
matrix between genes rather than the clustering algorithm, we just choose a simple
clustering method.

We have developed a distributed software package for clustering gene expression data
sets with our local alignment algorithm. The package also incorporates global clustering
and spectral analysis for comparison and is avalable from our website,
http://bioinfo.mbb.yale.edu/expression/cluster or http://genecensus.org/expression/cluster.

Overall Network Topology

To provide a global view of the relationships detected by local clustering, we show in
Figure 3A the network resulting from clustering the yeast cell-cycle data. In the diagram,
the threshold used to define connected genes is a match score of 16, which corresponds to
a P-value of 10° and correlation coefficient (Sn) of 0.94. The network consists of 673



nodes (genes) and severa large clusters. Dynamic navigation of the network can be
obtained from our website. Figure 3B is a close up view of part of a large cluster in the
rectangle outlined in Figure 3A. Different types of relationships can be seen in this plot.
A gray solid line signifies the conventional simultaneous correlation relationship between
two genes, an arrow denotes a time-delayed relationship with the arrow pointing to the
delayed gene, and a dashed line denotes an inverted profile relationship. It isclear that by
using our algorithm, new relationships are found. For instance, additional nodes such as
YMR320m and YKL177W arejoined to alarge central cluster, making it even larger than
if it were formed from simultaneous correlations alone. On the other hand, our method
also generates many new clusters such as SCH9-Y FLO67W, as shown in the figure, which
are very small. These two competing factors, growing a big clustering and forming new
small clusters, can affect the overall connectivity and number of clustersin the network.

To quantitatively compare the network defined by local clustering to one based on the
traditional correlation coefficient, it is useful to compute some quantities. We calcul ated
the average number of connections per node C (the average number of genes related to
any particular gene). It is obvious that this quantity depends on the size of the network
size N (number of nodes in the network), which in turn is controlled by the P-value
threshold used to define the correlation. The top panel of Figure 4 shows how C varies as
afunction of N (and P-value cutoff), for networks generated both by local clustering and
the traditional correlation coefficient. In both networks, the average number of
connections per node C increases with network size N and has approximately the same
value, for small networks (N<200). This suggests that the highest ranked correlations
detected by two agorithms are the same. However, for large networks, the average
connections per node C diverges, which suggests that the configurations of these two
networks are topologically different. Overal, nodes have fewer connections in the local-
clustering network. One way of understanding this difference is through plotting the
number of clusters versus network size N, as shown in the bottom panel of Figure 4. For a
given network size, there are slightly more clusters in the local-clustering network than
the global-clustering one.

Examples of Relationships Found by Local Clustering

Here we present some specific examples of profile relationships detected by our
algorithm that have been classified as simultaneous, time-delayed or inverted. In addition
to looking at how our procedure finds already known and well-documented rel ationships,
we aso explore some novel relationships, showing how they can shed light on the
function of uncharacterized genes.

Simultaneous Relationships

Well-documented relationships: The majority of the correlated expression profiles have a
simultaneous profile relationship, which is the same type of relationship detected by
methods based on the simple correlation coefficient *’. Figures 5A and B show two
examples. The expression profiles of RPS11A and RPS11B are shown in Figure 5A. Both




of the genes code for the ribosomal protein S11 and are 100 percent identical in sequence
% RPSL1A is located on yeast chromosome 1V, and RPSL1B is located on yeast
chromosome II. Figure 5B contains the expression profiles of HXT6 and HXT7, which
are high-affinity hexose transporters nearly one hundred percent identical in sequence and
have nearly identical functions “°.

Inverted Relationships

Well-documented relationship: Figure 5C shows the profiles of YME1L and YNTZ20, which
display an inverted relationship. Y melp (yeast mitochondrial escape) isametal and ATP
dependent protease. It is associated with the inner mitochondrial membrane as part of a
larger complex of proteins, which is thought to control the assembly and degradation of
multi-subunit protein complexes **. YNT20 has been identified as a bypass suppressor of
Ymelp; it is believed to be a part of the Ymel-mediated mitochondrial DNA escape
pathway by metabolizing RNA or mitochondrial DNA dueto its 3'-5' exonuclease activity
“L This is a classic example of an inhibitor with an inverted relationship to what it
inhibits, and it demonstrates the ability of our algorithm to find a known inverted
relationship.

New, Suggested Relationship: Loca clustering also detects a previously unknown but
highly plausible relationship. Figure 5D displays the inverted gene expression profile
relationship of PUT2 and SER3, which are both enzymes of amino-acid metabolism.
Put2p is a PSC dehydrogenase that carries out the second step in proline degradation to
glutamate, allowing proline to be used as a nitrogen source . Ser3p is a 3-
phosphoglyerate dehydrogenase that is involved in the synthesis of serine from glycolytic
intermediates **. It has already been found that Put2p could be inhibited by serine (and
other amino acids) *. Therefore, even though it has not been directly shown that Ser3p
inhibits Put2p, based on the related evidence between serine inhibition of Put2p, it is
highly likely that this specific enzyme in serine synthesis could aso inhibit Put2p as
shown by our algorithm.

Time-delayed Relationships

Strongly Documented Suggested Relationship: The expression profiles of ARC35 and
ARP3 are shown in Figure 5E. Both these genes are part of the Arp2/3 complex in yeast
and are thus clearly related. This complex, which comprises a total of 6 proteins, is
involved in endocytosis and actin cytoskeleton organization *°. The expression profiles of
ARC35 and ARP3 show a time-delayed relationship, with the expression of ARC35 being
one time point (20 minutes) delayed compared to ARP3. This fits in well with Arc35p
being required late in G1 for the cytoske eton-organization functionality *°.

New, Suggested Relationship: In addition to shedding light on known interactions, local
clustering can also suggest possible interactions or roles of proteins with unknown
functions. J0544 is a yeast protein of unknown function -- based the documentation in the
MIPS, YPD, and SGD databases ****. Analysis of the mRNA expression of this ORF
with our algorithm showed that it has a time-delayed profile relationship with four ORFs




associated with the mitochondria - ATP11, MRPL17, MRPL19 and YDR116C. They are
all time-delayed by approximately the same phase as compared to J0544. The expression
profile relationships between J0544 and these genes are shown in Figure 5F. Atpl1p has
been found in mitochondria, and is an F1-ATP synthase assembly protein *°.  Mrpl17p
and Mrpl19p are mitochondrial ribosomal proteins of the large ribosomal subunit *°.
YDR116C has similarity to prokaryotic ribosomal protein L1 and is a probable
component of mitochondrial ribosomes, as its MRNA abundance in DNA microarray
analysis shows the same change patterns to a variety of drug treatments and mutations as
do many mitochondrial proteins >*. The profile relationship between J0544 and these four
mitochondrial ORFs suggests that J0544 may be involved in mitochondrial processes,
perhaps as an activator or some other type of component.

Additional Relationships

Our procedure can obviously uncover many more relationships than we have space to
discussin detail here. Additiona time delayed and inverted relationships, with discussion
of relevant publications, for the cell-cycle dataset can be obtained from our web site.

Overall Relationship of Local Clustering to Protein Function

Early work has surveyed the ability of expression data to predict functions, interaction, or
localization %01#1416.18. gmj|ar expression profiles may indicate similar cellular roles or
physical interactions. In particular, it is quite plausible that tightly interacting proteins
should have correlated patterns of gene expression. However, it is obviously the case (and
demonstrated above) that genes with quite different (i.e. inverted or time-delayed)
expression profiles may interact or have related cellular roles. It is interesting to evaluate
how many additional new, functionally relevant relationships can be uncovered by local
clustering as compared to traditional, global clustering. Above, we have looked at
specific examples identified by our method that were inverted or time-delayed, but it is
also important to look at the percentage of newly detected relationships on a global level.

General Formalism

In general terms, we want to assess here whether there is a "global" relationship between
expression profiles and a known biological association (e.g. ssimilar functions or protein-
protein interactions). A simple quantitative way to address this issue is to look at the
conditional probability P(k|S), the probability of that a pair of genes has a known
biological association (k) given their expression profile match score (S). As diagrammed
in figure 6A, P(k|S corresponds to the population density of known biological
associations in all pairs with match score S. However, the number of known biological
associations varies considerably depending on what type of associations one is focusing
on. For example, there are relative few associations based on the two-hybrid data and
other physical and genetic interactions *>°* but many based on MIPS the function classes
(5385 vs. 826,000). Therefore, it is useful to normalize P(k|]S so it more generaly



comparable between different types of associations. We normalize P(k|S) by calculating
the odds ratio

R= P(k|S)/P(K) (1)

P(k) is the chance of having the known interaction, regardless of match score. It is
essentially the number of known interactions divided by the number of all possible
pairwise interactions, ~18 million in yeast. As shown in figure 6A, the odds ratio R is
essentially the ratio of population density of biological association between the subgroup
(with agiven S and whole genome (for any S).

To better understand the meaning of the odds ratio, we can rewrite it applying Bayes rule:
R = Pk|S/P(k) = P(SK)/P(S). We can see that the right-hand side of the eguation
represents the distribution of match scores of the pairs with known biological interactions
divided by the distribution of match scores of all possible pairs of genes in this genome
(i.e. essentialy the distribution in Fig. 2).

Likelihood of Local Clustering Finding Known Protein-Protein Interactions

Now we apply our formalism above explicitly to protein-protein interactions. Figure 6B
shows the odd ratio that two genes interact genetically or physically for a given match
score. The interaction data is based on the union of the yeast two-hybrid data **** and
genetic and physical interaction data from MIPS *°, a similar combination to that used in
other computational studies of protein-protein interactions **. There are 5385 total
interactions in this dataset. One can observe that in the high match score region (S > 14,
P-value better than 3.8e-4), the overall likelihood of having interactions for two genesis
much higher than expected because their odds ratios are much larger than 1. For instance,
gene pairs with a match score of 16 are found to interact with each other about 20 times
more often than random expectation. On the other hand, in the low match score region (S
< 8), the likelihood of finding interactions is either close to or lower than expected
according to their odds ratios. The likelihood of finding an interaction increases
monotonically with the expression-profile match score.

One advantage of the odds-ratio normalization isthat it is not that sensitive to the number
of associations currently known, a fact particularly important for the interaction data
Specially, as new known protein-protein interactions are uncovered by various
experimental techniques, the probability P(k|S) increases, but so does P(k), keeping R
relatively constant.

Likelihood of Local Clustering Finding Proteins with the Same Cellular Role

In figure 6C, we apply the odds-ratio formalism to protein function, i.e. we want to see
whether genes clustered together by expression have a similar cellular role. We calculate
probabilities that a pair of genes have the same cellular role based on the MIPS functional
classification *. We use the second level of MIPS; for example, “amino-acid
metabolism” is a this level whereas “metabolism” is at highest (most genera) MIPS



level. Figure 6C shows the odds ratio for function versus match score. Very similar
observations can be made to those above concerning interactions; the higher matched
scores are definitely enriched in pairs of genes that have the same cellular role.

Composition of Different Relationships

As shown in Table 1, in the high match score region (P-value better than .01), there are a
considerable number of time-delayed and inverted relationships found that would not be
detected with global clustering. Even though the raw number of time-delayed or inverted
relationships is smaller than that from simultaneous relationships, we believe that each
additional relationship is important in thoroughly understanding biological systems.
Moreover, we would like to emphasize that given our (conservative) statistical scoring
scheme, all these new relationships are by definition significant.

Table 1 also shows that many of the significant time-delayed and inverted relationships
uncovered by our procedure correspond to known interactions for similar cellular roles.
Again, the number is obvioudly less than that for simultaneously clustering but one still
uncovers many new statistically significant relationships.

Extension to Other Datasets Beyond the Yeast Cell-Cycle

Currently there are not that many long time course microarray experiments available in
the public databases for analysis (see our website for the list of the available microarray
time courses). The yeast cell cycle is by far the best of existing sets for local clustering,
with the largest number of timepoints (16+), high-quality data (including Affymetrix),
and multiple experimental repetitions. There are no other experiments with more than
half this many timepoints; the next best set contains less than 7 points. Moreover, the
time intervals in many of the other datasets are not uniform, which is not suitable for the
current method without further extensions (see below).

However, it is anticipated that in the near future there will be alarge number of long time
courses available and being able to successfully deal with this type of data will be very
important for expression analysis. This is especialy true for development of muilti-
cellular organisms such as the worm and fly >, and soon a fly developmental time course
with more than 70 time points should be available (K White, personal communication).

For the present, to get some sense for how local clustering handles deal with a different
data set we applied it in a preliminary fashion to a short time course from another
organism: a seven-point C. elegans developmental time course *. Overall, we found
about 12,885 significant inverted relationships and 677 shifted ones (with a P-value better
than .001), corresponding to 0.5% and 0.03% of al the identified significant
relationships, respectively. The corresponding numbers for the yeast cell cycle are
~72,000 inverted relationships and ~36,000 shifted ones, corresponding 32% and 16% of
the identified relationships. While we found many significant non-simultaneous
relationships for the worm, it seems we found proportionately fewer of them in this



organism than for yeast. This perhaps reflects the smaller size of the time course, which
necessarily will giveriseto fewer potential shifted relationships.

We aso found that several of the time-shifted and inverted relationships represented
documented or plausible biological associations. These tend to involve a transcription
activator or repressor and their regulated genes. The results are available on our website,
in terms of specific relationships and detailed network navigation.

Summary and Discussion

Microarray technology presents a new type of data for bioinformaticians to analyze, and
given its large and growing scale, such analysis will clearly be centrally important in the
near future. In order to detect relationships other than simultaneous ones, we developed
an aternative similarity measure distinct from the traditional correlation coefficient. Our
approach, which we call local clustering, can be used to identify new relationships
between genes that have time-delayed or inverted expression profiles, as well as to detect
conventional simultaneous profile relationships. It improves upon "traditiona” gene-
expression clustering in an analogous fashion to how for protein sequences local
dignment % is derived from global alignment **. We related our newly found gene
relationships to their similarity in function or known protein-protein interactions; we find
that genes strongly related by local clustering were considerably more likely than random
expectation to have a known interaction or asimilar cellular role.

On a reasonable level, one would not expect al relationships in gene expression data to
be simple correlations, so there is an obvious justification for many of the new
relationships turned up by our procedure. While some of time-delayed and inverted
relationships found by our method are justified by published biologica experiments, local
clustering was also able to identify many additional pairs of genes whose functions and
relationships need to be further explored. We described a number of examples in detall
and provide others on our website.

In addition, in an overall comparison of the global clustering to our method, it is clear that
different network configurations result. For the gene pairs with the highest match score
based on our algorithm, the percentage of time-delayed and inverted relationships are low
because most gene pairs with the same function also have very similar simultaneous
correlated expression profiles. However, we believe that the new relationships are
important for the understanding of awhole biological system.

Possible Extensions to Algorithm

In analogy with local sequence alignment %, we could easily extend our local clustering
method to handle "gaps" in the aligned expression profiles. These would be useful if time
points are not uniformly sampled, as often happens in the long time series such as during
the development of Drosophila or other organisms *. The inclusion of gaps into the



alignment effectively adds some pseudo-time points to the real expression profile, making
the time points uniformly sampled.

As for score schema, similarity functions other than direct multiplication could be
defined; these might include M;; = (Xiyj)2 or rank correlation coefficient, both of which
might be a useful way to handle particularly noisy expression data.

Finally, the similarity of two expression profiles could be measured in the frequency
space. In other words, we would compare the spectra of the expression profiles generated
by Fourier transformation. We implemented this extension and present some results on
our website. However, we found that for the cell-cycle dataset spectral comparisons did
not reveal as many new but well documented relationships as local clustering -- i.e. the
odds ratio plots as in Fig. 6 showed fewer known relationships at high match scores.
Hence, we decided not to emphasize them here. However, the spectral methods may have
suffered comparatively from the relatively few time pointsin the cell-cycle dataset (which
gives rise to poor Fourier transformations) and may be more successful on longer time
series that will be available in the future.

Limitations and Future Directions

Local clustering can most usefully be applied to time series. It may not apply under other
conditions, especialy for the detection of time-delay relationships that would only be
meaningful in a time-dependent array study. It would be better to use normal clustering
methods for non-time series data -- e.g. for the yeast knockout study >*.

In addition, while the analysis of the highly scored pairs found by local clustering can
shed light on novel biological relationships, it is limited by the quality of the information
available on protein function and protein-protein interactions. There are many ambiguities
in the current functional classifications *®°" and there is a problem with false positives in
many of the protein-protein interaction studies, particularly the two-hybrid *>3. Thus, the
novel relationships we uncovered should be viewed as potential hypotheses until they are
validated by appropriate biological experiments. In order to more accurately predict gene
interactions and relationships, it is important to combine the clustering results with other
experimental information. As a future direction, this type of hybrid computational and
experimental analysis may alow the investigation of gene networks or regulatory
pathways.

Acknowledgements
The authors are grateful to Dr. Nicholas Luscombe, Dov Greenbaum and Ronald Jansen

for comments on the manuscript and useful discussion. We also thank the Keck
Foundation for support.



References

1.Shalon, D., Smith, S. J. & Brown, P. O. (1996) A DNA microarray system for analyzing complex DNA
sampl es using two-color fluorescent probe hybridization Genome Res, 6, 639-645.

2.Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Hughes, J. E., Snesrud, E., Lee, N. &
Quackenbush, J. (2000) A concise guide to cDNA microarray analysis Biotechniques, 29,
548-550.

3.Gaasterland, T. & Bekiranov, S. (2000) Making the most of microarray data Nat. Genet., 24, 204-206.

4.Ermolaeva, O., Rastogi, M., Pruitt, K. D., Schuler, G. D., Bittner, M. L., Chen, Y., Simon, R., Meltzer, P.,
Trent, J. M. & Boguski, M. S. (1998) Data management and analysis for gene expression
arrays Nat. Genet., 20, 19-23.

5.Kim, S., Dougherty, E. R., Bittner, M. L., Chen, Y., Sivakumar, K., Meltzer, P. & Trent, J. M. (2000)
General nonlinear framework for the analysis of gene interaction via multivariate
expression arrays J. Biomed. Opt., 5, 411-424.

6.Hughes, J. D., Estep, P. W., Tavazoie, S. & Church, G. M. (2000) Computational identification of cis-
regulatory elements associated with groups of functionally related genesin Saccharomyces
cerevisiae J. Mol. Bial., 296, 1205-1214.

7.Bussemaker, H. J,, Li, H. & Siggia, E. D. (2001) Regulatory element detection using correlation with
expression Nat. Genet., 27, 167-171.

8.Zhu, G., Spellman, P. T., Volpe, T., Brown, P. O., Botstein, D., Davis, T. N. & Futcher, B. (2000) Two
yeast forkhead genes regulate the cell cycle and pseudohyphal growth Nature, 406, 90-94.

9.Drawid, A., Jansen, R. & Gerstein, M. (2000) Genome-wide analysis relating expression level with
protein subcellular localization Trends Genet., 16, 426-430.

10.Drawid, A. & Gerstein, M. (2000) A Bayesian system integrating expression data with sequence patterns
for localizing proteins: comprehensive application to the yeast genome. J. Mol. Biol., 301,
1059-1075.

11.Jansen, R. & Gerstein, M. (2000) Analysis of the yeast transcriptome with structural and functional
categories: characterizing highly expressed proteins Nucleic Acids Res., 28, 1481-1488.

12.Jansen, R., Greenbaum, D., Qian, J. & Gerstein, M. Relating Whole-Genome Expression Data with
Protein-Protein Interactions Genome Res.

13.Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S, Ares, M., Jr. &
Haussler, D. (2000) Knowledge-based analysis of microarray gene expression data by
using support vector machines Proc Natl Acad Sci U SA, 97, 262-7.

14.Altman, R. B. & Raychaudhuri, S. (2001) Whole-genome expression analysis: challenges beyond
clustering Curr. Opin. Struct. Biol., 11, 340-347.

15.Marcotte, E. M., Pellegrini, M., Thompson, M. J,, Yeates, T. O. & Eisenberg, D. (1999) A combined
algorithm for genome-wide prediction of protein function Nature, 402, 83-86.

16.Niehrs, C. & Pollet, N. (1999) Synexpression groups in eukaryotes Nature, 402, 483-7.

17.Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. (1998) Cluster analysis and display of
genome-wide expression patterns Proc. Natl. Acad. Sci. USA, 95, 14863-14868.

18.Gerstein, M. & Jansen, R. (2000) The current excitement in bioinformatics analysis of whole-genome
expression data: how does it relate to protein structure and function? Curr. Opin. Struct.
Biol., 10, 574-584.

19.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) Basic local alignment search
tool J. Mol. Bial., 215, 403-410.

20.Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. & Sonnhammer, E. L. (2000) The Pfam
Protein Families Database Nucleic Acids Res., 28, 263-266.

21.Yona, G., Linial, N. & Linial, M. (2000) Protomap: automatic classification of protein sequences and
hierarchy of protein families Nucleic Acids Res., 28, 49-55.

22.Wen, X., Fuhrman, S., Michaels, G. S., Carr, D. B., Smith, S., Barker, J. L. & Somogyi, R. (1998)
Large-scale temporal gene expression mapping of central nervous system devel opment.
Proc. Natl. Acad. Sci. USA, 95, 334-339.



23.Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E. S. & Golub, T.
R. (1999) Interpreting patterns of gene expression with self-organizing maps: Methods and
application to hematopoietic differentiation Proc. Natl. Acad. Sci. USA, 96, 2907-2912.

24.Toronen, P., Kolehmainen, M., Wong, G. & Castren, E. (1999) Analysis of gene expression data using
self-organizing maps. FEBS Lett., 451, 142-146.

25.Tavazoie, S., Hughes, J. D., Campbell, M. J,, Cho, R. J. & Church, G. M. (1999) Systematic
determination of genetic network architecture Nat. Genet., 22, 281-285.

26.Friedman, N., Linial, M., Nachman, |. & Pe'er, D. (2000), Proceeding of the 4th Annual Conference on
Research in Computational Molecular Biology. Universal Academy Press, Tokyo, Japan,
pp. 127-135.

27.D'haeseleer, P., Wen, X., Fuhrman, S. & Somogyi, R. (1997) In Holcombe, M., Paton,R. (ed.),
Information processing in cells and tissues. Plenum, pp. 203-212.

28.Heyer, L. J., Kruglyak, S. & Yooseph, S. (1999) Exploring expression data: identification and analysis
of coexpressed genes Genome Res, 9, 1106-15.

29.Smith, T. F. & Waterman, M. S. (1981) Identification of common molecular subsequences J. Moal. Bial.,
147, 195-197.

30.Needleman, S. B. & Wunsch, C. D. (1970) A general method applicable to the search for similaritiesin
the amino acid sequence of two proteins J. Mol. Biol., 48, 443-453.

31.Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T. G,
Gabrielian, A. E., Landsman, D., Lockhart, D. J. & Davis, R. W. (1998) A Genome-Wide
Transcriptional Analysis of the Mitotic Cell Cycle Molecular Cell, 2, 65-73.

32.Hill, A. A., Hunter, C. P., Tsung, B. T., Tucker-Kellogg, G. & Brown, E. L. (2000) Genomic Analysis of
Gene Expression in C. elegans Science, 290, 809-812.

33.Lockhart, D. J,, Dong, H., Byrne, M. C., Follettie, M. T., Gallo, M. V., Chee, M. S,, Mittmann, M.,
Wang, C., Kobayashi, M. & Horton, H., et al. (1996) Expression monitoring by
hybridization to high-density oligonuclectide arrays Nat. Biotechnol., 14, 1675-1680.

34.Pearson, W. R. (1998) Empirical statistical estimates for sequence similarity searches J. Mol. Biol., 276,
71-84.

35.Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
Nucleic Acids Res., 25, 3389-3402.

36.Gerstein, M. & Levitt, M. (1998) Comprehensive assessment of automatic structural alignment against a
manual standard, the scop classification of proteins Protein Sci., 7, 445-456.

37.Levitt, M. & Gerstein, M. (1998) A unified statistical framework for sequence comparison and structure
comparison Proc Natl Acad Sci U SA, 95, 5913-5920.

38.Wilson, C. A., Kreychman, J. & Gerstein, M. (2000) Assessing annotation transfer for genomics:
quantifying the relations between protein sequence, structure and function through
traditional and probabilistic scores J. Mal. Biol., 297, 233-249.

39.Mewes, H. W., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S. & Frishman, D. (2000)
MIPS: a database for protein sequences and complete genomes Nucleic Acids Res., 27, 44-
48.

40.Boles, E. & Hollenberg, C. P. (1997) The molecular genetics of hexose transport in yeasts FEMS
Microbiol Rev., 21, 85-111.

41.Hanekamp, T. & Thorsness, P. E. (1999) YNT20, a bypass suppressor of ymel yme2, encodes a putative
3-5' exonuclease located in mitochondria of Saccharomyces cerevisiae. Curr. Genet., 34,
438-448.

42 Brandriss, M. C. (1983) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT2
gene Mal. Cell Biol., 3, 1846-1856.

43.Melcher, K. & Entian, K. D. (1992) Genetic analysis of serine biosynthesis and glucose repression in
yeast Curr. Genet., 21, 295-300.

44 Lundgren, D. W. & Ogur, M. (1973) Inhibition of yeast 1 -pyrroline-5-carboxylate dehydrogenase by
common amino acids and the regulation of proline catabolism Biochim. Biophys Acta, 297,
246-257.



45.Schaerer-Brodbeck, C. & Reizman, H. (2000) Functional interactions between the p35 Subunit of the
Arp 2/3 Complex and Calmodulinin Y east Molecular Biology of the Cell, 11, 1113-1127.

46.Schaerer-Brodbeck, C. & Reizman, H. (2000) Saccharomyces cerevisiae Arc35p works through two
genetically separable calmodulin functions to regulate the actin and tubulin cytoskel etons.
J. Cell i, 113, 521-532.

47.Hodges, P. E., McKee, A. H., Davis, B. P., Payne, W. E. & Garrels, J. I. (1999) The Y east Proteome
Database (Y PD): amodel for the organization and presentation of genome-wide functional
data. Nucleic Acids Res., 27, 69-73.

48.Ball, C. A., Dalinski, K., Dwight, S. S., Harris, M. A., Issel-Tarver, L., Kasarskis, A., Scafe, C. R.,
Sherlock, G., Binkley, G., Jin, H., Kaloper, M., Orr, S. D., Schroeder, M., Weng, S., Zhu,
Y., Botstein, D. & Cherry, J. M. (2000) Intergrating functional genomic information into
the saccharomyces genome database Nucleic Acids Res., 28, 77-80.

49.Ackerman, S. H. & Tzagoloff, A. (1990) Identification of two nuclear genes (ATP11, ATP12) required
for assembly of the yeast F1-ATPase Proc Natl Acad Sci U SA, 87, 4986-4990.

50.Kitakawa, M., Graack, H. R., Grohmann, L., Goldschmidt-Reisin, S., Herfurth, E., Wittmann-Liebold,
B., Nishimura, T. & Isono, K. (1997) Identification and characterization of the genes for
mitochondrial ribosomal proteins of Saccharomyces cerevisiae. Euro. J. Biochem., 245,
449-456.

51.Hughes, T. R., Marton, M. J., Jones, A. R., Raberts, C. J., Stoughton, R., Armour, C. D., Bennett, H. A,
Coffey, E., Dai, H. Y., He, Y. D. D., Kidd, M. J.,, King, A. M., Meyer, M. R., Slade, D.,
Lum, P. Y., Stepaniants, S. B., Shoemaker, D. D., Gachotte, D., Chakraburtty, K., Simon,
J.,, Bard, M. & Friend, S. H. (2000) Functional discovery viaa compendium of expression
profiles Cell, 102, 109-126.

52.Uetz, P., et a. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces
cerevisiae Nature, 403, 623-627.

53.Ito, T., et a. (2000) Toward a protein-protein intearaction map for the budding yeast: A comprehenisve
system to examine two-hybrid interactionsin al possible combinations between the yeast
proteins Proc. Natl. Acad. Sci. USA, 97, 1143-1147.

54.Park, J., Lappe, M. & Teichmann, S. A. (2001) Mapping protein family interactions: intramolecular and
intermolecular protein family interaction repertoires in the PDB and yeast. J. Mol. Biol.,
307, 929-938.

55.White, K. P., Rifkin, S. A., Hurban, P. & Hogness, D. S. (1999) Microarray analysis of Drosophila
development during metamorphosis Science, 286, 2179-2184.

56.Gerstein, M. (2000) Integrative database analysis in structural genomics Nat. Sruct. Biol., 7 Suppl.,
960-963.

57.Riley, M. (1998) Systems for categorizing functions of gene products Curr. Opin. Sruct. Bial., 8, 388-
392.



Figure captions:

Figure 1. Two examples showing simultaneous (A), time-delayed (B), and inverted (C)
relationships in the expression profiles. Note there are only 8 time points for each profile,
while in the real yeast cell-cycle data there are 17 time points. Also, the expression ratio
is not normalized, whereas in the real data each profile is normalized so that the averaged
expression ratio is 0 and the standard deviation is 1. The thick segments of the expression
profiles are the matched part. (D) The corresponding matrix E for the expression profile
shown in (A). The corresponding matrix D is not shown because in this case the match
score (the maximal score) is from E and not D. The numbers outside the border of the
matrix are the expression ratio shown in (A). The black cell contains the overall match
score Sfor these two expression profiles, and the light gray cells indicate the path of the
optimal alignment between the expression profiles. The path starts from the match score
and ends at the first encountered 0. (E) The corresponding matrix E for the expression
profile shown in (B). Note the time-shifted relationship and how the length of the overall
aignment can be shorter than 8 positions. (F) The corresponding matrix D for the
expression profiles shown in (C). The matrix E is not shown because the best match score
is not from this matrix in this case.

Figure 2: Relationship between the match score S and P-value. The top panel shows the
distribution of match score for the cell-cycle expression dataset and a random dataset.
Each random profile also has 17 time points and average 0 and standard deviation 1. The
bottom panel shows how the P-value can be calculated by integrating the random
distribution.

Figure 3: Network view of relationships defined by the algorithm. This figure was
prepared using a software program based on the graph-drawing library "AGD"
(http://www.mpi-sb.mpg.de/AGD). (A) A global view of the network formed by
relationships detected by the algorithm. The threshold used for this network is a match
score of 16 (P-value of 10°). (B) A close-up view of the rectangle outlined in Fig 2A. A
solid line signifies a simultaneous profile relationship, an arrow denotes a time delay in
the relationship with the arrow pointing to the delayed gene, and a dashed line denotes an
inverted profile relationship.

Figure 4. Quantitative comparisons between networks generated by loca clustering
algorithm and the traditional correlation coefficient. The top panel shows the graph of the
average connections per node C as a function of the number of nodes in the network N.
The bottom panel shows the graph of the number of clusters as a function of the size of
the network N. In both panels the indicated black and red dots highlight the thresholds
used for different sizes of network. The numbers in the parentheses are the effective
correlation coefficient for the match score.



Figure 5. Examples of different profile relationships found by the algorithm. (A)
Simultaneous expression profile relationship of RPSL1A and RPS11B. (B) Simultaneous
expression profile relationship of HXT6 and HXT7. (C) Inverted expression profile
relationship of YME1 and YNT20. (D) Inverted gene expression profile relationship of
PUT2 and SER3. (E) Time-delayed profile relationship between ARC35 and ARP3. The
arrow indicates the time shift between two profiles. (F) Time-delayed relationship
between J0544 and ATP11, MRPL17, MRPL19 and YDR116C. The arrow indicates the
time shift between two profiles.

Figure 6: Odds ratio of having the same function or interaction between two genes. (A)
A hypothetical example illustrating the logic behind the odds-ratio calculation. To check
whether a biological interaction is related to expression profile relationships, we calculate
the probability for finding the interaction between the gene pairs given a particular
expression profile match score, say 16. A dot or a cross indicates the gene pairs, and the
crosses indicate pairs with known biological association. The conditional probability
P(k|S for finding an interaction for a given match score is the “density of crosses’ in the
different subgroup, e.g. the subgroup of match score 16. The odds ratio is the “density of
crosses’ in different subgroups normalized by the density for whole genome (big outer
circle). Imagine an experiment where 2000 known interactions were detected among 6000
yeast genes. There are theoretically ~18 million ((6000%-6000)/2), possible interactions
among these 6000 genes. Therefore, the expected probability of finding an interaction if
one randomly selects pairs from the 6000 genes is about 10 (=2000/18,000,000). To
check whether this is related to expression profile relationships, we caculated the
probability for the gene pairs with different expression profile match scores. Suppose
1000 gene pairs have a match score of 16, and 10 of these were found to have known
interactions. Therefore, the probability of finding an interaction with match score 15 is
16/1000=0.01, which corresponds to an odds ratio R 100 times higher (0.01/10) than
expected purely by chance. If the odds ratio is equa to 1, then the probability of finding
an interaction is just as expected. (B) Graph of the odds ratio that two genes interact
genetically or physically for a given match score of their expression profiles. The
inverted relationships and the inverted time-delayed relationships are pooled into
"inverted" in conditional probability analysis. (C) Graph of the odds ratio that two genes
have the same function for a given match score.

Table Caption

The actual number of new types of relationships found by local clustering (time-shifted
and inverted) for a given match score. The table also gives a breakdown into the various
types of non-simultaneous relationships by association. Note that the division of non-
simultaneous rel ationships by associations does not sum up to the total number of non-
simultaneous relationships since it is possible to have a relationship with both a known
function and a known interaction.
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