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ABSTRACT

Motivation: Large-scale tiling array experiments are becoming incre-
asingly common in genomics. In particular, the ENCODE project
requires the consistent segmentation of many different tiling array
data sets into “active regions” (e.g. finding transfrags from transcrip-
tional data and putative binding sites from ChIP-chip experiments).
Previously, such segmentation was done in an unsupervised fashion
mainly based on characteristics of the signal distribution in the tiling
array data itself. Here we propose a supervised framework for doing
this. It has the advantage of explicitly incorporating validated biological
knowledgento the model and allowing for formal training and testing.
Methodology: In particular, we use a hidden Markov model (HMM)
framework, which is capable of explicitly modeling the dependency
between neighboring probes and whose extended version (the gene-
ralized HMM) also allows explicit description of state duration density.
We introduce a formal definition of the tiling-array analysis problem,
and explain how we can use this to describe sampling small geno-
mic regions for experimental validation to build up a gold-standard set
for training and testing. We then describe various ideal and practical
sampling strategies (e.g. maximizing signal entropy within a selected
region versus using gene annotation or known promoters as positives
for transcription or ChIP-chip data, respectively).

Results: For the practical sampling and training strategies, we show
how the size and noise in the validated training data affects the per-
formance of an HMM applied to the ENCODE transcriptional and
ChlP-chip experiments. In particular, we show that the HMM frame-
work is able to efficiently process tiling array data as well as or better
than previous approaches. For the idealized sampling strategies, we
show how we can assess their performance in a simulation framework
and how a maximum entropy approach, which samples sub-regions
with very different signal intensities, gives the maximally performing
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gold-standard. This latter result has strong implications for the opti-
mum way medium-scale validation experiments should be carried out
to verify the results of the genome-scale tiling array experiments.
Supplementary information: The supplementary materials are
available at http://tiling.gersteinlab.org/hmm/.

Contact: mark.gerstein@yale.edu

1 INTRODUCTION
1.1 Motivation

Tiling arrays are used to survey genomic transcriptional activity
(Bertoneet al, 2004; Chencet al, 2005; Kapranowt al, 2002;

Rinn et al, 2003; Schadet al., 2004) and transcription factor bin-
ding sites (Buck and Lieb, 2004; Cawley al, 2004; lyeret al,
2001) at high resolution. The raw/preprocessed data from tiling
array experiments are first processed by certain analysis methods,
which produce a list of predicted genomic “active regions”. These
are either transcriptionally active regions (TARs)/transcribed frag-
ments (transfrags) (Bertora al., 2004; Chenget al., 2005; Kampa

et al, 2004; Rinnet al., 2003) or transcription factor binding sites.
Usually a subset of these regions is further studied by experimental
validation, which answers the question of whether these regions are
actually active or not.

With the beginning of projects such as ENCODE (ENCODE Pro-
ject Consortium, 2004), which aims to annotate the genome
sequence with the function of specific elements (e.g. whether they
are regulatory sites, exons or introns), the large scale tiling array
experiments that are carried out present a number of new challen-
ges. One of these is how to build up an existknmpwledge base
of validated biological informatiombout genomic elements such as
the location of exons and introns or of transcription factor binding
sites, and how to use this knowledge base in combination with the
tiling array data on a limited region of the genome to construct a
predictive model that we can extrapolate to the rest genome in order
to best segment it into functional elements.

© 2006 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



Du et al

We also have the related problem of how to grow this knowledge2003). Ji and Wong (2005), more recently, proposed a more gene-
base of validated biological information systematically so as to daal Unbalanced Mixture Subtraction (UMS) approach to recover
the extrapolation most efficiently. We envision that it will not be different emission distributions in a HMM from a mixture distribu-
possible to validate every single ChlP-chip experiment binding sitetion. However, in some cases, there may exist neither corresponding
or every single exon in the human genome using RT-PCR. Howevegxperimental results that can be utilized to build the HMM, nor vali-
we can imagine that following the large scale tiling array experi-dated biological knowledge comprehensive enough for an unbiased
ments there will be medium-scale validation experiments done omvaluation in the UMS analysis.
thousands of predicted binding sites and gene structures to try to On the other hand, the use of partially validated knowledge about
verify them. The question is: how should these binding sites andhe array data, such as gene annotation or experimental validation
gene structures for validation be picked? They could, of course, beesults on small genomic regions, has not been specifically consi-
selected in terms of having the best scores, but one would like talered by existing methods; and there does not exist a systematic
pick them so as to derive a model that would be best able to analyzegamework to optimally obtain and utilize this kind of knowledge
the remainder of the data accurately. in tiling array analysis. Such a framework will have the potential to

Here we tackle both of these challenges by proposing a hiddebetter assist the analysis of tiling array data, as the related validated
Markov model (HMM) (Rabiner, 1989) framework which integrates knowledge becomes more abundant and accurate via experimental
the existingvalidated biological knowledgabout gene structures validations.
and transcription factor binding sites, and then uses this encapsula-
ted biological knowledge to segment tiling array data. In particular,
we also show how one can systematically pick un-annotated or unla-
beled regions from the tiling array data for further validation to grow
the validated biological knowledge base of labeled examples most
optimally in order to get a maximally predictive model.

We do our analysis side by side on both transcriptional data and-3 Methodology
ChIP-chip binding site data. We have two reasons for this. Firstn this paper we propose a new supervised scoring framework based
of all, it shows the general utility of the approach, that we canon HMM that will consistently score different types of tiling array
apply the same formalism to tiling array data from both types ofdata by incorporating validated biological knowledge. As our fra-
experiments. Second, since data from the two different experimentsiework will be based on both transcriptional and regulatory data,
have different levels of validated biological knowledge, it allows we can demonstrate its efficiency on the better described transcrip-
us to see how our formalism performs in two areas with differenttional data so that we have greater confidence when applying it to
amounts of knowledge. Finally, because we can get a better handtee ChIP-chip data.
of how things work on the better studied transcriptional data, we can An integral part of our strategy is developing a scheme to intel-
have great confidence that we are applying a correct approach whéigently select sub-regions for validation, in order to better build
segmenting the ChIP-chip data. up gold standard sets to incorporate into our statistical model. We

investigate the performances of different sample selection schemes
. described in section 2 on a simulated dataset in section 4, and pro-
1.2 Previous work pose to employ thélaxEntropyscheme as a measure for sample
In tiling array data analysis, the goal is to identify genomic activeselection: we want to select sub-regions that have the highest entro-
regions with high signal intensities. This procedure can not bepies for experimental validation first, so as to effectively build up
implemented in a rige fashion, due to the noise in the background the validated biological knowledge for our HMM approach.
and the possible low signal intensities in some active regions (Hoyle After the sample sub-regions are selected and their corresponding
et al, 2002; Royceet al, 2005). Different statistical algorithms state sequences are obtained via further validation experiments or
have been developed to process the tiling array data. Earlier exampecording to existing validated biological knowledge, a frequency-
les include pseudo-median threshold with maxgap/minrun (Karpluvased supervised learning algorithm is applied to build the HMM
et al, 1999), p-value cutoff with maxgap/minrun (Bertoatal, and then the Viterbi algorithm is utilized to compute the most
2004), sliding-window PCA with MD (Schadit al, 2004), and likely state sequence for the whole sequence of array signals. Since
variance stabilization (Gibboret al,, 2005). More recently, several current experimental validation data are insufficient to apply our
HMM approaches and HMM variants have been developed (Ji andlaxEntropysampling scheme, we also propose alternative methods
Wong, 2005; Liet al, 2005; Marioniet al,, 2006). Fliceket al. for choosing sample sub-regions. As described in section 3, for
(personal communication) have also applied an HMM to ChlP-transcriptional tiling array experiments, a four-state HMM can be
chip data resulting from tiling array signals characteristic of histoneconstructed by learning from the sequences of probes which fall into
modifications. regions of the corresponding gene annotation. For ChlP-chip data,

Some of these existing methods, such as maxgap/minrun (Bethe knowledge of gene annotation is again relevant to the identi-
toneet al, 2004; Kampeet al,, 2004), involve parameters that have fication of binding sites, because transcription factor binding sites
to be decided manually. HMM approaches, formerly introduced in(TFBS) are usually considered to be enriched in upstream regi-
the field of sequence analysis (Eddy, 1998; Karmtsl, 1999; ons of genes and unlikely to occur in inner regions of genes. By
Krogh et al,, 1994), have the advantage of not using any additio-incorporating this knowledge, a two-state HMM can be construc-
nal parameters other than the model itselfet.al. (2005) proposed ted for further analysis. Empirical results in section 4 show that our
the construction of a two-state HMM for ChIP-chip data partially methods effectively handle large datasets, even with relatively noisy
based on the results of Affymetrix SNP arrays (Lieberfattal, training data.
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2 METHODS m sample sub-region§Us, Us, ..., U, } in D according to the sampling
. o constraintC's,,mp1e, and passes them to the labeling ora@lewhich cor-

2.1 Idealized definitions of the prOblem responds to anpexperimenter who refersvadidated biological knowledge
In this section we give two idealized definitions of the tiling-array analysis (existing annotation, validation experiments, etc.) and then discovers the
problem, which will form the basis of our core algorithms on both samplehidden state (label) sequencgs, V3, ..., Vin } for these small subsets of
sub-region selection and HMM analysis based on the selected samples. neighboring probes in the array. These sub-sequencessoandV;s form
Definition 1. Idealized HMM Tiling Problem ( HTP). An idealized HMM the samples/training set of our analysis methods. A madeis then lear-
tiling problem is a tuple(D, Csqmpie, O), Where D is the emission  ned based on this training set, and processed by a decoding algorithim on
sequence corresponding to a hidden state sequéngenerated by an  which outputs the predicted corresponding state sequghfme D.
unknown HMM M, Cyqmpie is the constraint on how sample sub-regions ~ The sampling constrair's, ;. Corresponds to the possible limitations
can be selected iD (e.g. the maximum length of each sample sub- in selecting sample sub-regions in real tiling array problems. As shown in
sequence), and is a labeling oracle (an imaginary black box which is Figure 1B, when experimental validations can be done on any set of genomic
able to answer certain questions) that can discover the corresponding higub-regions, there will be no constraint on sampling at all @@, ;e
den state sequence of any sample sub-regioinA solution to the  will be equal to null/empty. In the other extreme, if no further validation
problem first selects a set of sample sub-region® imccording to the cons-  experiments can be done and the only available validated knowledge is the
traint Csqmpie, asks the labeling oracl® about the corresponding state gene annotation related to the transcriptional tiling experiméit,,, .
sequences of these sample sub-regions, then efficiently computes a modeil only allow those sub-regions inside the gene annotation to be selected
M’ for D and outputs the corresponding state sequétider D. (otherwise the labeling oracle will fail to label all the sample sub-regions).
One can imagine intermediate situations between these extremes.

HTP differs from the real problem of tiling array data analysis in two
main aspects. On one hand, the actual state sequeméahe array data
is not necessarily generated by a certain HMM. Such an HMM assumption

A. The idealized HMM Tiling Problem

robe signal

AL ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Data D is stated inHTP not only because that it is a reasonable approximation to
: r‘ - ‘_ — _‘ v | P — ‘ L ‘_ Lo bos the real problem, whose data fits the continuing nature of a HMM, but also
rofye signal o 1 1 1 because it is necessary for further performance analysis of the solutions to
| | ‘ H o , ‘ ‘ . ‘ ‘ . Sampling acconting this problem. On the other hand, the labeling ora@l¢e.g. experimental
sample . . . . .
Cl \:‘\ L L e 1 L:‘EH validation) in real problems is not always perfect and can make mistakes,
ol 0S . . . . . . . ele
L "R u'z‘ --! s L - -peEr from which we can give a generalizationtéTP in the following definition:
' ' T Definition 2. Idealized HMM Tiling Problem with an Imperfect Oracle
Labe"nimleo Labeling probes (e.g. (HTPIO). An idealized HMM tiling problem with an imperfect labeling
iy e e o seoions oracle is a tuplé D, Csgmpie, OT), which has the same definition BT P,
obESgral ~ T T Ty T r===n (according to gene except that the labeling oracte! is not perfect and may make mistakes
1 ' 1 1 1 1 annotataion, validation . . .
w0 ‘ . 1 1 ' 1 experiments, etc.) when discovering the underlying state sequerddés Va, ..., V;, } for sam-
) 1 1 1 1 1 _ . . . .
L “ L ‘ 1 || u. ' ‘ A ple sub-sequenced/, Ua, ..., Upn, }. Obviously,HTPIOis a generalization
poseescoosseT 02 Lok pos of HTP.
v vz, Vi Here we also define an intuitive metric for the solutiéh to both
@ Training the model pl‘ObIemS'
W based on the samples o : , ,
Definition 3. Error rate of a solution S’ for HTPIO (Error(S’, S)).
robe signal @
s Labeling all the data S/ S
. according to M’ Di erence
o Error(S',S) = Dif ference(S', ) 1)
; S L
probe pos
B. Possible sampling constraints and corresponding sampling algorithms where the difference of two state sequences is Computed as the number of
C g corresponding elements that do not agree with each otheS’aadd .S are
of the same lengti..
No constaint (deal case) * . Resticted tcenin sub The smaller the error rate, the better is the solution. However, in real
0 constraint (Ideal case; estricted to certain sub-regions . . . . .
(e.g.suffiientvaldation experiments) (2. only gene amnotaion available) problems it is hard to apply this metric, since the actual hidden sequence
is unknown. This definition only serves as a performance measurement in
— T”‘"SC”"““’“E' data C“'P'C“““’T section 4 about results on simulated datasets. Other possible performance
ampling: ooy overiap ul nrons ~GS. Overlap (h() ! measures for real experimental datasets are algo discussed in section 4.
LeaskL, .. 1 Overlap w/ exon = GS+ ignersilené;egioenz (9(<fl()>»:GS> A similar problem toHTPIO has been studied by Abe and Warmuth
i verall - GS- ~ GS+ (f(t] . s .
Best performance Promoters ~ testing+ (1992) in the context of Probabilistic Automata (PA). Our work differs from

theirs in several aspects. First of all, we investigate the problem of sam-
) ) - ) ) ple sub-region selection whereas they do not. Second, we take errors in the
Fig. 1. Idealized HMM tiling-array analysis problem. (A) Idealized HMM | apeling oracle into consideration. Third, we introduce a more intuitive mea-
tiling problem. (B) Sampling constraints and corresponding strategies.  syrement of error, compared to tKellback-Leibler divergencef different
PAs in their paper. Last but not least, we seek a time-efficient solution, whe-
reas their work focuses on obtaining sample complexity bounds for learning
As shown in Figure 1A,S and D, generated byM in the problem’s  the model while ignoring computational efficiency.
assumption, corresponds to the biological state (for instance, transcribed or As described above;I TPIO asks for solutions to two different kinds of
not transcribed) sequence and signal intensity sequence of the probes in teeb-problems simultaneously: one solution on an effective sub-region samp-
array, preferably after necessary preprocessing such as normalization. Thieg scheme and one corresponding solution on an efficient algorithm to
length of the sequencd;, corresponds to the size of the tiling array. The output a good approximation &f. These two solutions form our HMM fra-
solution to the problem, which is also the framework we propose, first selectsnework, which systematically incorporates validated knowledge into tiling
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array data analysis. In the following two sub-sections, we present efficient

solutions to both sub-problems separately. P S/
Y E{Vi, Voo Vi } §V (6 0)

Aij . ) 50 (3)
. . Ve{Vi,Va,..,Vin} TV
2.2 Selection of sample sub-regions v 0
When deciding which sample sub-regionginshould be selected as inputs Bk VDU, (V2,U2),-0,(Vim ’g"f)} ALY (4)
to the labeling oracle, we investigate a set of sample selection schemes besi- Ve{Vi,Va,....Vin } Ty (@)

des random selection. To simplify discussion, we assumedahp.. is whereg‘s, (4, 4) is the number of transitions from statt j in state sequence

zgg:l;ougt:ll/empt);]and thUat ;viséﬁ jﬁlé—:tgtu:é;non-overlappmg sample V, ~i (4) is the number of occurrences of state V, £ ., (4, k) is the num-
d o1, U, .., Um gtk ber of times state in V emitsk in U. We can then build a discrete HMM
Some of these sampling schemes employ entropy as a measure. The fir . . - .
. ) . with A as the transition matrix, anB® as the emission matrix. We set the
one of theseMaxEntropy selectsm non-overlapping sub-regions with the

. - . L initial state distribution of the HMM to uniform to avoid biased estimation
highest entropies. The second otnbiasedEntropydivides all the sub- for this parameter. As long as the initial state distribution is set to a reasona-

ble distribution, it should not have a great impact on the final result vihien

. . ) . . sufficiently large. When the sample size is relatively small, the discrete emis-
selectsm,/2 sub-regions with the highest entropies and2 sub-regions sion matrixB may be ill-formed if estimated directly, in which case we build

with the Igwest entrgples!vla.xEnt'ropytends t.o pick up thosg sub-regions a continuous HMM and use kernel density estimation (Parzen, 1962) to con-
that contain both active and inactive probes in the same region (e.g. the tran- o P ; =
. . . - o A struct smoother emission distributions for different states; ifzs, ..., z v
scribed gene regions in transcriptional tiling arrays), while the other two o ) . " .
S : . . are the observed emissions for a certain state, then its corresponding emis-
methods will pick up totally inactive sub-regions as well.

Another sampling schemd,eastKL, employs a well-known measure sion d|str|bgt|on s cor_nputed as(x). v =W i zi), where 1n
L . : : . this casdV is a Gaussian function with medrand predefined varianee?.
in information theory calledKullback-Leibler divergence”(Kullback and

Leibler, 1951), betwee® of length L and its sub-sequendé of lengthk. Thg superw§ed 'ea;”'”g _algorlthm run.s@‘r(mk;) time, and the Vlterl_:n
- . . . algorithm requiresD(n*L) time, wheren is the number of states (which

Definition 4. Kullback-Leibler Divergence (K-L divergencg Let D and is 2 or 4 in examples in section 3) in the HMM anid is the length ofD

U; be probability distributions over a countable domain The Kullback- P g '

. . . . ) Sincemk < L, the total time cost of our solution (sampling, learning, and
]Ic_oenls\lssr.Dwergenceof D with respect toUs, dx (D, Us) is defined as decoding) toHTPIO is thusO(n2 L), which is comparable to most of the

existing tiling array analysis methods. Results in section 4 show that our
methods handle large datasets effectively.

selects one sub-region out of each group. The third dfexMinEntropy

Pp(2) @)
Py, (2) 3 IMPLEMENTATIONS
In this section, we will show that even though at present there may exist too
little experimentally validated data to be incorporated in our HMM approach
By convention we lef log 0 = 0, and0/0 = 1. described above, other kinds of validated knowledge such as gene annotation

Normally we think the smalletx 1 (D, U;), the more similarU; is already provide a good basis for our methods in both transcriptional and
to D in terms of their probability distributions over. When selecting ~ ChlIP-chip data analysis.
sample sub-sequences féT P10 usingLeastKL, we want to selecin sub-
sequenced/; with the smallestix 1 (D, U;) values. The underlying idea 3.1 Incorporating gene annotation in transcriptional
is to obtain information from those most representative regions for future data analysis
learning algorithms.

For tiling array data,D is usually a sequence of uncountable real num-
bers, so the elements i need to be discretized to integers (either by direct
rounding, or rounding aftdiog transformation, depending on the nature of
the data), which require®(L) operations. Whemn, k are constants and

<
dxr(D,U;) = Pp(z)log,
z2€Z

In transcriptional tiling array experiments, TARs or transfrags form the
subject of interest. Here the gene annotation of the organism in study
is obviously the validated biological knowledge we should consider to
incorporate into our HMM approach.
- . Despite its inaccuracy, the knowledge of gene annotation usually involves
m, k << L, an approximate result of the non-overlapping sub-sequences ) ) ; .

a large amount of information. This allows the construction of a four-state

can be _o_btamed "j)(L.) for aI_I these schemes. . . HMM instead of a two-state HMM. The structure of the HMM is illustrated
Empirical results in section 4 show that when the labeling oracle is.

] . in Figure 1A in Supplementary figures. Each probe in the tiling array can
perfect, thel\/laxEntrop)(andLeastKLsampIe selection a!gorlthm are stupe be in one of the four HMM states (TAR, NONTAR, and two other interme-
rior to other schemes; when the oracle makes relatively small mistakes,. - - . . . .
MaxEntropyalways outperforms other schemes diate transition states), emitting the assigned intensity/score. As shown in

’ Figure 1B, the parameters of the HMM can be estimated by learning from
both positive and negative samples in the sequences of probes which fall into
2.3 An efficient HMM approach for HTPIO regions with known transcription characteristics, in this case, the knowledge

After th | b d thei di at of corresponding gene annotation.
er the sample sub-sequences an €Il corresponding state Sequencesgy o i more, the choice of annotated genes as the training set conforms

have been obtained, a frequency-based supervised learning algorithm is ang- our MaxEntropy sample selection scheme, since these regions usually

lied to build the HMM and then a Viterbi algorithm (Rabiner, 1989; Viterbi, : . ; . . .
R, . contain both high and low signals, thus having relatively high entropy values.
1967) is utilized to compute the most likely state sequesicir the whole 9 9 9 yhg Py

sequenceD, which is an approximate answer tTPIO. The forward- 2 Incorporating gene annotation in ChlP-Chip data

backward algorithm (Rabiner, 1989) can also be used to generate detailed .

scores for each element ip, although it will be more time consuming than analySIS

the Viterbi algorithm. For ChIP-chip data, we should first identify the possible knowledge to
The supervised learning algorithm takes as input the sample subincorporate into our HMM approach, since this is not as obvious as for tran-

sequencegUs, Us, ..., Um} and corresponding state sequen¢gs, Va, scriptional data, where gene annotation is an intuitive choice. One option

..., Vm }, each of lengthk, and outputs the following matrices: is the dataset of those experimentally verified regions, which at present is
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usually limited in size and cannot form a valid training set for HMM con- set used in the approach, and also against previous segmentation
struction. On the other hand, the knowledge of gene annotations is somewhgésults of other non-HMM methods on the same dataset. Further-

related to the identification of binding sites, since transcription factor bin-more, we in\/estigate how the size and noise of the training set affects
ding sites (TFBS) are usually considered to be enriched in upstream regiong,e performance of our HMM approach.

of genes, and unlikely to occur in inner regions of genes. By incorporating
this knowledge, a two-state HMM can be constructed in the following way: 4.2 Results on simulated dataset

As shown in Figure 1B in Supplementary figures, the HMM contains a , . . .
TFBS state0 and a non-TFBS staté. The overall emission distribution A simulation on our framework of the solution KTPIO proposed

h(t) is computed based on the ChIP-chip data. As shown in Figure 1B, thd! S€ction 2 was done to investigate its performance. We performed
emission distribution of the non-TFBS statg(t), according to the above ~ 17000 trials, each of which solved a randomly generat&dP|O
discussion, can be estimated based on the knowledge of inner regions Bf (D, Csampie, O'), Where the lengthl of D is 1M, constraint
genes. The emission distribution of the TFBS st#f¢), can then be obtai-  Csampie Specifies thain = 2° (i = 1,2, ..., 8) sub-regions, each
ned by subtracting(t) from h(t), using canonical FDR procedures. The of lengthk = 50, should be selected as samples, andmakes
transition parameters of the HMM can be estimated based on empiricahistakes randomly with probabiligy= 0, 0.05, 0.1; Error(S’,S)
knowledge. Actually, iff () andg(t) are significantly different from each \y 55 computed in each trial for different sample selection schemes
other, a small variance in transition parameters should not affect the result ‘Hescribed in section 2.2. The results in Figure 2 (and Figure 2 in
HMM approach very much. Supplementary figures) show thdaxEntropyandK-L divergence

However, the HMM constructed in this way may not be as effective asb d | lecti ior to oth lecti h
in the case of transcriptional data, since the knowledge involved in the con- ased sample selections are superior 10 other selection schemes

struction does not relate to the TFBS very closely. Further scoring on thé/hen the labeling oracl®’ is perfect. WhenO' makes mista-

initial analysis results can be done by computing the posterior probabilitie&€S With a relatively low probabilityMaxEntropyoutperforms all

P(S; = k|D) for the predicted states on probes, whéfés the state of the ~ Other sampling schemes. We also observe that as the sample size
ith probe k is the predicted state, ard is the emitted sequences of the pro- mk increases, the overall performances of all methods improve,
bes involved. These scores indicate the confidence in every single predicticand become stable when the sample size is largertharo13M.

and can be used to refine the prediction results obtained by HMM analysisThjs observation leads to a hypothesis that an intelligently selec-
The identified active probes can then be ranked according to the overall coRad medium-sized training set is sufficient for our HMM approach
fidence levels in their regions and a_threshold gonfidenct_e I_evel may either b&n real experimental datasets, which is supported by the results in
set manually or be learned automatically to refine the original results. section 4.3 as well.

3.3 ;Tf;;%%rgl;r?a?;ziesr validated knowledge in tiling 4.3 Results on transcriptional dataset

. ) . ) . . We tested our method on a transcriptional tiling array dataset which
Since our HMM framework defined in section 2 provides a general inter- . . ; .
face for incorporating validated knowledge about the dataset in questio ’as25?mer Ollgonucleotldg.probes tiled approximately eveiypp .
virtually any such knowledge can be utilized by this approach. For examcovering all the non-repetitive DNA sequence of the ENCODE regi-
ple, our framework can take the data from a tiling array experiment, and®nS ¢~ 30Mb) (ENCODE Project Consortium, 2004). This dataset
select a medium-sized set of sub-regions by using some appropriate analysgssufficiently large for our performance test, and the corresponding
method (e.g. théMaxEntropysampling scheme in section 2.2). These sub- prediction result of a minrun/maxgap method (Bertehal, 2004)
regions can be further studied by experimental validations, which identifiegs available as well, which provides a good estimation of the TARs.
the underlying state (e.g. transcribed or not, in a transcriptional tiling array \We formed the training set( 7.5Mb) from the normalized data-
experiment) of every single probe inside these sub-regions. These knowset by using the method in section 3.1 with the RefSeq annotation
ledge form a well-established training set and can then be incorporated imaDruitt et al, 2005). In order to investigate the performances of our

our HMM approach in the framework, which will lead to more accurate ana- . - . .,
) . . . . methods with different-sized training sets, we also randomly selec-
lysis results than that obtained using only information from the array data

Since all these can be done systematically within our framework, it actuall)iefd a certain portion of the yvhole tra!n'ng set, and then buﬂt a basic
provides a way to consistently analyze tiling array data across a number dfiscrete four-state HMM (Figure 1A in Supplementary figures) and

experiments and also across different types of experiments. a continuous HMM (by using kernel density estimation) based on
that portion. The portions we selected weye, 1/4, 1/8 and1/16
4 RESULTS of the whole training set, and every selection was repetidimes

so that the variance of the corresponding performances could be
4.1 Performance measurement estimated empirically. We also built a generalized HMM (GHMM)
We useError(S’, S) defined in section 2.1 as an intuitive measure (Mohamed and Gader, 2000; Rabiner, 1989) based on the whole
to analyze the results on a simulated dataset, where we have accéssining set to test the possible gain of using a more sophisticated
to the actual hidden state sequersc@Ve also investigate some key model which captures length characteristics.
issues in our HMM approach, including sample selection, size of Figure 3 use¥ouden'YYouden, 1950), which iSensitivity +
the training set, and error in the training data. 1 — Speci ficity, as a measure of the overall performances of diffe-
When we analyze the results on real experimental data, it is harcent methods with different-sized training sets. The sensitivity and
to get a good estimation ¢, which makes it difficult to compute specificity of the HMM prediction results are computed based on
the overall error rate. One the other hand, for a rigorous perforboth the whole training set and the previous prediction results of
mance evaluation like cross-validation, a gold-standard dataset witmaxgap/minrun. Figure 3 shows that even whéd (~ 1.9Mb) of
exact information is required. Unfortunately, in many cases no suclthe whole training set is used, our HMM approach gives a perfor-
dataset exists, especially over large genomic regions. In the absenoence comparable to or better than existing methods, with either
of such a gold standard, we evaluate the performance of differergene annotation or previous prediction results as performance crite-
methods by comparing their results against the imperfect trainingia. Another important fact shown in Figure 3 is that the continuous
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Fig. 2. Results on simulated dataset. “Error in Oracle” is the probability Fig. 3. Results on transcriptional dataset: Youden’s J. (A) RefSeq exon regi-
with which O makes mistakes. (A) Mean of the prediction error rates. (B) ons are used as positives, and intron regions as negatives. (B) Known TARs
Standard deviation of prediction error rates. predicted by maxgap/minrun method are used as positives.

HMM has much more stable performance than the discrete modefe€ems that it~ 0.1M probes in this type of tiling array experiment
especially when the training set is small (less th## of the whole ~ ¢an be labeled and put into the training set, our method becomes
training set). This is because the continuous HMM has smoothelMmediately applicable to identify TARs for the whole dataset. We
emission distribution estimations than the discrete one, and its peRISO want to point out that the labeling process does not have to be
formance is thus less likely to be affected by a small set of biasederfect: in this case, Figure 3A shows that less it of the trai-
samples. We can also observe that GHMM does not seem to gi\,@ing set is actually correct, while Figure 3B shows that our method
significantly better performance than simpler models. has satisfying performance with this training set.

We further computed the posterior probabilities for the predic- .
ted states on probes, and set different thresholds to identify TAR-4  Results on ChiP-chip dataset
Figure 4 shows the ROC curves of different models with differentWe tested our method on a STAT1 ChIP-chip tiling array dataset
training sets. Again the continuous HMM outperforms the dis-which hass0mer oligonucleotide probes tiled approximately every
crete one, and has good performance even with a relatively smafi8bp covering most of the non-repetitive DNA sequence of the
(~ 1.9Mb) training set. The similarity of A and B diagrams in ENCODE regions+ 30Mb). This dataset, as in the case of section
Figure 3 and Figure 4 also shows that gene annotation is a good cr#-.3, is sufficiently large for our performance test, and the correspon-
terion for performance measurement, if we do not have any existingling prediction result of a maxgap/minrun method is available as
prediction results to utilize. well, which provides a good estimation of the TFBSs.

The minimum training set guaranteeing good performance for Due to the lack of available validated biological knowledge, we
our approach on this dataset~s 1.9Mb, which includes~ 0.1M built a simple two-state continuous HMM (Figure 1B in Supple-
probes. Since the size of the training set needed for satisfying performentary figures) based on the negative training se8Kb) from
mance of our method does not increase with the size of the dataset thie normalized dataset by using the method described in section 3.1
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Fig. 4. Results on transcriptional dataset: ROC curves. “hmm 1/2” stands foiFig. 5. Results on ChIP-chip dataset: ROC curves. (A) Previously pre-

the discrete HMM built withl /2 of the whole training set, and so on. (A) dicted TFBSs are used as positives, and the inner gene regions as

RefSeq exon regions are used as positives, and intron regions as negativeggatives. The numbers along the ROC curve of HMM result are the

(B) TARs predicted by the maxgap/minrun method are used as positives. — log;,(PP threshold), whereP P is the posterior probability of a probe
being in NON-TFBS state. (B) The promoter regions in the array are used as
positives.

with RefSeq annotation, computed the posterior probabilities for the
probes being in NON-TFBS state, and set different thresholds to get

different sets of TFBSs. Figure 5 shows the ROC curves of pre- . . . .
dictions by using our HMM approach and a p-value cutoff me,[hod_analyss. This framework, which consists oM&axEntropysample

The inner gene regions are used as negatives, while both previous lection algorithm and HMM Iear_nlng angl _dfacodlng approaches, 'S
predicted TFBSs and the promoter regions in the array are us roposed based d#TPIO, an idealized definition of the tiling array
as positives. We can observe that the HMM approach has be,[té';urnalysis problem. Empirical results of our methods in the framework

performance than the p-value cutoff approach in both criterions. on a simulated dataset, a transcriptional dataset and a ChIP-chip
The near-linear ROC curves in Figure 5B also show that thedataset show that our framework effectively handles large datasets,

promoter regions may not be as good a criterion as the previougvgn with i [f]!fatlvily noisy tr_alnlngt sde.t' in tili d |
TFBS results. Analogous to the case with transcriptional data, when, ur work differs from previous studies in tiling array data analy-

experimental validation results become sufficient to form a medium>'S by specifically takingalidated biological knowledgeto con-

sized (covering~ 0.1M probes) knowledgebase about the datasetsideration and systematically incorporating it using an empirically

in question, this knowledgebase can be utilized as a performanct_lghstedI\f/laxtEntropysamr;Iﬁ selegtlon fscheme fo; optlfmal anaI)|/(5|s_.th
measure as well as the training set for our HMM approach. ese fealures ensure the good performance ot our Iramework wi

even arelatively small gold standard training set, which has not been
specifically considered by previous methods. In this way our frame-
5 DISCUSSION AND CONCLUSIONS work can consistently analyze tiling array data across a number of
We present an efficient HMM framework which systematically experiments, and can process different types of array data automati-
incorporatesvalidated biological knowledgeto tiling array data  cally, without the need to manually set additional parameters. This
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feature will become an advantage for analyzing very large datase&NCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Ele-
(e.g. for the~ 3Gb human genome): when sufficient experimental ments) ProjectScience,306(5696), 636-640. _ ' _
validations are done afterwardsmedium-size@covering~ 0.1M Gibbons,F.D., Proft,M., Struhl,K. and Roth,F.P. (2005) Chipper: discovering

. L. . . transcription-factor targets from chromatin immunoprecipitation microarrays using
probes, according to the empirical results in section ¥a@igated variance stabilizationGenome Biol,6 (11), R96.

biological knowledgebasean be formed for the array data in que- Hoyle,D.C., Rattray,M., Jupp,R. and Brass,A. (2002) Making sense of microarray data
stion. Our framework can then improve its performance with the distributions.Bioinformatics, 18 (4), 576-584.
guidance of this medium-sized knowledgebase, and its refined an&®r.V:R.. Horak,C.E., Scafe,C.S., Botstein,D., Snyder,M. and Brown,P.0. (2001)
lysis results can in turn assist further experimental studies. What Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF.
is more, in section 4.3 our framework gives good performance by, N&ure, 409(6819),533-538. N
. . . . . ) ... 2Ji,H. and Wong,W.H. (2005) TileMap: create chromosomal map of tiling array
incorporating some relatively inaccurate bl0|OgIC§1| knqwledge _(V\_/lth hybridizations Bioinformatics, 21 (18), 3629-3636.
approximately60% correctness), and the sub-regions in the trainingkampa,d., Cheng,J., Kapranov,P., Yamanaka,M., Brubaker,S., Cawley,S., Dren-
set are not specifically chosen according to our proposed sampling kow,J., Piccolboni,A., Bekiranov,S., Helt,G., Tammana,H. and Gingeras, T.R. (2004)
scheme. We can expect that for real problems which use validated Novel RNAs identified from an in-depth analysis of the transcriptome of human
. L . . . . chromosomes 21 and 2&enome Resl4 (3), 331-342.

bIOIOglcal knOW|edge _frc_)m hlgh_ly accurate_ EXp_enmental validati- Kapranov,P., Cawley,S.E., Drenkow,J., Bekiranov,S., Strausberg,R.L., Fodor,S.P.A. and
ons, the necessary minimum size of the biological knowledgebase gingeras, T.R. (2002) Large-scale transcriptional activity in chromosomes 21 and 22.
could be even smaller thar 0.1M probes for our framework to Science,296(5569), 916-919.

i i i Karplus,K., Barrett,C., Cline,M., Diekhans,M., Grate,L. and Hughey,R. (1999) Pre-
achieve satisfying performance.

Another feature of our method is that given a set of regions with ‘ig‘i‘fzg“’te'” structure using only sequence informatidProteins, Suppl 3,

similar signal intensities, it can identify all the regions in the whole Krogh,A., Brown,M., Mian,|.S., Sjlander,K. and Haussler,D. (1994) Hidden Markov
dataset with similar signal distributions. This feature is potentially models in computational biology. Applications to protein modeliryMol Biol,
useful for identifying regions with different transcription levels. For ~ 235(5), 1501-1531. . . N
instance, our HMM method can take as the training set all the knowh(ullpack,S. .an.d Leibler,R. (1951) On information and sufficiedeynals of Mathema-

. . . . i . tical Statistics,22(1), 7986.
hlghly expressed genesin the tissue, and then 'dentlfy allthe reglorﬁ,w., Meyer,C.A. and Liu,X.S. (2005) A hidden Markov model for analyzing ChIP-
inthe Corresponding transcriptional t”ing array that have the similar chip experiments on genome tiling arrays and its application to p53 binding
transcription level. sequencesBioinformatics, 21 Suppl 1, i274-i282.
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