
 1

Tilescope: online analysis pipeline for high-density tiling microarray data

Zhengdong D. Zhang1, Joel Rozowsky1, Hugo Y.K. Lam2, Jiang Du3,
Michael Snyder4, Mark Gerstein1,3, §

1 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
06520, USA; 2 Interdepartmental Program in Computational Biology and Bioinformatics, Yale
University, New Haven, CT 06520, USA; 3 Department of Computer Science, Yale University,

New Haven, CT 06520, USA; 4 Department of Molecular, Cellular and Developmental
Biology, Yale University, New Haven, CT 06520, USA;

§ Corresponding author (E-mail: zdzmg@bioinfo.mbb.yale.edu)

E-mail addresses:
Zhengdong D. Zhang: zhengdong.zhang@yale.edu

Joel Rozowsky: joel.rozowsky@yale.edu
Hugo Y.K. Lam: hugo.yk.lam@yale.edu

Jiang Du: jiang.du@yale.edu
Michael Snyder: michael.snyder@yale.edu

Mark Gerstein: mark.gerstein@yale.edu

Running title: microarray data analysis pipeline

Key words: high-density tiling microarray,
high-density oligonucleotide microarray,

microarray data analysis

For test data sets, sample result web pages, and annotation of a result web page, please visit
http://tilescope.gersteinlab.org/sample.html

To test Tilescope, first please read the direction outlined at
http://tilescope.gersteinlab.org/test.html

 2

Abstract

Newly emerged tiling array technology can cover entire genomes in a systematic manner with
unprecedented resolution. As this new technology is fast gaining popularity, however, a
streamlined data processing software system for such high-density tiling array experiments is
largely underdeveloped. Existing data processing software for traditional microarrays cannot be
used since the considerably larger size and different nature of tiling array data require a new
analysis approach. Responding to this need, we developed Tilescope, a fully integrated data
processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a
completely automated fashion, it will normalize signals between channels and across arrays,
combine replicate experiments, score each array element, and identify genomic features. At
major data processing steps, such as normalization and feature identification, several methods
are available to be chosen from. Given the modular architecture of the pipeline, new analysis
algorithms can be readily incorporated as they are developed. Tilescope is capable of handling
very large data sets, such as ones generated by whole genome ChIP-chip experiments, as we
developed a new data compression algorithm to efficiently reduce the data size for fast online
data transmission, and the modularity of the pipeline also makes parallel computing and
multiprocessing possible. Tilescope is designed with a graphic user-friendly interface to
facilitate a user’s data analysis task, and the results, presented in an organized manner on a web
page, can be downloaded for further analysis.

Rationale

Microarray technology is now more accessible than ever before. Thanks to its unrivaled
capability to carry out a very large number of parallel quantitative measurements, since its
emergence in the early 1990s [1, 2], this technology has been widely applied to systematic
studies of various biological phenomena, ranging from differential gene expression, to DNA
copy number polymorphism, and to transcription factor binding.

Traditional microarrays, constructed by mechanically depositing or printing polymerase chain
reaction (PCR) products typically of ~1 Kb in length in a dense matrix on a glass slide, have
been successfully used in numerous studies and have become prevalent in the research field.
Many computer programs and software tools, including free software packages, such as
ExpressYourself [3] or MIDAS [4], are available to process and analyze the data sets generated
in such studies. However, limited by its manufacturing methodology, traditional microarrays
are not amenable for systematic coverage of large genomes or even some large genomic regions.
To fully realize the parallel-measurement potential of microarray technology, the current trend
is to present large genomic regions (e.g., ENCODE regions or a complete human chromosome)
or even an entire genome on one or several microarrays in an unbiased fashion by using
oligonucleotides (a.k.a. tiles) uniformly sampled from presented genomic sequences. Recent
technology breakthroughs [5, 6] made it possible for such oligonucleotides, typically of 25-60

 3

bp in length, to be chemically synthesized directly on the microarray slides in a very high density
(up to 6.6million elements in less than 2 cm2). Such oligonucleotide tiling microarrays, which
give unprecedented genomic coverage and resolution, can be used for genomic studies of gene
expression [7-10], chromatin immuno-precipitation (ChIP-chip) [11], copy number variation
[12], histone modification [13], and chromatin DNaseI sensitivity [14].

Like for any other nascent technologies, ready-to-use data analysis software packages for tiling
array experiments are hard to find. Existing data processing software for traditional microarrays
cannot be used since the considerably larger size and different nature of tiling array data require
a new analysis approach [15]. Recently, a model-based method for tiling array ChIP-chip data
analysis has been proposed [16]. Two other methods, based on curve fitting [17] and multi-
channel combination [18] respectively, have also been developed for tiling array transcription
data analysis. The excellent open-source Bioconductor software project [19] provides many
sophisticated statistical methods written in R for microarray data analysis. However, as a
software toolbox and a programming environment, it is rather difficult for non-programmers to
use.

Here we present Tilescope, an automated data processing pipeline for analyzing data sets
generated in experiments using high-density tiling microarrays. Suitable microarray data
processing methods, either previously published elsewhere or newly developed, were
implemented and made available conveniently in a single online software pipeline. It has a user-
friendly interface and is freely accessible over the Web. The software performs data
normalization, combination of replicate experiments, tile scoring, and feature identification.
We demonstrate the modular nature of the pipeline design by showing how different methods
can be plugged in—at major data processing steps, such as normalization and feature
identification, several methods are available to be chosen from depending on the nature of the
data and the user’s data-analysis goal. The program can process gene expression and ChIP-chip
tiling microarray data. The results, presented in a clear, well organized manner, can be
downloaded for further analysis.

System implementation and user interface

Tilescope was entirely developed in Java. Java was chosen as the programming language because
of its build-in threading capability and its excellent library support for graphic user interface
and networking development. More importantly, it was chosen because of its object-oriented
nature: the program code is organized into different coherent classes and thus it naturally
modularizes the system, which greatly facilitates parallel system development and subsequent
system updating, a desideratum for any software engineering project of non-trivial complexity.

 4

As a web-accessible program system, Tilescope is composed of three connected components: an
applet, a servlet, and a pipeline program. The applet is the graphical interface through which the
user interacts with Tilescope. It is automatically downloaded and launched inside a Java-
enabled web browser whenever the pipeline web page is browsed. Through the Tilescope applet,
a user can upload array data files to the pipeline server, select appropriate pipeline parameters
and methods, run the data processing program, and view or download analysis results. The
applet, however, cannot run the pipeline program directly. Instead, it makes data processing
requests to the servlet, a server program that acts as the proxy of the pipeline program on the
Web and communicates with the applet upon requests. The servlet, the central layer of
Tilescope, runs two ‘daemon’ threads in the background to handle—i.e., accept and schedule or
reject based on the current system load—file upload or data processing requests, prepare the
pipeline running environment, and initiate with user-specified parameters the back-end
pipeline program, which carries out the heavy lifting—the actual data processing procedure.
This modular design—the separation between the request handling and the data processing
itself—enables the usage of a computer farm for parallel computing and multiple concurrent
processing.

On the web form of the Tilescope applet (Figure 2A), a user can either upload a parameter file,
if available from a previous use of Tilescope, to have all parameters set accordingly in one easy
step or set parameters one by one manually, which is more likely to happen if an array data set is
to be analyzed for the first time. The main body of the form was organized into two panels, one
for setting the tile scoring parameters and the other for selecting the feature identification
method, reflecting two main stages of data processing in the pipeline. After the pipeline
program is started on the server, the users can monitor its progress through pipeline messages,
which are constantly updated by the server throughout each pipeline run.

When data processing is done, a web page with analysis results will be presented to the user in a
new browser window (Figure 2B). On the result web page, the parameters and methods that
were used to analyze the data are summarized at the top, followed by log-intensity scatter plots
for each array and log-intensity histograms for all arrays in the data set before and after
normalization. These enlargeable plots enable the user to quickly identify any problematic
arrays visually and subsequently exclude them from further consideration. Both tile maps with
log-ratio and P-value annotations and the feature list in various text formats can be downloaded
for further processing and analysis. The feature list in regular tab-delimited text format gives the
user the chromosome (or other genomic sequence ID), the genomic start and end coordinates,
the log-ratio, the P-value, and, if the tiled genome is specified, the upstream and downstream
genes of each feature. If it is the human genome that is under investigation, Tilescope will also
provide links to display identified features on custom tracks in the UCSC genome browser.
Moreover, if the tiling array was designed from a previous human genome build (e.g. hg16,
NCBI 34), Tilescope will also provide an additional feature list with the coordinates lifted over
to the current human genome build (e.g. hg17, NCBI 35).

 5

Data processing in Tilescope

Tilescope processes the data in a sequential fashion using the major steps shown in Figure 1A.
These steps can be approximately grouped into three stages: data input, tile scoring, and feature
identification. Here, we use the data set from a ChIP-chip experiment of the transcription
factor STAT1 to demonstrate how high-density tiling microarray data are processed by
Tilescope. We compared features of Tilescope and several other programs that are explicitly
applicable to high-density tiling microarray data, and the result is tallied in Table 1.

Data input

The data input to Tilescope reside in tab-delimited text files generated by image analysis
software. Currently, Tilescope recognizes data files in Affymetrix, Pair [20] and GFF [20, 21]
formats. Whenever available, GFF format is always recommended since it is a more
standardized format and thus less problematic for processing. Although the aforementioned
formats are not fully inter-compatible, they all provide the essential data, namely the
chromosomes (or other genomic identifiers, such as Contig IDs and ENCODE region IDs),
the genomic coordinate, and the fluorescence intensity (Tilescope automatically detects the
base-two logarithm of intensity) for each array element.

Data format optimization and standardization

The tab-delimited text files generated by different image analysis software are exceptionally
large in size and can have different ASCII formats. This raises several issues. First, large files
require large disk storage space, long transmission time, and long file access time. Second, the
result of a single microarray experiment could be specified by several files, such as both the
design and the data files, which can be problematic to handle and organize. Third, various file
formats require different programs to parse the data. Although currently several open
specifications, like MIAME and MAGE-ML, are available to standardize the array data format,
these standards usually neglect the data size issue and require users to provide information more
than necessary and thus are cumbersome for regular data analyses.

Not only did we implement Tilescope to support various formats of the input data file—the
GFF format, the PAIR format, the NimbleGen format (POS + GFF/PAIR), and the
Affymetrix format (BPMAP + CEL), but also developed a new algorithm (Supplementary
Table 1-3) that can reduce the physical data file size, handle the data set in an organized manner,
and enhance the performance of Tilescope. In order to reduce the data size, we store the data
values as their primitive types rather than in ASCII format. For example, an integer
‘147,971,601’ will occupy 9 bytes in an 8-bit ASCII format but only 4 bytes in our format.

 6

Another example is the nucleotide sequence. A sequence such as
‘TCGAGGCCTTAAGCTCTTGAGAGGT’ will occupy 25 bytes in ASCII but only 7 bytes
in our format since we use two bits to represent each base. After optimizing the data file
representation, we compress all the files, including the meta-files storing the information
describing those data files, into one single archive file.

Our bit optimization approach not only achieves significant file size reduction but also enables
us to efficiently locate by random access a particular record for a certain set of coordinates when
necessary. This is because we store every entry in a fixed number of bits and sort all the entries
by their coordinates, so that the offset of the record in the byte stream can be easily calculated
given that all the data are in contiguous coordinates. Moreover, an even higher compression rate
can be obtained if a ‘DEFLATE’ algorithm [22] is applied after the array data is optimized than it
is not (Supplementary Table 3). This is especially advantageous for file transfer over the
network.

Since our algorithm allows us to select which data columns in the text files to be included, it
omits any unnecessary information in the original data set and consequently further reduces the
size of the file to be transmitted. This capability, together with the aforementioned
improvements, can reduce the size of the original data set by up to 90%. This size reduction
greatly reduces the amount of time required to transmit the data from the client computer to
our pipeline server over the Internet. To ensure the consistency of the data file processing, we
convert the archived data files into the standardized GFF format on the pipeline server. As a
result, the data files can always be processed in a consistent manner.

Data normalization

Unlike printed PCR arrays, the array elements (oligonucleotides) of a tiling microarray are
directly synthesized on the array slide. Direct in situ synthesis creates morphologically uniform
array elements, which to a large degree obviates the need for spot filtering, an imperative
procedure for PCR microarray data analysis. Moreover, direct oligonucleotide synthesis makes
it possible to have a very large number of spots in a small area (thus high-density). Miniature
slide design of the tiling microarrays allows more uniform hybridization and thus greatly
reduces the spatial heterogeneity in the probing conditions across the slide, a potentially severe
problem suffered by PCR microarrays.

For each array in an experimental set, the relative contributions of the test and reference signals
are compared. Ideally, if nucleic acid probes have equal concentration in the test and reference
samples, the signals of the two dyes should be approximately equal (i.e., the ratio of the two
signals should be close to one for probes hybridizing to an equal degree in both fluorescence
channels). In practice, the signals can be rather different due to different chemical properties of
dyes and nonspecific or incomplete hybridization to the array. Normalization is used to

 7

compensate for these effects by—depending on what method is being used—either applying a
scale factor to equalize signals from probes with unchanged concentration or imposing the same
empirical distribution of signal intensities. We put together and implemented standard
statistical methods that were described in various literature sources and made them
conveniently available for tiling array data analysis. At present Tilescope can normalize tiling
array data by mean/median, loess, or quantile normalization (Figure 1B). These methods have
also been implemented elsewhere, most notably in Bioconductor R packages. The
mean/median and the loess normalization methods are both available in the "marray" package.
The ‘affy’ package contains another implementation of the loess and the quantile normalization
methods. In addition, other publicly available software, such as TM4 [4] and TAS/GTRANS,
provides some similar functionalities for array data normalization. These methods are
summarized below with appropriate references.

Mean/median normalization. Normalization by mean or median [3], the so-called ‘constant
majority’ methods, is based on the assumption that the majority of genes do not change their
expression level in response to the experimental perturbation [23]. It is carried out by
subtracting the mean or median of the base-two logarithm of the ratio of test to reference signal
intensities from the log-ratio value of each tile on a single array. This procedure transforms the
log-ratio distribution by centering it at zero. The mean is the maximum likelihood estimator of
the long-term trend in the data while the median is more robust to the outliers in the data. In
theory, they are different measures of the location of a distribution. In practice, however,
because the mean and the median of the log-intensities from the probes on each array are often
very close to each other, these two methods usually give very similar results. The advantages of
these two methods include the easiness of their implementation and their robustness to the
violation of the assumption—they remain applicable even in cases where up to 50% of probes
have altered concentrations.

Loess normalization. Loess normalization [3, 24, 25] normalizes array data between channels
and removes the intensity-specific artifacts in the log-ratio measurements simultaneously. Like
normalization by mean or median, loess normalization is also performed on an array-by-array
basis. For each array, Tilescope first uniformly samples 50,000 log-ratio values from the original
data, and then performs the locally weighted regression on the sampled data. The dependency
of the log-ratio on the intensity is removed by subtracting predicted log-ratio based on the loess
regression from the actual log-ratio, and the new test and reference log-intensities after
normalization are recovered from the residuals. The main disadvantage of Loess normalization
is that the locally weighted regression is computationally intensive, and thus the necessity of
using sampled data instead of the original, much larger data set. Since loess normalization is
carried out for each array one by one, even after data sampling, it remains expensive to use.

Quantile normalization. Unlike the normalization methods discussed above, quantile
normalization [25] not only normalizes data between channels and across arrays simultaneously
but also removes the dependency of the log-ratio on the intensity in one step. It imposes the
same empirical distribution of intensities to each channel of every array. To achieve this,

 8

Tilescope first creates an n×2p (log) intensity matrix M, where n is the number of tiles on an
array and p is the number of arrays in an experimental data set, and then sorts each column of M
separately to give Ms. Afterwards, it takes the mean across rows of Ms and creates Ms', a matrix
of the same dimension as M, but where all values in each row are equal to the row means of Ms.
Finally, Tilescope produces the quantile-normalized (log) intensity matrix Mn by rearranging
each column of Ms' to have the same ordering as the corresponding column of M. Quantile
normalization is fast and has been demonstrated to outperform other normalization methods
[25]. Thus it is the default normalization method used by Tilescope.

Tile scoring

Some arrays are designed to tile genomic sequences of both strands and most array experiments
are conducted in replicate. To facilitate subsequent data processing, Tilescope pools the
normalized log-ratios of all tiles on every array into a matrix and sorts them based on the tiles’
genomic locations regardless of which strand they come from. At the tile scoring step, the
program identifies tiles that exhibit differential hybridization. Depending on the nature of the
experiment, these tiles ultimately correspond to genes whose expression levels have changed or
the locations of transcription factor binding sites (TFBSs).

Compared with traditional PCR arrays, tiling arrays accommodate a much larger number of
array elements, which are in situ synthesized oligonucleotides, typically dozens of nucleotides
long. However, there is a trade-off for better coverage of the genome: as the average length of
the array elements gets smaller, the variance of data increases due to the rise of the relative
magnitude of random noise and the possibility of cross-hybridization and sequence artifacts. To
deal with this problem, Affymetrix used a different method to score (one-channel) tiling arrays
[10, 26] than the one used for PCR arrays: instead of considering each tile across array
replicates separately, they used a sliding window around each tile to incorporate the
hybridization intensity of its neighboring tiles. In our implementation of this method in
Tilescope, we modified it by adding a nonparametric statistical test to assess the significance of
the intensity difference between the test and the control samples at each tile. This extension
enables us to score each tile using two different criteria. Moreover, we also adapted the original
method to NimbleGen two-channel tiling arrays data, which in effect significantly increased the
usability of this method.

For each tile, given its neighboring tiles across replicates, Tilescope calculates the pseudo-
median log-ratio value as its signal. The pseudo-median (a.k.a. the Hodges-Lehmann estimator)
of the log-ratio is a nonparametric estimator of the difference between the logged intensities of
the test sample and those of the reference sample. It is calculated for each tile using a sliding
window. The tiles from all arrays in a sliding window are first collected into a tile set, and the
pseudo-median is calculated for this window as S = median[(log-ratioi + log-ratioj)/2] from all

 9

(i, j) pairs of tiles in the tile set. As a nonparametric estimator, pseudo-median is less susceptible
to distributional abnormalities (such as skewness, unusual kurtosis, and outliers).

Due to the small sample size in each sliding window, whether the intensity distribution is
normal or not in a given window cannot be reliably assessed. Without making the normality
assumption about the intensity distribution, Tilescope uses the nonparametric Wilcoxon
signed-rank test [27] to compare the test with the reference signal intensities and quantifies the
degree of significance by which the former consistently deviates from the latter across each of
the sliding windows. It tests the null hypothesis that the median of the probability distribution
of the differences between the logarithm of the intensities from the test sample and those from
the reference sample is zero.

At the scoring step, Tilescope generates two tile maps, the signal map and the P-value map
(Figure 1C). Two values are calculated for each tile position: the pseudo-median of log-ratios, as
a measure of the fold enrichment of the hybridization signal in the test sample over the
reference at this genomic location and the probability, the P-value, that the null hypothesis—
the local intensities of the test and the reference samples are the same—is true. In a recent study
of transcript mapping with high-density tiling arrays, Huber et al. [17] used a different
approach to score tiles. Their method does not assess intensity difference at individual tiles.
Instead, it tries to find a step function that best fits the log-ratio intensities along genomic
coordinates.

Feature identification

Given the tile map annotated with pseudo-medians and P-values, Tilescope filters away tiles
that are below user-specified thresholds. Retained tiles are used to identify either deferentially
expressed genes or TFBSs. Currently Tilescope users can choose one of three methods to
identify such features (Figure 1D). The first method, ‘max-gap and min-run’, is an well-used
method, initially used by Cawley et al. [26] to analyze their ChIP-chip tiling array data. The
second method, ‘iterative peak identification’, is a new method that we developed to find
genomic features iteratively. The third method, whose theoretical development is described in
full details elsewhere [28], effectuates file segmentation by using a ‘hidden Markov model’
(HMM) explicitly built on validate prior knowledge.

Max-gap and min-run. Based on the observation that a tile is usually too short to constitute a
feature alone, the first method, modified from the scoring scheme used in Cawley et al. [26] and
Emanuelsson et al. [29], groups together qualified tiles that are close to each other along the
genomic sequence into ‘proto-features’ and then discards any proto-features that are too short.
To use this method, a user needs to specify the maximum genomic distance (‘max-gap’) below
which two adjacent qualified tiles can be joined and the minimum length (‘min-run’) of a
proto-feature for it to be qualified as a feature.

 10

Iterative peak identification. The second method, which we have recently developed and
implemented as part of the pipeline, does not group tiles above thresholds into features. Instead,
it identifies local signal ‘peaks’ in an iterative fashion. This method was developed to generate
lists of non-overlapping features of a uniform genomic size.

Taking the signal map that has been generated in the tile scoring step using window-smoothing
to integrate the data from multiple replicate arrays, this method first identifies the tile (‘point
source’) that corresponds to the peak in the signal map with the global maximum signal that
also meets a predefined P-value threshold. A feature is then created centered at the genomic
position of the peak with a predefined genomic size. We choose a feature size that is comparable
with the average size of the fragmented ChIP DNA (typically ~ 1Kb). The feature is assigned a
signal measurement from the associated peak.

All tiles within a predefined distance from the located ‘peak’ are then removed from the signal
map data. Typically the distance is the same size as the selected features, though it can be larger.
This is to ensure that apparent ‘secondary peaks’ in the signal maps that are really part of the
same feature are not separately identified. The procedure is then iterated to find the next
maximum ‘peak’ in the remaining signal map data. The iteration generates a list of features
ranked by ‘peak’ signals and terminates when the identified ‘peak’ signal is below a specified
signal enrichment threshold.

Hidden Markov model. The third method uses a supervised scoring framework based on
hidden Markov models to predict and score features in the genome tiled on the microarray [28].
Our method differs from previous HMM-based studies [30-32] by specifically taking validated
biological knowledge (e.g. experimental validation, gene annotation, etc.) into consideration and
systematically incorporating it to score different types of array assays within the same
framework.

For identification of transcriptionally active regions (TARs)/transcribed fragments (transfrags)
in transcriptional tiling array data, a four-state (TAR, non-TAR, and two other intermediate
transition states) HMM is constructed using the knowledge of gene annotation (information of
the probes that fall into annotated gene regions). For ChIP-chip data, a two-state (TFBS and
non-TFBS) HMM is constructed by using the knowledge of inner regions in genes to estimate
the signal emission distribution g(t) of the non-TFBS state, and by using the subtraction of g(t)
from the overall emission distribution h(t) to estimate the emission distribution f(t) of the
TFBS state. In a more general ideal scenario, our framework first selects a medium-sized set of
sub-regions by using some appropriate analysis methods (e.g. the MaxEntropy sampling scheme
discussed in [28]), and then utilizes the knowledge in these sub-regions as the training set to
build the model for accurate analysis.

 11

Further scoring on the initial analysis results can be also done by computing the posterior
probabilities of each probe being active. The scores indicate the confidence in every single
probe-level prediction and can be used to refine the previous analysis results by HMM. For
instance, the identified active probes can be ranked according to the overall confidence levels in
their regions and a threshold confidence level may either be set manually or be learned
automatically to refine the original results.

Method comparison. We compared the performance of these three feature identification
methods using a well-studied STAT1 ChIP-chip data set. Composed of three technical
replicates, this data set was used to identify a list of STAT1 binding sites in the ENCODE
regions [33]. These sites were later experimentally tested. We analyzed this data set using
Tilescope and generated three STAT1 binding site lists, each by a different feature
identification method. Since identical tile scoring and thresholding parameters were used, the
difference among these three lists reflects the underlying difference among the three feature
identification methods. By using the list of the experimentally tested STAT1 binding sites, we
were able to assess the sensitivity and specificity of each method. The receiver operating
characteristic (ROC) curves in Figure 3 indicate that while in general the three feature
identification methods implemented in Tilescope have similar performance, the ‘iterative peak
identification’ method is appreciably more sensitive at high (> 95%) specificity.

Conclusions

Summary

Tilescope is an online software pipeline for processing high-density tiling microarray data. In a
completely automated fashion, it will normalize signals between channels and across arrays,
combine replicate experiments, score each array element, and identify genomic features. The
program can process data from most gene expression, ChIP-chip, and CGH experiments.
Tilescope is designed with a graphical user-friendly interface to facilitate a user’s data analysis
task, and the results, presented in a clear, well organized manner on a web page, can be
downloaded for further analysis.

Future improvements

Tilescope is under active development: it is continually updated as better data processing
methods become available.

 12

Availability

Tilescope is freely accessible for use at http://tilescope.gersteinlab.org. The source code of the
pipeline is available at http://tilescope.gersteinlab.org/download.html.

Acknowledgements

Z.D.Z was funded by an NIH grant (T15 LM07056) from the National Library of Medicine.
This work was also supported by other grants from NIH to M.S. and M.G.

 13

References

1. Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene

expression patterns with a complementary DNA microarray. Science 1995,
270(5235):467-470.

2. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D: Light-directed, spatially
addressable parallel chemical synthesis. Science 1991, 251(4995):767-773.

3. Luscombe NM, Royce TE, Bertone P, Echols N, Horak CE, Chang JT, Snyder M,
Gerstein M: ExpressYourself: A modular platform for processing and visualizing
microarray data. Nucleic Acids Res 2003, 31(13):3477-3482.

4. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier
T, Thiagarajan M et al: TM4: a free, open-source system for microarray data
management and analysis. Biotechniques 2003, 34(2):374-378.

5. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ: High density synthetic
oligonucleotide arrays. Nat Genet 1999, 21(1 Suppl):20-24.

6. Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski
T, Berg JP, Ballin J et al: Gene expression analysis using oligonucleotide arrays
produced by maskless photolithography. Genome Res 2002, 12(11):1749-1755.

7. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W,
Samanta M, Weissman S et al: Global identification of human transcribed
sequences with genome tiling arrays. Science 2004, 306(5705):2242-2246.

8. Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua S,
Herreman T, Tongprasit W, Barbano PE et al: A gene expression map for the
euchromatic genome of Drosophila melanogaster. Science 2004, 306(5696):655-660.

9. Stolc V, Samanta MP, Tongprasit W, Sethi H, Liang S, Nelson DC, Hegeman A,
Nelson C, Rancour D, Bednarek S et al: Identification of transcribed sequences in
Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad
Sci U S A 2005, 102(12):4453-4458.

10. Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J,
Piccolboni A, Bekiranov S, Helt G et al: Novel RNAs identified from an in-depth
analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 2004,
14(3):331-342.

11. Christine EH, Snyder M: ChIP-chip: a genomic approach for identifying
transcription factor binding sites. 2002.

12. Urban AE, Korbel JO, Selzer R, Richmond T, Hacker A, Popescu GV, Cubells JF,
Green R, Emanuel BS, Gerstein MB et al: High-resolution mapping of DNA copy
alterations in human chromosome 22 using high-density tiling oligonucleotide
arrays. Proc Natl Acad Sci U S A 2006, 103(12):4534-4539.

13. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW,
Walker K, Rolfe PA, Herbolsheimer E et al: Genome-wide map of nucleosome
acetylation and methylation in yeast. Cell 2005, 122(4):517-527.

 14

14. Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ: Genome-
scale identification of nucleosome positions in S. cerevisiae. Science 2005,
309(5734):626-630.

15. Royce TE, Rozowsky JS, Bertone P, Samanta M, Stolc V, Weissman S, Snyder M,
Gerstein M: Issues in the analysis of oligonucleotide tiling microarrays for
transcript mapping. Trends Genet 2005, 21(8):466-475.

16. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M, Liu XS: Model-
based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci U S A 2006,
103(33):12457-12462.

17. Huber W, Toedling J, Steinmetz LM: Transcript mapping with high-density
oligonucleotide tiling arrays. Bioinformatics 2006, 22(16):1963-1970.

18. Halasz G, van Batenburg MF, Perusse J, Hua S, Lu XJ, White KP, Bussemaker HJ:
Detecting transcriptionally active regions using genomic tiling arrays. Genome Biol
2006, 7(7):R59.

19. Gentleman RC, et al.: Bioconductor: Open software development for
computational biology and bioinformatics.
http://wwwbepresscom/bioconductor/paper1 2004.

20. NimbleGene Data Formats [http://tilescope.gersteinlab.org/Gff_Pair_Formats.pdf]
21. GFF: an Exchange Format for Feature Description

[http://www.sanger.ac.uk/Software/formats/GFF]
22. RFC 1951 [http://www.rfc-editor.org/rfc/rfc1951.txt]
23. Goryachev AB, Macgregor PF, Edwards AM: Unfolding of microarray data. J Comput

Biol 2001, 8(4):443-461.
24. Dudoit S, Yang YH, Callow MJ, Speed TP: Statistical methods for identifying genes

with differential expression in replicated cDNA microarray experiments. Stat Sin
2002, 12(1):111–139.

25. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics 2003, 19(2):185-193.

26. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A,
Sementchenko V, Cheng J, Williams AJ et al: Unbiased mapping of transcription
factor binding sites along human chromosomes 21 and 22 points to widespread
regulation of noncoding RNAs. Cell 2004, 116(4):499-509.

27. Troyanskaya OG, Garber ME, Brown PO, Botstein D, Altman RB: Nonparametric
methods for identifying differentially expressed genes in microarray data.
Bioinformatics 2002, 18(11):1454-1461.

28. Du J, Rozowsky JS, Korbel J, Zhang ZD, Royce TE, Schultz MH, Snyder M, Gerstein
M: A supervised hidden Markov model framework for efficiently segmenting tiling
array data in transcriptional and ChIP-chip experiments: systematically
incorporating validated biological knowledge. Bioinformatics
2006:10.1093/bioinformatics/btl1515 (In press).

 15

29. Emanuelsson O, Nagalakshmi U, Zheng D, Rozowsky JS, Urban AE, Du J, Lian Z,
Stolc V, Weissman S, Snyder M et al: Assessing the performance of different high-
density tiling microarray strategies for mapping transcribed regions of the human
genome. Genome Res 2006:(In press).

30. Ji H, Wong WH: TileMap: create chromosomal map of tiling array hybridizations.
Bioinformatics 2005, 21(18):3629-3636.

31. Li W, Meyer CA, Liu XS: A hidden Markov model for analyzing ChIP-chip
experiments on genome tiling arrays and its application to p53 binding sequences.
Bioinformatics 2005, 21 Suppl 1:i274-i282.

32. Munch K, Gardner PP, Arctander P, Krogh A: A hidden Markov model approach for
determining expression from genomic tiling micro arrays. BMC Bioinformatics
2006, 7:239.

33. Euskirchen G, Rozowsky J, Wei C-L, Lee WH, Zhang ZD, Hartman S, Emanuelsson
O, Stolc V, Weissman S, Gerstein M et al: Optimal Mapping of Transcription Factor
Binding Sites in Mammalian Cells. Genome Res 2006:(In press).

 16

Tables

Table 1 Feature comparison between tiling microarray data analysis software 1

 Tilescope Bioconductor 2 TAS 3 MAT 4 TileMap

Implementation Web R packages Standalone Standalone Standalone

Graphic user interface √ 5 × √ × ×
Intended usage:

 − Transcription data √ √ √ × √
 − ChIP-chip data √ √ × √ √
Applicable array platform:

 − Affymetrix √ √ √ √ √
 − NimbleGen √ × × × ×
Data normalization:

 − Mean/median √ ~ √ / ×
 − Loess √ ~ × / ×
 − Quantile √ ~ × / √
Feature identification:

 − Max gap and min run √ ~ √ / √
 − Iterative peak identification √ (new) × × / ×
 − Hidden Markov model √ ~ × / √

1. Only programs explicitly applicable to high-density tiling microarray data were considered. The websites of the compared
programs are listed as follows:

Tilescope: http://tilescope.gersteinlab.org/
Bioconductor : http://www.bioconductor.org/
TAS: http://www.affymetrix.com/support/developer/downloads/TilingArrayTools/index.affx
MAT : http://chip.dfci.harvard.edu/~wli/MAT/
TileMap : http://biogibbs.stanford.edu/~jihk/TileMap/index.htm

2. Strictly speaking, Bioconductor is not a ready-to-run program. It is a collection of software packages/libraries written in R.
As a tool box, the analysis methods that it provides need to be written in an R program to run.

3. TAS is previously known as GTRANS.
4. MAT standardizes the probe value through the probe model, which obviates the need for sample normalization.
5. Comparison symbols used in the table:

√, available;
×, not available;
~, available but need to be programmed;
/, not applicable.

 17

Figure Legends

Figure 1. Tiling array data processing by Tilescope. (A) Flow chart of major data processing
steps. Yellow icons represent data in user-accessible files, and blue ones data in the pipeline
program memory. See main test for details. (B) Log-intensity scatter plots of a tiling array from
the STAT1 experiment set before and after normalization by four different methods. The first
panel is the log2T verses log2R plot before normalization, where T and R are test intensity and
reference intensity respectively. The gray line represents where these two log-intensities are
equal. The second panel is log2(T/R) verses log2(T×R)1/2 plot (the MA plot) before
normalization. The dependency of the log-ratio on the intensity, evinced by a fitted loess curve,
is prominent in the data. The rest panels are the MA plots of array data after mean, media, loess,
or quantile normalization. They clearly show that the distribution of log-ratios are centered at
zero by all normalization methods, but the intensity-specific artifacts in the log-ratio
measurements are removed by only loess or quantile normalization but not by the mean- or
median-based method. (C) Signal and P-value maps of all tiles in the ENCODE ENm002
region. In this region, the tiles near the transcription start site of IRF1, a transcription factor
known to be regulated by STAT1, give the strongest signals. (D) Tilescope-identified STAT1
binding sites at the 5'-end of IRF1 are shown on the custom track in the UCSC genome
browser.

Figure 2. Screenshots of Tilescope. (A) The applet of Tilescope, the graphic user interface of
the pipeline. (B) An example of data analysis result web page.

Figure 3. The ROC curves of the three feature identification methods implemented in
Tilescope. The comparison of the performance of these methods was based on a well-studied
STAT1 ChIP-chip data set and a list of experimentally tested STAT1 binding sites.

 18

Figures

Figure 1.

 19

A B

Figure 2.

 20

Figure 3.

 21

Supplementary material

Technical Details of the Optimization Algorithm

Nearly all the data files and design files of microarray are tab delimited. Generally speaking, each
line in the files represents a data record and each tab delimited field represents a particular type
of data (see Supplementary Table 1). For example, the first column of the data in a GFF file is a
sequence name. Since different columns represent different data types, the data value in a
column could be a string, number, decimal, nucleotide sequence, or etc. For example, the sixth
column, which represents the X coordinate of a microarray, in a PAIR file is in number format.
Due to the fact that these data types are already known in each format, we could take this
assumption and optimize the data storage according to their types. As mentioned before,
storing the data in ASCII format makes the file larger than it should be if compared to storing
the data in their primitive types or any other optimal types. For instance, a 32 bit integer
requires 10 bytes in ASCII but only 4 bytes in its primitive type. A more extreme case would be
the nucleotide sequence. Since a nucleotide of DNA can only be A, T, C, or G, we actually only
need to use 2 bits to store each nucleotide so that one byte can already store 4 nucleotides.

As a result, our optimization algorithm mainly focuses on converting these kinds of data into a
more optimal format. To achieve this, we created a configuration file containing the
information of the data column for different microarray file formats (see Supplementary Table
2). We also created a set of Java API which parses these files and optimizes the data according to
the configuration file. We found that the size of the optimized data is reduced significantly if
compared to the original size although the compression ratio is not as good as Zip. However, we
also found that a higher compression ratio can be achieved if we zip the optimized data instead
of the raw data (see Supplementary Table 3). To this end, we chose to first optimize our input
data using our optimization algorithm and then bundle the optimized data with its
configuration file using zip. This helps reducing the overall file size substantially and so the
transfer time. Therefore, our optimization algorithm is not replacing any compression
algorithm but enhancing the compression ratio. An added advantage of our algorithm is that it
enables us to locate a data record more easily. This is because we store every data entry in a fixed
number of bits and sort all the entries by their coordinates, so that the offset of a particular
record in the byte stream can be easily calculated by their coordinates given that all the data are
in contiguous coordinates. Although our format is capable of locating a record faster, we instead
chose to convert this “middle” format into the standard GFF format for processing
independent of the original format of the data. This ensures our processing consistency as we
only need to deal with a single format and the most important reason is that we will be able to
give the users back their data in a standard format later if necessary.

 22

Supplementary Table 1 The meaning of columns of various tab-delimited input data file formats.

1 2 3 4 5 6 7 8 9 10

GFF format

Seq.
Name

Source Feature Start
Pos.

End
Pos.

Score Strand Frame Group —

PAIR format
Image ID Gene Exp.

Opt.
Seq. ID Probe

ID
Pos. X Y Match

Index
Perfect
Match

Mis-
match

POS format
Seq. ID Seq. Name Position Probe

ID
Count Length — — — —

BPMAP format
X Y Seq.

Name
Pos. Probe

Seq.
— — — — —

CEL format
X Y Mean SD No. of

Pixels
— — — — —

Note: We assume all the data files, including the design files if any, are in tab delimited format. The data type of
each column of data of each format is defined in an XML configuration file. In the configuration file, it also
stores the file type, namely ‘design’ and ‘data’, of each supported format.

 23

Supplementary Table 2 Attributes of the element tag defined in the configuration file §.

Type Minimum value Maximum value Decimal Size (example)

Number The minimum
possible integer

The maximum
possible integer

— 4 bytes (147,971,601)

Decimal The minimum
possible integer

The maximum
possible integer

Number of
decimal places

3 bytes (65535.99)

Text Unused (0) The maximum
number of
characters

— 6 bytes (N10023)

Nucleotide
Sequence

Unused (0) The number of
bases in the
sequence

— 7 bytes †

Highly
Repetitive
String

Unused (0) The maximum
possible number
of unique strings

— 1 byte ‡

§ ‘Type’, ‘Min’, ‘Max’, and ‘Decimal’ are the attributes that define the data type of a column in a
data file.
†. A string of 25 bases (e.g., AAACGAATTGCCATTAGGCCATTAG)
‡. 256 unique strings.
Note: Following is an example of the definition of the Affymetrix design file format in the
configuration file:

<dataset type="design" format="txt">
 <elements>
 <element name="x" min="0" max="65535" type="number" disabled="false" />
 <element name="y" min="0" max="65535" type="number" disabled="false" />
 <element name="seq" min="0" max="255" type="hrString" disabled="false" />
 <element name="pos" min="0" max="2147483647" type="number" disabled="false" />
 <element name="probe" min="0" max="25" type="sequence" disabled="false" />
 </elements>
</dataset>

The ‘name’ attribute is the column identifier used in the API to retrieve back the data
corresponding to that column. The 'disabled' attribute indicates if the data of that column should
be converted.

 24

Supplementary Table 3 File size reduction by Zip and our optimization algorithm. §, †

 Design File Data File All Files
Affymetrix:

 Original 36 37.5 73.5
 Zip 11.9 7.7 19.6
 Optimization 11.5 10.9 22.5
 Optimization+Zip — — 12.1 83.5% ‡

NimbleGen:
 Original 16.4 32.4 48.8
 Zip 2.3 6.1 8.4
 Optimization 10.6 5.8 16.4
 Optimization+Zip — — 6.8 86.1% ‡

§. This table compares the size of two different sets of sample input files, an Affymetrix data set and a
NimbleGen data set, before and after optimization and zip. “Original”, “Zip”, and “Optimization”
represent the original, zipped, and optimized size of the data respectively. “Optimization+Zip”
represents the size of the data zipped after optimization.
†. File size is in MB.
‡. Percentage of total file size reduction.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

