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Abstract 
 
Newly emerged tiling array technology can cover entire genomes in a systematic manner with 
unprecedented resolution. As this new technology is fast gaining popularity, however, a 
streamlined data processing software system for such high-density tiling array experiments is 
largely underdeveloped. Existing data processing software for traditional microarrays cannot be 
used since the considerably larger size and different nature of tiling array data require a new 
analysis approach. Responding to this need, we developed Tilescope, a fully integrated data 
processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a 
completely automated fashion, it will normalize signals between channels and across arrays, 
combine replicate experiments, score each array element, and identify genomic features. At 
major data processing steps, such as normalization and feature identification, several methods 
are available to be chosen from. Given the modular architecture of the pipeline, new analysis 
algorithms can be readily incorporated as they are developed. Tilescope is capable of handling 
very large data sets, such as ones generated by whole genome ChIP-chip experiments, as we 
developed a new data compression algorithm to efficiently reduce the data size for fast online 
data transmission, and the modularity of the pipeline also makes parallel computing and 
multiprocessing possible. Tilescope is designed with a graphic user-friendly interface to 
facilitate a user’s data analysis task, and the results, presented in an organized manner on a web 
page, can be downloaded for further analysis. 
 
 
 
Rationale 
 
Microarray technology is now more accessible than ever before. Thanks to its unrivaled 
capability to carry out a very large number of parallel quantitative measurements, since its 
emergence in the early 1990s [1, 2], this technology has been widely applied to systematic 
studies of various biological phenomena, ranging from differential gene expression, to DNA 
copy number polymorphism, and to transcription factor binding. 
 
Traditional microarrays, constructed by mechanically depositing or printing polymerase chain 
reaction (PCR) products typically of ~1 Kb in length in a dense matrix on a glass slide, have 
been successfully used in numerous studies and have become prevalent in the research field. 
Many computer programs and software tools, including free software packages, such as 
ExpressYourself [3] or MIDAS [4], are available to process and analyze the data sets generated 
in such studies. However, limited by its manufacturing methodology, traditional microarrays 
are not amenable for systematic coverage of large genomes or even some large genomic regions. 
To fully realize the parallel-measurement potential of microarray technology, the current trend 
is to present large genomic regions (e.g., ENCODE regions or a complete human chromosome) 
or even an entire genome on one or several microarrays in an unbiased fashion by using 
oligonucleotides (a.k.a. tiles) uniformly sampled from presented genomic sequences. Recent 
technology breakthroughs [5, 6] made it possible for such oligonucleotides, typically of 25-60 
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bp in length, to be chemically synthesized directly on the microarray slides in a very high density 
(up to 6.6million elements in less than 2 cm2). Such oligonucleotide tiling microarrays, which 
give unprecedented genomic coverage and resolution, can be used for genomic studies of gene 
expression [7-10], chromatin immuno-precipitation (ChIP-chip) [11], copy number variation 
[12], histone modification [13], and chromatin DNaseI sensitivity [14].  
 
Like for any other nascent technologies, ready-to-use data analysis software packages for tiling 
array experiments are hard to find. Existing data processing software for traditional microarrays 
cannot be used since the considerably larger size and different nature of tiling array data require 
a new analysis approach [15]. Recently, a model-based method for tiling array ChIP-chip data 
analysis has been proposed [16]. Two other methods, based on curve fitting [17] and multi-
channel combination [18] respectively, have also been developed for tiling array transcription 
data analysis. The excellent open-source Bioconductor software project [19] provides many 
sophisticated statistical methods written in R for microarray data analysis. However, as a 
software toolbox and a programming environment, it is rather difficult for non-programmers to 
use. 
 
Here we present Tilescope, an automated data processing pipeline for analyzing data sets 
generated in experiments using high-density tiling microarrays. Suitable microarray data 
processing methods, either previously published elsewhere or newly developed, were 
implemented and made available conveniently in a single online software pipeline. It has a user-
friendly interface and is freely accessible over the Web. The software performs data 
normalization, combination of replicate experiments, tile scoring, and feature identification. 
We demonstrate the modular nature of the pipeline design by showing how different methods 
can be plugged in—at major data processing steps, such as normalization and feature 
identification, several methods are available to be chosen from depending on the nature of the 
data and the user’s data-analysis goal. The program can process gene expression and ChIP-chip 
tiling microarray data. The results, presented in a clear, well organized manner, can be 
downloaded for further analysis. 
 
 
 
System implementation and user interface 
 
Tilescope was entirely developed in Java. Java was chosen as the programming language because 
of its build-in threading capability and its excellent library support for graphic user interface 
and networking development. More importantly, it was chosen because of its object-oriented 
nature: the program code is organized into different coherent classes and thus it naturally 
modularizes the system, which greatly facilitates parallel system development and subsequent 
system updating, a desideratum for any software engineering project of non-trivial complexity. 
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As a web-accessible program system, Tilescope is composed of three connected components: an 
applet, a servlet, and a pipeline program. The applet is the graphical interface through which the 
user interacts with Tilescope. It is automatically downloaded and launched inside a Java-
enabled web browser whenever the pipeline web page is browsed. Through the Tilescope applet, 
a user can upload array data files to the pipeline server, select appropriate pipeline parameters 
and methods, run the data processing program, and view or download analysis results. The 
applet, however, cannot run the pipeline program directly. Instead, it makes data processing 
requests to the servlet, a server program that acts as the proxy of the pipeline program on the 
Web and communicates with the applet upon requests. The servlet, the central layer of 
Tilescope, runs two ‘daemon’ threads in the background to handle—i.e., accept and schedule or 
reject based on the current system load—file upload or data processing requests, prepare the 
pipeline running environment, and initiate with user-specified parameters the back-end 
pipeline program, which carries out the heavy lifting—the actual data processing procedure. 
This modular design—the separation between the request handling and the data processing 
itself—enables the usage of a computer farm for parallel computing and multiple concurrent 
processing. 
 
On the web form of the Tilescope applet (Figure 2A), a user can either upload a parameter file, 
if available from a previous use of Tilescope, to have all parameters set accordingly in one easy 
step or set parameters one by one manually, which is more likely to happen if an array data set is 
to be analyzed for the first time. The main body of the form was organized into two panels, one 
for setting the tile scoring parameters and the other for selecting the feature identification 
method, reflecting two main stages of data processing in the pipeline. After the pipeline 
program is started on the server, the users can monitor its progress through pipeline messages, 
which are constantly updated by the server throughout each pipeline run.  
 
When data processing is done, a web page with analysis results will be presented to the user in a 
new browser window (Figure 2B). On the result web page, the parameters and methods that 
were used to analyze the data are summarized at the top, followed by log-intensity scatter plots 
for each array and log-intensity histograms for all arrays in the data set before and after 
normalization. These enlargeable plots enable the user to quickly identify any problematic 
arrays visually and subsequently exclude them from further consideration. Both tile maps with 
log-ratio and P-value annotations and the feature list in various text formats can be downloaded 
for further processing and analysis. The feature list in regular tab-delimited text format gives the 
user the chromosome (or other genomic sequence ID), the genomic start and end coordinates, 
the log-ratio, the P-value, and, if the tiled genome is specified, the upstream and downstream 
genes of each feature. If it is the human genome that is under investigation, Tilescope will also 
provide links to display identified features on custom tracks in the UCSC genome browser. 
Moreover, if the tiling array was designed from a previous human genome build (e.g. hg16, 
NCBI 34), Tilescope will also provide an additional feature list with the coordinates lifted over 
to the current human genome build (e.g. hg17, NCBI 35). 
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Data processing in Tilescope 
 
Tilescope processes the data in a sequential fashion using the major steps shown in Figure 1A. 
These steps can be approximately grouped into three stages: data input, tile scoring, and feature 
identification. Here, we use the data set from a ChIP-chip experiment of the transcription 
factor STAT1 to demonstrate how high-density tiling microarray data are processed by 
Tilescope. We compared features of Tilescope and several other programs that are explicitly 
applicable to high-density tiling microarray data, and the result is tallied in Table 1. 
 
 
Data input 
 
The data input to Tilescope reside in tab-delimited text files generated by image analysis 
software. Currently, Tilescope recognizes data files in Affymetrix, Pair [20] and GFF [20, 21] 
formats. Whenever available, GFF format is always recommended since it is a more 
standardized format and thus less problematic for processing. Although the aforementioned 
formats are not fully inter-compatible, they all provide the essential data, namely the 
chromosomes (or other genomic identifiers, such as Contig IDs and ENCODE region IDs), 
the genomic coordinate, and the fluorescence intensity (Tilescope automatically detects the 
base-two logarithm of intensity) for each array element.  
 
 
Data format optimization and standardization 
 
The tab-delimited text files generated by different image analysis software are exceptionally 
large in size and can have different ASCII formats. This raises several issues. First, large files 
require large disk storage space, long transmission time, and long file access time. Second, the 
result of a single microarray experiment could be specified by several files, such as both the 
design and the data files, which can be problematic to handle and organize. Third, various file 
formats require different programs to parse the data. Although currently several open 
specifications, like MIAME and MAGE-ML, are available to standardize the array data format, 
these standards usually neglect the data size issue and require users to provide information more 
than necessary and thus are cumbersome for regular data analyses. 
 
Not only did we implement Tilescope to support various formats of the input data file—the 
GFF format, the PAIR format, the NimbleGen format (POS + GFF/PAIR), and the 
Affymetrix format (BPMAP + CEL), but also developed a new algorithm (Supplementary 
Table 1-3) that can reduce the physical data file size, handle the data set in an organized manner, 
and enhance the performance of Tilescope. In order to reduce the data size, we store the data 
values as their primitive types rather than in ASCII format. For example, an integer 
‘147,971,601’ will occupy 9 bytes in an 8-bit ASCII format but only 4 bytes in our format. 
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Another example is the nucleotide sequence. A sequence such as 
‘TCGAGGCCTTAAGCTCTTGAGAGGT’ will occupy 25 bytes in ASCII but only 7 bytes 
in our format since we use two bits to represent each base. After optimizing the data file 
representation, we compress all the files, including the meta-files storing the information 
describing those data files, into one single archive file.  
 
Our bit optimization approach not only achieves significant file size reduction but also enables 
us to efficiently locate by random access a particular record for a certain set of coordinates when 
necessary. This is because we store every entry in a fixed number of bits and sort all the entries 
by their coordinates, so that the offset of the record in the byte stream can be easily calculated 
given that all the data are in contiguous coordinates. Moreover, an even higher compression rate 
can be obtained if a ‘DEFLATE’ algorithm [22] is applied after the array data is optimized than it 
is not (Supplementary Table 3). This is especially advantageous for file transfer over the 
network. 
 
Since our algorithm allows us to select which data columns in the text files to be included, it 
omits any unnecessary information in the original data set and consequently further reduces the 
size of the file to be transmitted. This capability, together with the aforementioned 
improvements, can reduce the size of the original data set by up to 90%. This size reduction 
greatly reduces the amount of time required to transmit the data from the client computer to 
our pipeline server over the Internet. To ensure the consistency of the data file processing, we 
convert the archived data files into the standardized GFF format on the pipeline server. As a 
result, the data files can always be processed in a consistent manner. 
 
 
Data normalization 
 
Unlike printed PCR arrays, the array elements (oligonucleotides) of a tiling microarray are 
directly synthesized on the array slide. Direct in situ synthesis creates morphologically uniform 
array elements, which to a large degree obviates the need for spot filtering, an imperative 
procedure for PCR microarray data analysis. Moreover, direct oligonucleotide synthesis makes 
it possible to have a very large number of spots in a small area (thus high-density). Miniature 
slide design of the tiling microarrays allows more uniform hybridization and thus greatly 
reduces the spatial heterogeneity in the probing conditions across the slide, a potentially severe 
problem suffered by PCR microarrays. 
 
For each array in an experimental set, the relative contributions of the test and reference signals 
are compared. Ideally, if nucleic acid probes have equal concentration in the test and reference 
samples, the signals of the two dyes should be approximately equal (i.e., the ratio of the two 
signals should be close to one for probes hybridizing to an equal degree in both fluorescence 
channels). In practice, the signals can be rather different due to different chemical properties of 
dyes and nonspecific or incomplete hybridization to the array. Normalization is used to 
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compensate for these effects by—depending on what method is being used—either applying a 
scale factor to equalize signals from probes with unchanged concentration or imposing the same 
empirical distribution of signal intensities. We put together and implemented standard 
statistical methods that were described in various literature sources and made them 
conveniently available for tiling array data analysis. At present Tilescope can normalize tiling 
array data by mean/median, loess, or quantile normalization (Figure 1B). These methods have 
also been implemented elsewhere, most notably in Bioconductor R packages. The 
mean/median and the loess normalization methods are both available in the "marray" package. 
The ‘affy’ package contains another implementation of the loess and the quantile normalization 
methods. In addition, other publicly available software, such as TM4 [4] and TAS/GTRANS, 
provides some similar functionalities for array data normalization. These methods are 
summarized below with appropriate references. 
 
Mean/median normalization. Normalization by mean or median [3], the so-called ‘constant 
majority’ methods, is based on the assumption that the majority of genes do not change their 
expression level in response to the experimental perturbation [23]. It is carried out by 
subtracting the mean or median of the base-two logarithm of the ratio of test to reference signal 
intensities from the log-ratio value of each tile on a single array. This procedure transforms the 
log-ratio distribution by centering it at zero. The mean is the maximum likelihood estimator of 
the long-term trend in the data while the median is more robust to the outliers in the data. In 
theory, they are different measures of the location of a distribution. In practice, however, 
because the mean and the median of the log-intensities from the probes on each array are often 
very close to each other, these two methods usually give very similar results. The advantages of 
these two methods include the easiness of their implementation and their robustness to the 
violation of the assumption—they remain applicable even in cases where up to 50% of probes 
have altered concentrations.  
 
Loess normalization. Loess normalization [3, 24, 25] normalizes array data between channels 
and removes the intensity-specific artifacts in the log-ratio measurements simultaneously. Like 
normalization by mean or median, loess normalization is also performed on an array-by-array 
basis. For each array, Tilescope first uniformly samples 50,000 log-ratio values from the original 
data, and then performs the locally weighted regression on the sampled data. The dependency 
of the log-ratio on the intensity is removed by subtracting predicted log-ratio based on the loess 
regression from the actual log-ratio, and the new test and reference log-intensities after 
normalization are recovered from the residuals. The main disadvantage of Loess normalization 
is that the locally weighted regression is computationally intensive, and thus the necessity of 
using sampled data instead of the original, much larger data set. Since loess normalization is 
carried out for each array one by one, even after data sampling, it remains expensive to use. 
 
Quantile normalization. Unlike the normalization methods discussed above, quantile 
normalization [25] not only normalizes data between channels and across arrays simultaneously 
but also removes the dependency of the log-ratio on the intensity in one step. It imposes the 
same empirical distribution of intensities to each channel of every array. To achieve this, 
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Tilescope first creates an n×2p (log) intensity matrix M, where n is the number of tiles on an 
array and p is the number of arrays in an experimental data set, and then sorts each column of M 
separately to give Ms. Afterwards, it takes the mean across rows of Ms and creates Ms', a matrix 
of the same dimension as M, but where all values in each row are equal to the row means of Ms. 
Finally, Tilescope produces the quantile-normalized (log) intensity matrix Mn by rearranging 
each column of Ms' to have the same ordering as the corresponding column of M. Quantile 
normalization is fast and has been demonstrated to outperform other normalization methods 
[25]. Thus it is the default normalization method used by Tilescope. 
 
 
Tile scoring 
 
Some arrays are designed to tile genomic sequences of both strands and most array experiments 
are conducted in replicate. To facilitate subsequent data processing, Tilescope pools the 
normalized log-ratios of all tiles on every array into a matrix and sorts them based on the tiles’ 
genomic locations regardless of which strand they come from. At the tile scoring step, the 
program identifies tiles that exhibit differential hybridization. Depending on the nature of the 
experiment, these tiles ultimately correspond to genes whose expression levels have changed or 
the locations of transcription factor binding sites (TFBSs). 
 
Compared with traditional PCR arrays, tiling arrays accommodate a much larger number of 
array elements, which are in situ synthesized oligonucleotides, typically dozens of nucleotides 
long. However, there is a trade-off for better coverage of the genome: as the average length of 
the array elements gets smaller, the variance of data increases due to the rise of the relative 
magnitude of random noise and the possibility of cross-hybridization and sequence artifacts. To 
deal with this problem, Affymetrix used a different method to score (one-channel) tiling arrays 
[10, 26] than the one used for PCR arrays: instead of considering each tile across array 
replicates separately, they used a sliding window around each tile to incorporate the 
hybridization intensity of its neighboring tiles. In our implementation of this method in 
Tilescope, we modified it by adding a nonparametric statistical test to assess the significance of 
the intensity difference between the test and the control samples at each tile. This extension 
enables us to score each tile using two different criteria. Moreover, we also adapted the original 
method to NimbleGen two-channel tiling arrays data, which in effect significantly increased the 
usability of this method. 
 
For each tile, given its neighboring tiles across replicates, Tilescope calculates the pseudo-
median log-ratio value as its signal. The pseudo-median (a.k.a. the Hodges-Lehmann estimator) 
of the log-ratio is a nonparametric estimator of the difference between the logged intensities of 
the test sample and those of the reference sample. It is calculated for each tile using a sliding 
window. The tiles from all arrays in a sliding window are first collected into a tile set, and the 
pseudo-median is calculated for this window as S = median[ (log-ratioi + log-ratioj)/2 ] from all 
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(i, j) pairs of tiles in the tile set. As a nonparametric estimator, pseudo-median is less susceptible 
to distributional abnormalities (such as skewness, unusual kurtosis, and outliers). 
 
Due to the small sample size in each sliding window, whether the intensity distribution is 
normal or not in a given window cannot be reliably assessed. Without making the normality 
assumption about the intensity distribution, Tilescope uses the nonparametric Wilcoxon 
signed-rank test [27] to compare the test with the reference signal intensities and quantifies the 
degree of significance by which the former consistently deviates from the latter across each of 
the sliding windows. It tests the null hypothesis that the median of the probability distribution 
of the differences between the logarithm of the intensities from the test sample and those from 
the reference sample is zero.  
 
At the scoring step, Tilescope generates two tile maps, the signal map and the P-value map 
(Figure 1C). Two values are calculated for each tile position: the pseudo-median of log-ratios, as 
a measure of the fold enrichment of the hybridization signal in the test sample over the 
reference at this genomic location and the probability, the P-value, that the null hypothesis—
the local intensities of the test and the reference samples are the same—is true. In a recent study 
of transcript mapping with high-density tiling arrays, Huber et al. [17] used a different 
approach to score tiles. Their method does not assess intensity difference at individual tiles. 
Instead, it tries to find a step function that best fits the log-ratio intensities along genomic 
coordinates.  
 
 
Feature identification 
 
Given the tile map annotated with pseudo-medians and P-values, Tilescope filters away tiles 
that are below user-specified thresholds. Retained tiles are used to identify either deferentially 
expressed genes or TFBSs. Currently Tilescope users can choose one of three methods to 
identify such features (Figure 1D). The first method, ‘max-gap and min-run’, is an well-used 
method, initially used by Cawley et al. [26] to analyze their ChIP-chip tiling array data. The 
second method, ‘iterative peak identification’, is a new method that we developed to find 
genomic features iteratively. The third method, whose theoretical development is described in 
full details elsewhere [28], effectuates file segmentation by using a ‘hidden Markov model’ 
(HMM) explicitly built on validate prior knowledge. 
 
Max-gap and min-run. Based on the observation that a tile is usually too short to constitute a 
feature alone, the first method, modified from the scoring scheme used in Cawley et al. [26] and 
Emanuelsson et al. [29], groups together qualified tiles that are close to each other along the 
genomic sequence into ‘proto-features’ and then discards any proto-features that are too short. 
To use this method, a user needs to specify the maximum genomic distance (‘max-gap’) below 
which two adjacent qualified tiles can be joined and the minimum length (‘min-run’) of a 
proto-feature for it to be qualified as a feature. 
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Iterative peak identification. The second method, which we have recently developed and 
implemented as part of the pipeline, does not group tiles above thresholds into features. Instead, 
it identifies local signal ‘peaks’ in an iterative fashion. This method was developed to generate 
lists of non-overlapping features of a uniform genomic size. 
 
Taking the signal map that has been generated in the tile scoring step using window-smoothing 
to integrate the data from multiple replicate arrays, this method first identifies the tile (‘point 
source’) that corresponds to the peak in the signal map with the global maximum signal that 
also meets a predefined P-value threshold. A feature is then created centered at the genomic 
position of the peak with a predefined genomic size. We choose a feature size that is comparable 
with the average size of the fragmented ChIP DNA (typically ~ 1Kb). The feature is assigned a 
signal measurement from the associated peak. 
 
All tiles within a predefined distance from the located ‘peak’ are then removed from the signal 
map data. Typically the distance is the same size as the selected features, though it can be larger. 
This is to ensure that apparent ‘secondary peaks’ in the signal maps that are really part of the 
same feature are not separately identified. The procedure is then iterated to find the next 
maximum ‘peak’ in the remaining signal map data. The iteration generates a list of features 
ranked by ‘peak’ signals and terminates when the identified ‘peak’ signal is below a specified 
signal enrichment threshold.  
 
Hidden Markov model. The third method uses a supervised scoring framework based on 
hidden Markov models to predict and score features in the genome tiled on the microarray [28]. 
Our method differs from previous HMM-based studies [30-32] by specifically taking validated 
biological knowledge (e.g. experimental validation, gene annotation, etc.) into consideration and 
systematically incorporating it to score different types of array assays within the same 
framework.  
 
For identification of transcriptionally active regions (TARs)/transcribed fragments (transfrags) 
in transcriptional tiling array data, a four-state (TAR, non-TAR, and two other intermediate 
transition states) HMM is constructed using the knowledge of gene annotation (information of 
the probes that fall into annotated gene regions). For ChIP-chip data, a two-state (TFBS and 
non-TFBS) HMM is constructed by using the knowledge of inner regions in genes to estimate 
the signal emission distribution g(t) of the non-TFBS state, and by using the subtraction of g(t) 
from the overall emission distribution h(t) to estimate the emission distribution f(t) of the 
TFBS state. In a more general ideal scenario, our framework first selects a medium-sized set of 
sub-regions by using some appropriate analysis methods (e.g. the MaxEntropy sampling scheme 
discussed in [28]), and then utilizes the knowledge in these sub-regions as the training set to 
build the model for accurate analysis. 
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Further scoring on the initial analysis results can be also done by computing the posterior 
probabilities of each probe being active. The scores indicate the confidence in every single 
probe-level prediction and can be used to refine the previous analysis results by HMM. For 
instance, the identified active probes can be ranked according to the overall confidence levels in 
their regions and a threshold confidence level may either be set manually or be learned 
automatically to refine the original results. 
 
Method comparison. We compared the performance of these three feature identification 
methods using a well-studied STAT1 ChIP-chip data set. Composed of three technical 
replicates, this data set was used to identify a list of STAT1 binding sites in the ENCODE 
regions [33]. These sites were later experimentally tested. We analyzed this data set using 
Tilescope and generated three STAT1 binding site lists, each by a different feature 
identification method. Since identical tile scoring and thresholding parameters were used, the 
difference among these three lists reflects the underlying difference among the three feature 
identification methods. By using the list of the experimentally tested STAT1 binding sites, we 
were able to assess the sensitivity and specificity of each method. The receiver operating 
characteristic (ROC) curves in Figure 3 indicate that while in general the three feature 
identification methods implemented in Tilescope have similar performance, the ‘iterative peak 
identification’ method is appreciably more sensitive at high (> 95%) specificity. 
 
 
 
Conclusions 
 
Summary 
 
Tilescope is an online software pipeline for processing high-density tiling microarray data. In a 
completely automated fashion, it will normalize signals between channels and across arrays, 
combine replicate experiments, score each array element, and identify genomic features. The 
program can process data from most gene expression, ChIP-chip, and CGH experiments. 
Tilescope is designed with a graphical user-friendly interface to facilitate a user’s data analysis 
task, and the results, presented in a clear, well organized manner on a web page, can be 
downloaded for further analysis. 
 
 
Future improvements 
 
Tilescope is under active development: it is continually updated as better data processing 
methods become available.  
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Availability 
 
Tilescope is freely accessible for use at http://tilescope.gersteinlab.org. The source code of the 
pipeline is available at http://tilescope.gersteinlab.org/download.html. 
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Tables 
 

Table 1 Feature comparison between tiling microarray data analysis software 1 

 Tilescope Bioconductor 2 TAS 3 MAT 4 TileMap 

Implementation Web R packages Standalone Standalone Standalone 

Graphic user interface √ 5 × √ × × 
Intended usage:      

 − Transcription data √ √ √ × √ 
 − ChIP-chip data √ √ × √ √ 
Applicable array platform:      

 − Affymetrix √ √ √ √ √ 
 − NimbleGen √ × × × × 
Data normalization:      

 − Mean/median √ ~ √ / × 
 − Loess √ ~ × / × 
 − Quantile √ ~ × / √ 
Feature identification:      

 − Max gap and min run √ ~ √ / √ 
 − Iterative peak identification √ (new) × × / × 
 − Hidden Markov model √ ~ × / √ 

1. Only programs explicitly applicable to high-density tiling microarray data were considered. The websites of the compared 
programs are listed as follows: 

Tilescope: http://tilescope.gersteinlab.org/ 
Bioconductor : http://www.bioconductor.org/ 
TAS: http://www.affymetrix.com/support/developer/downloads/TilingArrayTools/index.affx 
MAT : http://chip.dfci.harvard.edu/~wli/MAT/ 
TileMap : http://biogibbs.stanford.edu/~jihk/TileMap/index.htm 

2. Strictly speaking, Bioconductor is not a ready-to-run program. It is a collection of software packages/libraries written in R. 
As a tool box, the analysis methods that it provides need to be written in an R program to run. 

3. TAS is previously known as GTRANS. 
4. MAT standardizes the probe value through the probe model, which obviates the need for sample normalization. 
5. Comparison symbols used in the table:  

√, available;  
×, not available;  
~, available but need to be programmed;  
/, not applicable. 
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Figure Legends 
 
Figure 1. Tiling array data processing by Tilescope. (A) Flow chart of major data processing 
steps. Yellow icons represent data in user-accessible files, and blue ones data in the pipeline 
program memory. See main test for details. (B) Log-intensity scatter plots of a tiling array from 
the STAT1 experiment set before and after normalization by four different methods. The first 
panel is the log2T verses log2R plot before normalization, where T and R are test intensity and 
reference intensity respectively. The gray line represents where these two log-intensities are 
equal. The second panel is log2(T/R) verses log2(T×R)1/2 plot (the MA plot) before 
normalization. The dependency of the log-ratio on the intensity, evinced by a fitted loess curve, 
is prominent in the data. The rest panels are the MA plots of array data after mean, media, loess, 
or quantile normalization. They clearly show that the distribution of log-ratios are centered at 
zero by all normalization methods, but the intensity-specific artifacts in the log-ratio 
measurements are removed by only loess or quantile normalization but not by the mean- or 
median-based method. (C) Signal and P-value maps of all tiles in the ENCODE ENm002 
region. In this region, the tiles near the transcription start site of IRF1, a transcription factor 
known to be regulated by STAT1, give the strongest signals. (D) Tilescope-identified STAT1 
binding sites at the 5'-end of IRF1 are shown on the custom track in the UCSC genome 
browser. 
 
Figure 2. Screenshots of Tilescope. (A) The applet of Tilescope, the graphic user interface of 
the pipeline. (B) An example of data analysis result web page. 
 
Figure 3. The ROC curves of the three feature identification methods implemented in 
Tilescope. The comparison of the performance of these methods was based on a well-studied 
STAT1 ChIP-chip data set and a list of experimentally tested STAT1 binding sites.  
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Supplementary material 
 
Technical Details of the Optimization Algorithm 
 
Nearly all the data files and design files of microarray are tab delimited. Generally speaking, each 
line in the files represents a data record and each tab delimited field represents a particular type 
of data (see Supplementary Table 1). For example, the first column of the data in a GFF file is a 
sequence name. Since different columns represent different data types, the data value in a 
column could be a string, number, decimal, nucleotide sequence, or etc. For example, the sixth 
column, which represents the X coordinate of a microarray, in a PAIR file is in number format. 
Due to the fact that these data types are already known in each format, we could take this 
assumption and optimize the data storage according to their types. As mentioned before, 
storing the data in ASCII format makes the file larger than it should be if compared to storing 
the data in their primitive types or any other optimal types. For instance, a 32 bit integer 
requires 10 bytes in ASCII but only 4 bytes in its primitive type. A more extreme case would be 
the nucleotide sequence. Since a nucleotide of DNA can only be A, T, C, or G, we actually only 
need to use 2 bits to store each nucleotide so that one byte can already store 4 nucleotides. 
 
As a result, our optimization algorithm mainly focuses on converting these kinds of data into a 
more optimal format. To achieve this, we created a configuration file containing the 
information of the data column for different microarray file formats (see Supplementary Table 
2). We also created a set of Java API which parses these files and optimizes the data according to 
the configuration file. We found that the size of the optimized data is reduced significantly if 
compared to the original size although the compression ratio is not as good as Zip. However, we 
also found that a higher compression ratio can be achieved if we zip the optimized data instead 
of the raw data (see Supplementary Table 3). To this end, we chose to first optimize our input 
data using our optimization algorithm and then bundle the optimized data with its 
configuration file using zip. This helps reducing the overall file size substantially and so the 
transfer time. Therefore, our optimization algorithm is not replacing any compression 
algorithm but enhancing the compression ratio. An added advantage of our algorithm is that it 
enables us to locate a data record more easily. This is because we store every data entry in a fixed 
number of bits and sort all the entries by their coordinates, so that the offset of a particular 
record in the byte stream can be easily calculated by their coordinates given that all the data are 
in contiguous coordinates. Although our format is capable of locating a record faster, we instead 
chose to convert this “middle” format into the standard GFF format for processing 
independent of the original format of the data. This ensures our processing consistency as we 
only need to deal with a single format and the most important reason is that we will be able to 
give the users back their data in a standard format later if necessary. 
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Supplementary Table 1 The meaning of columns of various tab-delimited input data file formats. 

1 2 3 4 5 6 7 8 9 10 
 
GFF format 

Seq. 
Name 

Source Feature Start 
Pos. 

End 
Pos. 

Score Strand Frame Group — 

PAIR format 
Image ID Gene Exp. 

Opt. 
Seq. ID Probe 

ID 
Pos. X Y Match 

Index 
Perfect 
Match 

Mis-
match 

POS format 
Seq. ID Seq. Name Position Probe 

ID 
Count Length — — — — 

BPMAP format 
X Y Seq. 

Name 
Pos. Probe 

Seq. 
— — — — — 

CEL format 
X Y Mean SD No. of 

Pixels 
— — — — — 

Note: We assume all the data files, including the design files if any, are in tab delimited format. The data type of 
each column of data of each format is defined in an XML configuration file. In the configuration file, it also 
stores the file type, namely ‘design’ and ‘data’, of each supported format.  
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Supplementary Table 2 Attributes of the element tag defined in the configuration file §. 

Type Minimum value Maximum value Decimal Size (example) 

Number The minimum 
possible integer 

The maximum 
possible integer 

— 4 bytes (147,971,601) 

Decimal The minimum 
possible integer 

The maximum 
possible integer 

Number of 
decimal places 

3 bytes (65535.99) 

Text Unused (0) The maximum 
number of 
characters 

— 6 bytes (N10023) 

Nucleotide 
Sequence 

Unused (0) The number of 
bases in the 
sequence 

— 7 bytes † 

Highly  
Repetitive  
String 

Unused (0) The maximum 
possible number 
of unique strings 

— 1 byte ‡ 

§ ‘Type’, ‘Min’, ‘Max’, and ‘Decimal’ are the attributes that define the data type of a column in a 
data file. 
†. A string of 25 bases (e.g., AAACGAATTGCCATTAGGCCATTAG) 
‡. 256 unique strings. 
Note: Following is an example of the definition of the Affymetrix design file format in the 
configuration file: 

<dataset type="design" format="txt"> 
 <elements> 
  <element name="x" min="0" max="65535" type="number" disabled="false" /> 
  <element name="y" min="0" max="65535" type="number" disabled="false" /> 
  <element name="seq" min="0" max="255" type="hrString" disabled="false" /> 
  <element name="pos" min="0" max="2147483647" type="number" disabled="false" /> 
  <element name="probe" min="0" max="25" type="sequence" disabled="false" /> 
 </elements> 
</dataset> 

The ‘name’ attribute is the column identifier used in the API to retrieve back the data 
corresponding to that column. The 'disabled' attribute indicates if the data of that column should 
be converted.  
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Supplementary Table 3 File size reduction by Zip and our optimization algorithm. §, † 

 Design File Data File All Files 
Affymetrix:    

 Original 36 37.5  73.5
 Zip 11.9 7.7  19.6
 Optimization 11.5 10.9  22.5
 Optimization+Zip — —  12.1 83.5% ‡ 

NimbleGen:  
 Original 16.4 32.4  48.8
 Zip 2.3 6.1  8.4
 Optimization 10.6 5.8  16.4
 Optimization+Zip — —  6.8 86.1% ‡ 

§. This table compares the size of two different sets of sample input files, an Affymetrix data set and a 
NimbleGen data set, before and after optimization and zip. “Original”, “Zip”, and “Optimization” 
represent the original, zipped, and optimized size of the data respectively. “Optimization+Zip” 
represents the size of the data zipped after optimization. 
†. File size is in MB. 
‡. Percentage of total file size reduction. 
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