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ABSTRACT
Motivation: Large-scale tiling array experiments are becoming incre-
asingly common in genomics. In particular, the ENCODE project
requires the consistent segmentation of many different tiling array
data sets into “active regions” (e.g. finding transfrags from transcrip-
tional data and putative binding sites from ChIP-chip experiments).
Previously, such segmentation was done in an unsupervised fashion
mainly based on characteristics of the signal distribution in the tiling
array data itself. Here we propose a supervised framework for doing
this. It has the advantage of explicitly incorporating validated biological

knowledgeinto the model and allowing for formal training and testing.
Methodology: In particular, we use a hidden Markov model (HMM)
framework, which is capable of explicitly modeling the dependency
between neighboring probes and whose extended version (the gene-
ralized HMM) also allows explicit description of state duration density.
We introduce a formal definition of the tiling-array analysis problem,
and explain how we can use this to describe sampling small geno-
mic regions for experimental validation to build up a gold-standard set
for training and testing. We then describe various ideal and practical
sampling strategies (e.g. maximizing signal entropy within a selected
region versus using gene annotation or known promoters as positives
for transcription or ChIP-chip data, respectively).
Results: For the practical sampling and training strategies, we show
how the size and noise in the validated training data affects the per-
formance of an HMM applied to the ENCODE transcriptional and
ChIP-chip experiments. In particular, we show that the HMM frame-
work is able to efficiently process tiling array data as well as or better
than previous approaches. For the idealized sampling strategies, we
show how we can assess their performance in a simulation framework
and how a maximum entropy approach, which samples sub-regions
with very different signal intensities, gives the maximally performing
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gold-standard. This latter result has strong implications for the opti-
mum way medium-scale validation experiments should be carried out
to verify the results of the genome-scale tiling array experiments.
Supplementary information: The supplementary materials are
available at http://tiling.gersteinlab.org/hmm/.
Contact: mark.gerstein@yale.edu

1 INTRODUCTION

1.1 Motivation
Tiling arrays are used to survey genomic transcriptional activity
(Bertoneet al., 2004; Chenget al., 2005; Kapranovet al., 2002;
Rinn et al., 2003; Schadtet al., 2004) and transcription factor bin-
ding sites (Buck and Lieb, 2004; Cawleyet al., 2004; Iyeret al.,
2001) at high resolution. The raw/preprocessed data from tiling
array experiments are first processed by certain analysis methods,
which produce a list of predicted genomic “active regions”. These
are either transcriptionally active regions (TARs)/transcribed frag-
ments (transfrags) (Bertoneet al., 2004; Chenget al., 2005; Kampa
et al., 2004; Rinnet al., 2003) or transcription factor binding sites.
Usually a subset of these regions is further studied by experimental
validation, which answers the question of whether these regions are
actually active or not.

With the beginning of projects such as ENCODE (ENCODE Pro-
ject Consortium, 2004), which aims to annotate the genome
sequence with the function of specific elements (e.g. whether they
are regulatory sites, exons or introns), the large scale tiling array
experiments that are carried out present a number of new challen-
ges. One of these is how to build up an existingknowledge base
of validated biological informationabout genomic elements such as
the location of exons and introns or of transcription factor binding
sites, and how to use this knowledge base in combination with the
tiling array data on a limited region of the genome to construct a
predictive model that we can extrapolate to the rest genome in order
to best segment it into functional elements.
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We also have the related problem of how to grow this knowledge
base of validated biological information systematically so as to do
the extrapolation most efficiently. We envision that it will not be
possible to validate every single ChIP-chip experiment binding site,
or every single exon in the human genome using RT-PCR. However,
we can imagine that following the large scale tiling array experi-
ments there will be medium-scale validation experiments done on
thousands of predicted binding sites and gene structures to try to
verify them. The question is: how should these binding sites and
gene structures for validation be picked? They could, of course, be
selected in terms of having the best scores, but one would like to
pick them so as to derive a model that would be best able to analyze
the remainder of the data accurately.

Here we tackle both of these challenges by proposing a hidden
Markov model (HMM) (Rabiner, 1989) framework which integrates
the existingvalidated biological knowledgeabout gene structures
and transcription factor binding sites, and then uses this encapsula-
ted biological knowledge to segment tiling array data. In particular,
we also show how one can systematically pick un-annotated or unla-
beled regions from the tiling array data for further validation to grow
the validated biological knowledge base of labeled examples most
optimally in order to get a maximally predictive model.

We do our analysis side by side on both transcriptional data and
ChIP-chip binding site data. We have two reasons for this. First
of all, it shows the general utility of the approach, that we can
apply the same formalism to tiling array data from both types of
experiments. Second, since data from the two different experiments
have different levels of validated biological knowledge, it allows
us to see how our formalism performs in two areas with different
amounts of knowledge. Finally, because we can get a better handle
of how things work on the better studied transcriptional data, we can
have great confidence that we are applying a correct approach when
segmenting the ChIP-chip data.

1.2 Previous work
In tiling array data analysis, the goal is to identify genomic active
regions with high signal intensities. This procedure can not be
implemented in a naı̈ve fashion, due to the noise in the background
and the possible low signal intensities in some active regions (Hoyle
et al., 2002; Royceet al., 2005). Different statistical algorithms
have been developed to process the tiling array data. Earlier examp-
les include pseudo-median threshold with maxgap/minrun (Karplus
et al., 1999), p-value cutoff with maxgap/minrun (Bertoneet al.,
2004), sliding-window PCA with MD (Schadtet al., 2004), and
variance stabilization (Gibbonset al., 2005). More recently, several
HMM approaches and HMM variants have been developed (Ji and
Wong, 2005; Liet al., 2005; Marioniet al., 2006). Fliceket al.
(personal communication) have also applied an HMM to ChIP-
chip data resulting from tiling array signals characteristic of histone
modifications.

Some of these existing methods, such as maxgap/minrun (Ber-
toneet al., 2004; Kampaet al., 2004), involve parameters that have
to be decided manually. HMM approaches, formerly introduced in
the field of sequence analysis (Eddy, 1998; Karpluset al., 1999;
Krogh et al., 1994), have the advantage of not using any additio-
nal parameters other than the model itself. Liet al. (2005) proposed
the construction of a two-state HMM for ChIP-chip data partially
based on the results of Affymetrix SNP arrays (Lieberfarbet al.,

2003). Ji and Wong (2005), more recently, proposed a more gene-
ral Unbalanced Mixture Subtraction (UMS) approach to recover
different emission distributions in a HMM from a mixture distribu-
tion. However, in some cases, there may exist neither corresponding
experimental results that can be utilized to build the HMM, nor vali-
dated biological knowledge comprehensive enough for an unbiased
evaluation in the UMS analysis.

On the other hand, the use of partially validated knowledge about
the array data, such as gene annotation or experimental validation
results on small genomic regions, has not been specifically consi-
dered by existing methods; and there does not exist a systematic
framework to optimally obtain and utilize this kind of knowledge
in tiling array analysis. Such a framework will have the potential to
better assist the analysis of tiling array data, as the related validated
knowledge becomes more abundant and accurate via experimental
validations.

1.3 Methodology
In this paper we propose a new supervised scoring framework based
on HMM that will consistently score different types of tiling array
data by incorporating validated biological knowledge. As our fra-
mework will be based on both transcriptional and regulatory data,
we can demonstrate its efficiency on the better described transcrip-
tional data so that we have greater confidence when applying it to
the ChIP-chip data.

An integral part of our strategy is developing a scheme to intel-
ligently select sub-regions for validation, in order to better build
up gold standard sets to incorporate into our statistical model. We
investigate the performances of different sample selection schemes
described in section 2 on a simulated dataset in section 4, and pro-
pose to employ theMaxEntropyscheme as a measure for sample
selection: we want to select sub-regions that have the highest entro-
pies for experimental validation first, so as to effectively build up
the validated biological knowledge for our HMM approach.

After the sample sub-regions are selected and their corresponding
state sequences are obtained via further validation experiments or
according to existing validated biological knowledge, a frequency-
based supervised learning algorithm is applied to build the HMM
and then the Viterbi algorithm is utilized to compute the most
likely state sequence for the whole sequence of array signals. Since
current experimental validation data are insufficient to apply our
MaxEntropysampling scheme, we also propose alternative methods
for choosing sample sub-regions. As described in section 3, for
transcriptional tiling array experiments, a four-state HMM can be
constructed by learning from the sequences of probes which fall into
regions of the corresponding gene annotation. For ChIP-chip data,
the knowledge of gene annotation is again relevant to the identi-
fication of binding sites, because transcription factor binding sites
(TFBS) are usually considered to be enriched in upstream regi-
ons of genes and unlikely to occur in inner regions of genes. By
incorporating this knowledge, a two-state HMM can be construc-
ted for further analysis. Empirical results in section 4 show that our
methods effectively handle large datasets, even with relatively noisy
training data.
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2 METHODS

2.1 Idealized definitions of the problem
In this section we give two idealized definitions of the tiling-array analysis
problem, which will form the basis of our core algorithms on both sample
sub-region selection and HMM analysis based on the selected samples.
Definition 1. Idealized HMM Tiling Problem ( HTP). An idealized HMM
tiling problem is a tuple〈D, Csample, O〉, where D is the emission
sequence corresponding to a hidden state sequenceS generated by an
unknown HMMM , Csample is the constraint on how sample sub-regions
can be selected inD (e.g. the maximum length of each sample sub-
sequence), andO is a labeling oracle (an imaginary black box which is
able to answer certain questions) that can discover the corresponding hid-
den state sequence of any sample sub-region inD. A solution to the
problem first selects a set of sample sub-regions inD according to the cons-
traint Csample, asks the labeling oracleO about the corresponding state
sequences of these sample sub-regions, then efficiently computes a model
M ′ for D and outputs the corresponding state sequenceS′ for D.

Labeling Oracle O

probe signal

probe pos
probe signal

probe pos

U1,                             U2,                             U3,          ...

probe pos
V1,                             V2,                             V3,         ...

probe signal

S:

M’

probe pos

probe signal

S’:

Data D 

Sampling according
to C          and D

Labeling probes (e.g.
transcribed or not) in
the sample sub-regions
(according to gene
annotataion, validation
experiments, etc.)

Training the model
based on the samples

Labeling all the  data
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A1. 

A2.  

A3. 

A4. 

A. The idealized HMM Tiling Problem 

B. Possible sampling constraints and corresponding sampling algorithms 

C sample
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Random,                    ,
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inner gene regions (g(t)) =GS-
Overall - GS- ~ GS+ (f(t))
Promoters ~ testing+

(e.g. sufficient validation experiments)

MaxEntropy

Best performance

Fig. 1. Idealized HMM tiling-array analysis problem. (A) Idealized HMM
tiling problem. (B) Sampling constraints and corresponding strategies.

As shown in Figure 1A,S and D, generated byM in the problem’s
assumption, corresponds to the biological state (for instance, transcribed or
not transcribed) sequence and signal intensity sequence of the probes in the
array, preferably after necessary preprocessing such as normalization. The
length of the sequence,L, corresponds to the size of the tiling array. The
solution to the problem, which is also the framework we propose, first selects

m sample sub-regions{U1, U2, ..., Um} in D according to the sampling
constraintCsample, and passes them to the labeling oracleO, which cor-
responds to an experimenter who refers tovalidated biological knowledge
(existing annotation, validation experiments, etc.) and then discovers the
hidden state (label) sequences{V1, V2, ..., Vm} for these small subsets of
neighboring probes in the array. These sub-sequences ofUis andVis form
the samples/training set of our analysis methods. A modelM ′ is then lear-
ned based on this training set, and processed by a decoding algorithm onD,
which outputs the predicted corresponding state sequenceS′ for D.

The sampling constraintCsample corresponds to the possible limitations
in selecting sample sub-regions in real tiling array problems. As shown in
Figure 1B, when experimental validations can be done on any set of genomic
sub-regions, there will be no constraint on sampling at all andCsample

will be equal to null/empty. In the other extreme, if no further validation
experiments can be done and the only available validated knowledge is the
gene annotation related to the transcriptional tiling experiment,Csample

will only allow those sub-regions inside the gene annotation to be selected
(otherwise the labeling oracle will fail to label all the sample sub-regions).
One can imagine intermediate situations between these extremes.

HTP differs from the real problem of tiling array data analysis in two
main aspects. On one hand, the actual state sequenceS of the array data
is not necessarily generated by a certain HMM. Such an HMM assumption
is stated inHTP not only because that it is a reasonable approximation to
the real problem, whose data fits the continuing nature of a HMM, but also
because it is necessary for further performance analysis of the solutions to
this problem. On the other hand, the labeling oracleO (e.g. experimental
validation) in real problems is not always perfect and can make mistakes,
from which we can give a generalization ofHTP in the following definition:
Definition 2. Idealized HMM Tiling Problem with an Imperfect Oracle
(HTPIO). An idealized HMM tiling problem with an imperfect labeling
oracle is a tuple〈D, Csample, OI〉, which has the same definition asHTP,
except that the labeling oracleOI is not perfect and may make mistakes
when discovering the underlying state sequences{V1, V2, ..., Vm} for sam-
ple sub-sequences{U1, U2, ..., Um}. Obviously,HTPIO is a generalization
of HTP.

Here we also define an intuitive metric for the solutionS′ to both
problems:
Definition 3. Error rate of a solution S′ for HTPIO (Error(S′, S)).

Error(S′, S) =
Difference(S′, S)

L
(1)

where the difference of two state sequences is computed as the number of
corresponding elements that do not agree with each other, andS′ andS are
of the same lengthL.

The smaller the error rate, the better is the solution. However, in real
problems it is hard to apply this metric, since the actual hidden sequence
is unknown. This definition only serves as a performance measurement in
section 4 about results on simulated datasets. Other possible performance
measures for real experimental datasets are also discussed in section 4.

A similar problem toHTPIO has been studied by Abe and Warmuth
(1992) in the context of Probabilistic Automata (PA). Our work differs from
theirs in several aspects. First of all, we investigate the problem of sam-
ple sub-region selection whereas they do not. Second, we take errors in the
labeling oracle into consideration. Third, we introduce a more intuitive mea-
surement of error, compared to theKullback-Leibler divergenceof different
PAs in their paper. Last but not least, we seek a time-efficient solution, whe-
reas their work focuses on obtaining sample complexity bounds for learning
the model while ignoring computational efficiency.

As described above,HTPIO asks for solutions to two different kinds of
sub-problems simultaneously: one solution on an effective sub-region samp-
ling scheme and one corresponding solution on an efficient algorithm to
output a good approximation ofS. These two solutions form our HMM fra-
mework, which systematically incorporates validated knowledge into tiling
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array data analysis. In the following two sub-sections, we present efficient
solutions to both sub-problems separately.

2.2 Selection of sample sub-regions
When deciding which sample sub-regions inD should be selected as inputs
to the labeling oracle, we investigate a set of sample selection schemes besi-
des random selection. To simplify discussion, we assume thatCsample is
equal to null/empty and that we are selectingm non-overlapping sample
sub-sequences{U1, U2, ..., Um}, each of lengthk.

Some of these sampling schemes employ entropy as a measure. The first
one of these,MaxEntropy, selectsm non-overlapping sub-regions with the
highest entropies. The second one,UnbiasedEntropy, divides all the sub-
regions into m groups according to their entropy values, and randomly
selects one sub-region out of each group. The third one,MaxMinEntropy,
selectsm/2 sub-regions with the highest entropies andm/2 sub-regions
with the lowest entropies.MaxEntropytends to pick up those sub-regions
that contain both active and inactive probes in the same region (e.g. the tran-
scribed gene regions in transcriptional tiling arrays), while the other two
methods will pick up totally inactive sub-regions as well.

Another sampling scheme,LeastKL, employs a well-known measure
in information theory called“Kullback-Leibler divergence”(Kullback and
Leibler, 1951), betweenD of lengthL and its sub-sequenceUi of lengthk.
Definition 4. Kullback-Leibler Divergence (K-L divergence). Let D and
Ui be probability distributions over a countable domainZ. TheKullback-
Leibler Divergenceof D with respect toUi, dKL(D, Ui) is defined as
follows:

dKL(D, Ui) =
X

z∈Z

PD(z) log2

PD(z)

PUi
(z)

(2)

By convention we let0 log 0 = 0, and0/0 = 1.
Normally we think the smallerdKL(D, Ui), the more similarUi is

to D in terms of their probability distributions overZ. When selecting
sample sub-sequences forHTPIO usingLeastKL, we want to selectm sub-
sequencesUi with the smallestdKL(D, Ui) values. The underlying idea
is to obtain information from those most representative regions for future
learning algorithms.

For tiling array data,D is usually a sequence of uncountable real num-
bers, so the elements inD need to be discretized to integers (either by direct
rounding, or rounding afterlog transformation, depending on the nature of
the data), which requiresO(L) operations. Whenm, k are constants and
m, k << L, an approximate result of them non-overlapping sub-sequences
can be obtained inO(L) for all these schemes.

Empirical results in section 4 show that when the labeling oracle is
perfect, theMaxEntropyandLeastKLsample selection algorithm are supe-
rior to other schemes; when the oracle makes relatively small mistakes,
MaxEntropyalways outperforms other schemes.

2.3 An efficient HMM approach for HTPIO

After the sample sub-sequences and their corresponding state sequences
have been obtained, a frequency-based supervised learning algorithm is app-
lied to build the HMM and then a Viterbi algorithm (Rabiner, 1989; Viterbi,
1967) is utilized to compute the most likely state sequenceS′ for the whole
sequenceD, which is an approximate answer toHTPIO. The forward-
backward algorithm (Rabiner, 1989) can also be used to generate detailed
scores for each element inD, although it will be more time consuming than
the Viterbi algorithm.

The supervised learning algorithm takes as input the sample sub-
sequences{U1, U2, ..., Um} and corresponding state sequences{V1, V2,
..., Vm}, each of lengthk, and outputs the following matrices:

Aij =

P
V ∈{V1,V2,...,Vm} ξS

V (i, j)
P

V ∈{V1,V2,...,Vm} γS
V (i)

(3)

Bik =

P
(V,U)∈{(V1,U1),(V2,U2),...,(Vm,Um)} ξO

V,U (i, k)
P

V ∈{V1,V2,...,Vm} γS
V (i)

(4)

whereξS
V (i, j) is the number of transitions from statei to j in state sequence

V , γS
V (i) is the number of occurrences of statei in V , ξO

V,U (i, k) is the num-
ber of times statei in V emitsk in U . We can then build a discrete HMM
with A as the transition matrix, andB as the emission matrix. We set the
initial state distribution of the HMM to uniform to avoid biased estimation
for this parameter. As long as the initial state distribution is set to a reasona-
ble distribution, it should not have a great impact on the final result whenL is
sufficiently large. When the sample size is relatively small, the discrete emis-
sion matrixB may be ill-formed if estimated directly, in which case we build
a continuous HMM and use kernel density estimation (Parzen, 1962) to con-
struct smoother emission distributions for different states: ifx1, x2, ..., xN

are the observed emissions for a certain state, then its corresponding emis-
sion distribution is computed asP (x) = 1

N

PN
i=1 W (x − xi), where in

this caseW is a Gaussian function with mean0 and predefined varianceσ2.
The supervised learning algorithm runs inO(mk) time, and the Viterbi

algorithm requiresO(n2L) time, wheren is the number of states (which
is 2 or 4 in examples in section 3) in the HMM andL is the length ofD.
Sincemk < L, the total time cost of our solution (sampling, learning, and
decoding) toHTPIO is thusO(n2L), which is comparable to most of the
existing tiling array analysis methods. Results in section 4 show that our
methods handle large datasets effectively.

3 IMPLEMENTATIONS
In this section, we will show that even though at present there may exist too
little experimentally validated data to be incorporated in our HMM approach
described above, other kinds of validated knowledge such as gene annotation
already provide a good basis for our methods in both transcriptional and
ChIP-chip data analysis.

3.1 Incorporating gene annotation in transcriptional
data analysis

In transcriptional tiling array experiments, TARs or transfrags form the
subject of interest. Here the gene annotation of the organism in study
is obviously the validated biological knowledge we should consider to
incorporate into our HMM approach.

Despite its inaccuracy, the knowledge of gene annotation usually involves
a large amount of information. This allows the construction of a four-state
HMM instead of a two-state HMM. The structure of the HMM is illustrated
in Figure 1A in Supplementary figures. Each probe in the tiling array can
be in one of the four HMM states (TAR, NONTAR, and two other interme-
diate transition states), emitting the assigned intensity/score. As shown in
Figure 1B, the parameters of the HMM can be estimated by learning from
both positive and negative samples in the sequences of probes which fall into
regions with known transcription characteristics, in this case, the knowledge
of corresponding gene annotation.

What is more, the choice of annotated genes as the training set conforms
to our MaxEntropy sample selection scheme, since these regions usually
contain both high and low signals, thus having relatively high entropy values.

3.2 Incorporating gene annotation in ChIP-chip data
analysis

For ChIP-chip data, we should first identify the possible knowledge to
incorporate into our HMM approach, since this is not as obvious as for tran-
scriptional data, where gene annotation is an intuitive choice. One option
is the dataset of those experimentally verified regions, which at present is
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usually limited in size and cannot form a valid training set for HMM con-
struction. On the other hand, the knowledge of gene annotations is somewhat
related to the identification of binding sites, since transcription factor bin-
ding sites (TFBS) are usually considered to be enriched in upstream regions
of genes, and unlikely to occur in inner regions of genes. By incorporating
this knowledge, a two-state HMM can be constructed in the following way:

As shown in Figure 1B in Supplementary figures, the HMM contains a
TFBS state0 and a non-TFBS state1. The overall emission distribution
h(t) is computed based on the ChIP-chip data. As shown in Figure 1B, the
emission distribution of the non-TFBS state,g(t), according to the above
discussion, can be estimated based on the knowledge of inner regions in
genes. The emission distribution of the TFBS state,f(t), can then be obtai-
ned by subtractingg(t) from h(t), using canonical FDR procedures. The
transition parameters of the HMM can be estimated based on empirical
knowledge. Actually, iff(t) andg(t) are significantly different from each
other, a small variance in transition parameters should not affect the result of
HMM approach very much.

However, the HMM constructed in this way may not be as effective as
in the case of transcriptional data, since the knowledge involved in the con-
struction does not relate to the TFBS very closely. Further scoring on the
initial analysis results can be done by computing the posterior probabilities
P (Si = k|D) for the predicted states on probes, whereSi is the state of the
ith probe,k is the predicted state, andD is the emitted sequences of the pro-
bes involved. These scores indicate the confidence in every single prediction
and can be used to refine the prediction results obtained by HMM analysis.
The identified active probes can then be ranked according to the overall con-
fidence levels in their regions and a threshold confidence level may either be
set manually or be learned automatically to refine the original results.

3.3 Incorporating other validated knowledge in tiling
array data analysis

Since our HMM framework defined in section 2 provides a general inter-
face for incorporating validated knowledge about the dataset in question,
virtually any such knowledge can be utilized by this approach. For exam-
ple, our framework can take the data from a tiling array experiment, and
select a medium-sized set of sub-regions by using some appropriate analysis
method (e.g. theMaxEntropysampling scheme in section 2.2). These sub-
regions can be further studied by experimental validations, which identifies
the underlying state (e.g. transcribed or not, in a transcriptional tiling array
experiment) of every single probe inside these sub-regions. These know-
ledge form a well-established training set and can then be incorporated into
our HMM approach in the framework, which will lead to more accurate ana-
lysis results than that obtained using only information from the array data.
Since all these can be done systematically within our framework, it actually
provides a way to consistently analyze tiling array data across a number of
experiments and also across different types of experiments.

4 RESULTS

4.1 Performance measurement
We useError(S′, S) defined in section 2.1 as an intuitive measure
to analyze the results on a simulated dataset, where we have access
to the actual hidden state sequenceS. We also investigate some key
issues in our HMM approach, including sample selection, size of
the training set, and error in the training data.

When we analyze the results on real experimental data, it is hard
to get a good estimation ofS, which makes it difficult to compute
the overall error rate. One the other hand, for a rigorous perfor-
mance evaluation like cross-validation, a gold-standard dataset with
exact information is required. Unfortunately, in many cases no such
dataset exists, especially over large genomic regions. In the absence
of such a gold standard, we evaluate the performance of different
methods by comparing their results against the imperfect training

set used in the approach, and also against previous segmentation
results of other non-HMM methods on the same dataset. Further-
more, we investigate how the size and noise of the training set affects
the performance of our HMM approach.

4.2 Results on simulated dataset
A simulation on our framework of the solution toHTPIO proposed
in section 2 was done to investigate its performance. We performed
∼ 17000 trials, each of which solved a randomly generatedHTPIO
of 〈D, Csample, O

I〉, where the lengthL of D is 1M, constraint
Csample specifies thatm = 2i (i = 1, 2, ..., 8) sub-regions, each
of lengthk = 50, should be selected as samples, andOI makes
mistakes randomly with probabilitye = 0, 0.05, 0.1; Error(S′, S)
was computed in each trial for different sample selection schemes
described in section 2.2. The results in Figure 2 (and Figure 2 in
Supplementary figures) show thatMaxEntropyandK-L divergence
based sample selections are superior to other selection schemes
when the labeling oracleOI is perfect. WhenOI makes mista-
kes with a relatively low probability,MaxEntropyoutperforms all
other sampling schemes. We also observe that as the sample size
mk increases, the overall performances of all methods improve,
and become stable when the sample size is larger than∼ 0.013M.
This observation leads to a hypothesis that an intelligently selec-
ted medium-sized training set is sufficient for our HMM approach
on real experimental datasets, which is supported by the results in
section 4.3 as well.

4.3 Results on transcriptional dataset
We tested our method on a transcriptional tiling array dataset which
has25mer oligonucleotide probes tiled approximately every21bp
covering all the non-repetitive DNA sequence of the ENCODE regi-
ons (∼ 30Mb) (ENCODE Project Consortium, 2004). This dataset
is sufficiently large for our performance test, and the corresponding
prediction result of a minrun/maxgap method (Bertoneet al., 2004)
is available as well, which provides a good estimation of the TARs.

We formed the training set (∼ 7.5Mb) from the normalized data-
set by using the method in section 3.1 with the RefSeq annotation
(Pruitt et al., 2005). In order to investigate the performances of our
methods with different-sized training sets, we also randomly selec-
ted a certain portion of the whole training set, and then built a basic
discrete four-state HMM (Figure 1A in Supplementary figures) and
a continuous HMM (by using kernel density estimation) based on
that portion. The portions we selected were1/2, 1/4, 1/8 and1/16
of the whole training set, and every selection was repeated16 times
so that the variance of the corresponding performances could be
estimated empirically. We also built a generalized HMM (GHMM)
(Mohamed and Gader, 2000; Rabiner, 1989) based on the whole
training set to test the possible gain of using a more sophisticated
model which captures length characteristics.

Figure 3 usesYouden’J(Youden, 1950), which isSensitivity +
1−Specificity, as a measure of the overall performances of diffe-
rent methods with different-sized training sets. The sensitivity and
specificity of the HMM prediction results are computed based on
both the whole training set and the previous prediction results of
maxgap/minrun. Figure 3 shows that even when1/4 (∼ 1.9Mb) of
the whole training set is used, our HMM approach gives a perfor-
mance comparable to or better than existing methods, with either
gene annotation or previous prediction results as performance crite-
ria. Another important fact shown in Figure 3 is that the continuous
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Fig. 2. Results on simulated dataset. “Error in Oracle” is the probability
with which OI makes mistakes. (A) Mean of the prediction error rates. (B)
Standard deviation of prediction error rates.

HMM has much more stable performance than the discrete model,
especially when the training set is small (less than1/4 of the whole
training set). This is because the continuous HMM has smoother
emission distribution estimations than the discrete one, and its per-
formance is thus less likely to be affected by a small set of biased
samples. We can also observe that GHMM does not seem to give
significantly better performance than simpler models.

We further computed the posterior probabilities for the predic-
ted states on probes, and set different thresholds to identify TARs.
Figure 4 shows the ROC curves of different models with different
training sets. Again the continuous HMM outperforms the dis-
crete one, and has good performance even with a relatively small
(∼ 1.9Mb) training set. The similarity of A and B diagrams in
Figure 3 and Figure 4 also shows that gene annotation is a good cri-
terion for performance measurement, if we do not have any existing
prediction results to utilize.

The minimum training set guaranteeing good performance for
our approach on this dataset is∼ 1.9Mb, which includes∼ 0.1M
probes. Since the size of the training set needed for satisfying perfor-
mance of our method does not increase with the size of the dataset, it
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Fig. 3. Results on transcriptional dataset: Youden’s J. (A) RefSeq exon regi-
ons are used as positives, and intron regions as negatives. (B) Known TARs
predicted by maxgap/minrun method are used as positives.

seems that if∼ 0.1M probes in this type of tiling array experiment
can be labeled and put into the training set, our method becomes
immediately applicable to identify TARs for the whole dataset. We
also want to point out that the labeling process does not have to be
perfect: in this case, Figure 3A shows that less than60% of the trai-
ning set is actually correct, while Figure 3B shows that our method
has satisfying performance with this training set.

4.4 Results on ChIP-chip dataset
We tested our method on a STAT1 ChIP-chip tiling array dataset
which has50mer oligonucleotide probes tiled approximately every
38bp covering most of the non-repetitive DNA sequence of the
ENCODE regions (∼ 30Mb). This dataset, as in the case of section
4.3, is sufficiently large for our performance test, and the correspon-
ding prediction result of a maxgap/minrun method is available as
well, which provides a good estimation of the TFBSs.

Due to the lack of available validated biological knowledge, we
built a simple two-state continuous HMM (Figure 1B in Supple-
mentary figures) based on the negative training set (∼ 8Kb) from
the normalized dataset by using the method described in section 3.1
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Fig. 4. Results on transcriptional dataset: ROC curves. “hmm 1/2” stands for
the discrete HMM built with1/2 of the whole training set, and so on. (A)
RefSeq exon regions are used as positives, and intron regions as negatives.
(B) TARs predicted by the maxgap/minrun method are used as positives.

with RefSeq annotation, computed the posterior probabilities for the
probes being in NON-TFBS state, and set different thresholds to get
different sets of TFBSs. Figure 5 shows the ROC curves of pre-
dictions by using our HMM approach and a p-value cutoff method.
The inner gene regions are used as negatives, while both previously
predicted TFBSs and the promoter regions in the array are used
as positives. We can observe that the HMM approach has better
performance than the p-value cutoff approach in both criterions.

The near-linear ROC curves in Figure 5B also show that the
promoter regions may not be as good a criterion as the previous
TFBS results. Analogous to the case with transcriptional data, when
experimental validation results become sufficient to form a medium-
sized (covering∼ 0.1M probes) knowledgebase about the dataset
in question, this knowledgebase can be utilized as a performance
measure as well as the training set for our HMM approach.

5 DISCUSSION AND CONCLUSIONS
We present an efficient HMM framework which systematically
incorporatesvalidated biological knowledgeinto tiling array data
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Fig. 5. Results on ChIP-chip dataset: ROC curves. (A) Previously pre-
dicted TFBSs are used as positives, and the inner gene regions as
negatives. The numbers along the ROC curve of HMM result are the
− log10(PP threshold), wherePP is the posterior probability of a probe
being in NON-TFBS state. (B) The promoter regions in the array are used as
positives.

analysis. This framework, which consists of aMaxEntropysample
selection algorithm and HMM learning and decoding approaches, is
proposed based onHTPIO, an idealized definition of the tiling array
analysis problem. Empirical results of our methods in the framework
on a simulated dataset, a transcriptional dataset and a ChIP-chip
dataset show that our framework effectively handles large datasets,
even with a relatively noisy training set.

Our work differs from previous studies in tiling array data analy-
sis by specifically takingvalidated biological knowledgeinto con-
sideration and systematically incorporating it using an empirically
testedMaxEntropysample selection scheme for optimal analysis.
These features ensure the good performance of our framework with
even a relatively small gold standard training set, which has not been
specifically considered by previous methods. In this way our frame-
work can consistently analyze tiling array data across a number of
experiments, and can process different types of array data automati-
cally, without the need to manually set additional parameters. This
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feature will become an advantage for analyzing very large datasets
(e.g. for the∼ 3Gb human genome): when sufficient experimental
validations are done afterwards, amedium-sized(covering∼ 0.1M
probes, according to the empirical results in section 4.3)validated
biological knowledgebasecan be formed for the array data in que-
stion. Our framework can then improve its performance with the
guidance of this medium-sized knowledgebase, and its refined ana-
lysis results can in turn assist further experimental studies. What
is more, in section 4.3 our framework gives good performance by
incorporating some relatively inaccurate biological knowledge (with
approximately60% correctness), and the sub-regions in the training
set are not specifically chosen according to our proposed sampling
scheme. We can expect that for real problems which use validated
biological knowledge from highly accurate experimental validati-
ons, the necessary minimum size of the biological knowledgebase
could be even smaller than∼ 0.1M probes for our framework to
achieve satisfying performance.

Another feature of our method is that given a set of regions with
similar signal intensities, it can identify all the regions in the whole
dataset with similar signal distributions. This feature is potentially
useful for identifying regions with different transcription levels. For
instance, our HMM method can take as the training set all the known
highly expressed genes in the tissue, and then identify all the regions
in the corresponding transcriptional tiling array that have the similar
transcription level.
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