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ABSTRACT We have determined the packing efficiency at
the protein–water interface by calculating the volumes of
atoms on the protein surface and nearby water molecules in
22 crystal structures. We find that an atom on the protein
surface occupies, on average, a volume '7% larger than an
atom of equivalent chemical type in the protein core. In these
calculations, larger volumes result from voids between atoms
and thus imply a looser or less efficient packing. We further
find that the volumes of individual atoms are not related to
their chemical type but rather to their structural location.
More exposed atoms have larger volumes. Moreover, the
packing around atoms in locally concave, grooved regions of
protein surfaces is looser than that around atoms in locally
convex, ridge regions. This as a direct manifestation of surface
curvature-dependent hydration. The net volume increase for
atoms on the protein surface is compensated by volume
decreases in water molecules near the surface. These waters
occupy volumes smaller than those in the bulk solvent by up
to 20%; the precise amount of this decrease is directly related
to the extent of contact with the protein.

The central role of water in the stability, structure, and
function of proteins has made protein–water interactions a
subject of general interest (1, 2). One problem often discussed
is the nature of the packing at the protein–water interface. This
is important, because of its implications for the way proteins
interact with other molecules (3). The topic was widely dis-
cussed in the 1970s (4–7). Since then, structures determined by
x-ray crystallography have provided detailed descriptions of
the arrangements of water molecules around specific regions
of protein surfaces. To our knowledge, however, the surface
packing problem has yet to be resolved.
Proteins have high packing efficiencies: the ratio of the

volume enclosed within the van derWaals envelope of residues
to the actual space these residues occupy in protein structures
is close to 0.8 (4, 8). About half the atoms on protein surfaces
are polar and half are nonpolar. Water molecules, on the other
hand, are only polar, and the tetrahedral arrangement of their
hydrogen bonds means that they form an open structure with
a packing efficiency of ,0.4. The incommensurate nature of
the chemical character and packing properties of proteins and
water make it difficult to determine, a priori, how they pack
together. On one hand, one might think that the tetrahedral
hydrogen-bonded geometry of water would have difficulty
accommodating all the protrusions and indentations on the
protein surface, leading to the creation of defects and a very
loose packing. Alternatively, one could equally well expect that
protein atoms would interpenetrate into the very open struc-
ture of water, leading to a tight packing at the protein–water
interface. This second scenario is supported by liquid-transfer
experiments with simple apolar molecules. It is found, for
instance, that the mixing water and alcohol leads to a net

decrease in volume (9). To find an answer to the packing
problem, we have calculated directly the packing efficiencies at
the protein–water interface in 22 crystal structures (10–31).

Ultra-High-Resolution Protein Structures

For the analysis described here, we used the structures listed
in Table 1. These structures, which were determined to reso-
lutions between 1.0 and 1.5 Å and refined to give R factors
between 12 and 20%, contain 54–306 residues and 63–350
resolved water sites. In some structures, a small proportion of
the water sites represent alternate locations for single water
molecules (or sets of adjacent, interlocking water molecules)
and have partial occupancy. It is difficult to disentangle these
sites, so they were not included in our calculations.
In all, we used 3255 water molecules from the 22 structures

for our calculations. Of these water molecules, 160 were buried
in the protein interior, and the other 3095 are part of the first
or second layer around the protein surface. Tables 1 and 2
describe the general features of the contacts made by the water
molecules. They cover between 28 and 75% of the surface of
the different proteins. Three-quarters of them make good
hydrogen bonds to polar atoms on protein surfaces: about half
make one bond, one-third make two bonds, and the rest make
three or more. They also make van der Waals contacts to apolar
protein atoms. If n is the number of hydrogen bonds made to the
protein, they have, on average, close to 1 1 1.2n contacts (Table
2). The large majority of the water molecules that are not directly
hydrogen bonded to the protein surface forms one or more good
hydrogen bonds to other water molecules.

Determining Packing Efficiency with Voronoi Polyhedra

To determined the packing efficiency at protein–water inter-
faces, we used a geometrical procedure originally developed by
Voronoi (32) and first applied to proteins by Richards (4). This
procedure allocates all the space within a structure, including
cavities or defects, to its constituent atoms by constructing
around each atom a minimally sized polyhedron (called a
Voronoi polyhedron). As shown in Fig. 1, the faces of a
Voronoi polyhedron are formed by planes perpendicular to
vectors between an atom and its neighbors, and the edges of
a polyhedron result from the intersection of these planes. The
volume inside of a polyhedron is inversely proportional to the
packing efficiency of its central atom—i.e., a big volume is
indicative of a poorly packed atom.
To determine the volume effectively occupied by an atom, the

Voronoi procedure requires the location of all of its neighbors. As
shown in Fig. 1, missing neighbors can lead to highly distorted,
misshapen polyhedra. This is particularly important for atoms on
the protein surface, because many of their neighbors are water
molecules that may not be completely defined even in very high
resolution crystal structures. To deal with the incomplete hydra-
tion at the protein surface, we carried out packing calculations
only on those surface atoms that are fully surrounded by solvent.
We located these atoms by calculating the accessible surface areaThe publication costs of this article were defrayed in part by page charge
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(33) of the protein, first in the absence of and then in presence of
solvent.We consider any atom that, in the absence of solvent, has
ameasurable accessible surface area to be a surface atom and any
surface atom whose accessible surface area is reduced to zero by
the presence of the solvent to be sufficiently hydrated for our
calculations.
The Voronoi calculations were carried out using a C-

language program that was written by Y. Harpaz (Medical
Research Council Laboratory of Molecular Biology) andM.G.
and is directly based on the original program of Richards
(version 6.0, written March 1983 by M. D. Handschumacher
and F. M. Richards). The most complete description of the
procedure and program is given by Richards (34). To position
the dividing plane between atoms of unequal size, we used

method B, which makes the division according the radii of the
contacting atoms, and, for atomic radii, we used the values
listed in Chothia (35). In Table 3, we show that the results of
the calculations are relatively insensitive to the choice of radii
set. All calculations were carried out using the full unit cell
with all symmetry-related water molecules and protein atoms.
In all, we found 4332 protein surface atoms that were suffi-

ciently hydrated for our calculations. As discussed in the caption
to Fig. 1, none of these have distorted Voronoi polyhedra, and all
were used in the packing calculations described here. As will
become apparent, it is convenient to express the volumes of these
surface atoms as the percentage by which they are larger than
those of chemically equivalent atoms buried in the interior of the
protein; that is, (V# s2V# r)yV# r, whereV# s is the volumeof the surface
atom and V# r is the mean volume for the same atom type when
buried inside the protein. Values for the volumes of buried atoms
were taken from the work of Harpaz et al. (8). On average, the
surface atoms used in these calculations occupy volumes 5%
larger than those of interior atoms (Table 1). For individual
atoms, the extent of the increase in volume varies, and, in the
following sections, we describe the extent to which this variation
is related to structural environment and chemical type.

Volumes of Protein Atoms in Relation to their
Exposure to Solvent

For each surface atom, we determined the fraction of its surface
covered by water. This quantity was used to sort the atoms in
ascending order and place them in 13 bins. For the atoms in each
bin, we calculated their average exposure to solvent and their
volume increase (as compared with chemically equivalent buried
atoms). A plot of these numbers is shown in Fig. 2A. Though the
volumes of individual surface atoms vary, it is clear from the
figure that, on average, volume increase is nearly proportional to
exposure; the correlation coefficient is 0.98. A simple line fit gives

Table 2. Contacts made to the protein surface by water molecules

No. of H-bonds
made to the

protein surface, n

Proportion of
water molecules
making n

H-bonds,†* %

Average no. of
van der Waals
contacts to the
protein by water
molecules making
n H-bonds†

0 26 0.9
1 41 2.4
2 24 3.3
3 or more 9 4.4

*Hydrogen bonds listed here are those for which the H2O. . . . {N, O}
distance is 3.3 Å or less. The use of a longer distance for the cutoff
would give somewhat more hydrogen bonds but would not alter the
general result. Of the water molecules making no hydrogen bonds to
the protein, 85% are hydrogen bonded to other water molecules.
†Water molecules and nonpolar atoms were taken to be in contact if
the distance between them was equal to, or less than, the sum of their
Van der Waals radii plus 0.4 Å.

Table 1. Protein structures used in the calculation and the volume increase of their surfaces

Protein Resolution, Å
R factor,
%

Surface atoms

ID Ref.
Total,
no.

Hydrated,
%

Volume
increase,
%

Trypsin inhibitor 5PTI 10 1.00 20 230 40 2.5
Protein G 1IGD 11 1.10 19 232 66 3.0
Rubredoxin 5RXN 12 1.20 12 182 67 4.3
Scorpion neurotoxin 2SN3 13 1.20 19 232 62 8.1
Achromobacter protease I 1ARB 14 1.20 15 712 31 3.5
Trypsin inhibitor 9PTI 15 1.22 17 230 47 4.2
Cutinase 1CUS 16 1.25 16 579 54 4.0
Ribonuclease A 7RSA 17 1.26 15 450 57 5.8
Scorpion toxin II 1PTX 18 1.30 15 238 75 5.4
Ribonuclease F1 1FUS 19 1.30 19 347 49 4.4
Oncomodulin 1RRO 20 1.30 18 386 47 6.2
Hen lysozyme 135L 21 1.30 19 431 48 5.5
Plastocyanin 1PLC 22 1.33 15 312 56 6.2
Thermitase 1THM 23 1.37 17 723 40 5.5
Repressor of primer 1RPO 24 1.40 19 229 58 6.8
Ribonuclease A 1RPG 25 1.40 17 423 53 7.1
Lysozyme 2IHL 26 1.40 17 441 50 4.7
Haemoglobin 1ECO 27 1.40 18 430 34 4.0
Flavodoxin 1RCF 28 1.40 14 499 58 3.8
Subtilisin 1ST3 29 1.40 19 687 28 4.3
Carboxypeptidase A 2CTC 30 1.40 16 911 31 2.0
Insulin 4INS 31 1.50 15 337 71 6.3
Average values 1.30 17 420 47 4.9

The last three columns show the following: the number of atoms on the surface of each protein; the percentage of these surface atoms that are hydrated
sufficiently enough so that they are completely buried by crystallographically resolved waters and thus can be used for Voronoi volume calculations; and
the percentage that the observed, total volume of these sufficiently hydrated surface atoms is larger than that of an equivalent set of atoms buried in the
interior of the protein, respectively. That is, the last column is (S 2 R)yR, where S is the total Voronoi volume we calculate for the sufficiently hydrated
surface atoms and R is the total volume for these same atoms if we use standard core volumes derived from ref. 8 for each atom.

Protein Data Bank
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an atom’s percentage increase in volume as about one-fifth of its
percentage increase in exposure.

The Packing in Grooves and Ridges on Protein Surfaces

Examination of the first protein structures for which the
positions of a large number of water molecules were deter-
mined showed that water molecules are more clearly resolved
in regions of the protein surface that are grooved or concave
in shape than in the regions that have a ridged or convex shape
(39, 40). Recent calculations by Kuhn et al. (41) showed that
this is generally true. We extended our analysis of the relation
between structural environment and volume of surface atoms
by determining the packing differences that occur in groove
and ridge regions of protein surfaces.

To distinguish between grooves and ridges, we calculated for
each atom the ratio of its surface area in the context of a whole
protein to its surface area in a Gly-Xaa-Gly tripeptide. This
quantity, called fractional accessibility, is the relative surface
area of an atom in the presence or absence of its immediate
nonbonded neighbors. As such, it measures the ‘‘local,’’ small-
scale curvature in a given region. It ranges from 0 for atoms in
deep grooves to 1 for atoms protruding straight out into
solution. Our definition of fractional accessibility is the same
as that used in the original paper on accessible surface area by
Lee and Richards (33). It gives results consistent with other
measures for curvature of the protein surface (41, 42).
We found a fractional accessibility of 0.35 to be a convenient

threshold to separate atoms on ridges from those in grooves.
Using this threshold, the relative percentage of the atoms
buried, in surface grooves, or on surface ridges in the 22
structures is 47:30:23. Alternative, reasonable values for the
threshold would, of course, give slightly different proportions
but would not effect our conclusions. Our calculations also
show that for the 22 structures, the proportion of completely
hydrated protein atoms is 43–96% in groove regions but only
10–56% in ridge regions. Thus, we found water molecules to
be more clearly resolved around grooves than ridges, as
expected from previous work (39–41).
Overall, the 3260 hydrated atoms in groove regions occupy

a volume 4.2% larger than equivalent atoms in protein inte-
riors (Table 4), and the 1072 hydrated atoms in ridge regions
occupy a volume 7.6% larger.
The larger volumes for atoms on ridges in comparison to

those in grooves reflect, to a large degree, the fact that they are
more exposed to solvent. What is not as obvious, however, is
that the volume increases for ridge atoms are actually smaller
in proportion to their exposed surface area. For instance,
based on the numbers in Table 4, a carbonyl oxygen in a groove
has, on average, a volume 0.7 Å3 larger than it does in the
protein interior and a surface area of 3.6 Å2; on a ridge, the
corresponding numbers are 2.1 Å3 for volume increase and
15.0 Å2 for surface area. This means that the volume increase
per unit area (DVyA) is 0.20 Å in grooves but only 0.14 Å on
ridges. Very similar numbers are found for the other common
atom types individually and collectively. For instance, meth-
ylene groups have a DVyA in grooves of 0.2 Å but only 0.15 Å
on ridges, and averaged over all atoms, DVyA is 0.21 Å for
grooves and 0.15 Å for ridges. These numbers show that water
molecules do not pack as well around grooves as ridges.
In connection with this, it is interesting to note that the ratio

of hydrogen-bond acceptors to donors is larger in the grooves
than on the ridges. (Specifically, the ratio is 1.8 for the
population of groove atoms versus 1.1 for the population of
ridge atoms). One might imagine that the greater orientational
f lexibility that acceptors (O atoms) have in forming hydrogen
bonds to water than donors (-NH-, -NH2, etc.) might allow
them to do so easily and thus produce tighter packing. How-
ever, the relatively large increases in their volumes show, in
fact, that this f lexibility is not great enough to overcome the
restrictions imposed by their being in grooves.

Volume and Chemical Type of Surface Atoms

To determine whether the volume increase in the surface atoms
is related to their chemical type, we grouped the protein atoms
into 20 distinct chemical types (e.g., main chain carbonyl oxygen,
side chain methylene carbon, etc.), using a scheme based on that
of Richards (4). For both the ridge and groove regions a mean
volume increase was determined for each atom type (Table 4).
Examination of the data in Table 4 shows little or no

correlation between the volume increase of the surface atoms
and their chemical character. On the groove surfaces, the
magnitude of the volume increase is similar for all atom types.
On the ridge surfaces, the extent of the volume increase for a
given atom type is roughly related to how accessible it is to

Table 3. Effect of different atomic radii sets on the results

van der Waals radii set*
Values in Å of van der

Waals radii

Surface
volume

increase for
5PTI,† %

Standard set (6 radii) sp3-C 1.87, S 1.85, sp2-C
1.76, N 1.65,
charged-N 1.5, O 1.4

2.5

Standard set with larger
O (6 radii)

Above with O of 1.6 0.6

Set derived from ENCAD
LJ parameters, with
hydrogens (9 radii)

sp3-C or S 1.82, sp2-C
1.74, N 1.72,
charged-N 1.68,
water-O 1.54, sp3-O
1.48, sp2-O 1.35, H
1.17, polar-H 0.35

2.8

Simple Bondi set, with
hydrogens (5 radii)

S 1.8, C 1.7, N 1.55, O
1.52, H 1.2

2.8

*The first radii set is derived from ref. 35. It reflects the closest contact
or minimal distance between atoms in small-molecule crystal struc-
tures and has a 1.4 Å value for the water radius. It was used for all
the calculations in the paper, both volume and surface area, and in
the following discussion it will be referred to as the ‘‘standard set.’’
It is of concern that this set does not explicitly model hydrogens. It also
has been pointed out that the 1.4-Å value of the water radius reflects
only hydrogen-bonding distances and not Lennard–Jones interaction
parameters (36). In the other radii sets in the table, we attempt to
assess whether these points lead to significant differences in the
volume calculation. Initially, we increased the radius of the oxygen
atom by '15% to give a second radii set. This models a larger water
and gives an appreciable but smaller volume increase. However, it
produces, in a sense, an unphysical radii set since the radii for the
other atoms were not adjusted to give overall consistency. The third
set remedies this problem. It is derived directly from the Lennard–
Jones parameters in the Energy Calculations and Dynamics
(ENCAD) potential (37). For each atom type, we found the radius
where the Lennard–Jones potential just started to become repulsive
[i.e., we solved for r in U(r) 5 (Ayr12) 2 (Byr 6) 5 0]. The resulting
radii set includes a larger value for the radius of a water molecule
(about the same as in the second set), but it has the other radii scaled
to compensate to some degree. This set also includes hydrogens and,
in total, is rather complex, containing nine different radii. Never-
theless, despite the great differences in the values of the individual
radii from the standard set, it results in a very similar volume increase.
The fourth set is derived from Bondi (38). It also contains hydrogens
and a large water radius but is much simpler with only five radii in
total. It is rather notable that it gives essentially the same volume
increase as either the ENCAD set or the standard set. This shows how
insensitive our results are to choice of radii set.
†The last column contains the percentage increase in volume of all the
sufficiently hydrated surface atoms in the 5PTI crystal structure. 5PTI
was chosen because it is a neutron structure and has most hydrogen
atoms positioned. This column shows the exact same quantity as the last
column in Table 1—i.e., (S2R)yR, where S is the total Voronoi volume
we calculate for the sufficiently hydrated surface atoms and R is the total
volume for these same atoms if we use standard core volumes derived
from ref. 8 for each atom.
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solvent. In particular, the main chain N, Ca, and C atoms and

side chain
{
}
C A atoms have volume increases (3–7%) and

surface areas (1.5–5.0 Å2) that are only slightly greater on the
ridges than in the groove regions. On the other hand, the main
chain oxygen atom and nearly all the other side chain atoms
have volume increases and surface areas that are much larger
on the ridges than in the grooves (on average, a 12% volume
increase and 15.0 Å2 of accessible surface).

The Total Volume of Surface Atoms

In all 22 structures, the aggregate volume of the surface atoms
is larger than that of equivalent interior atoms (Table 1).
Individual structures have volume increases that range from 2
to 8%, and 16 of the 22 have increases between 3.5 and 6.5%.

However, the water molecules that surround the most
exposed atoms, those in the ridge regions, tend not to be
well-resolved in the structure determinations. This means that
the atoms with the largest volume changes are under repre-
sented in our calculations and that the overall surface volume
increase is underestimated. We can compensate for this bias by
using the data for the frequencies of different atom types, their
average volumes on the surface, and the accessible surface
areas of atoms included in our calculations in comparison to
those left out because of incomplete hydration. Calculations
with these numbers give volume increases for atoms in grooves
that are very similar to those calculated directly ('4.5%), but
for the atoms on ridges they give a slightly larger number
('10%). This implies that the surface atoms overall have'7%
larger volumes than those of interior atoms.

FIG. 1. Voronoi polyhedra. (A) A typical Voronoi poly-
hedron around a protein atom (the Og in a Ser). (B) To
construct a Voronoi polyhedron, one draws lines connecting
a central atom to all of its neighbors within a certain
‘‘cutoff’’ distance (indicated by the large circle in the figure).
Then one constructs planes perpendicular to these lines,
positioning them according to the ratio of atomic radii. The
smallest polyhedron formed by the intersection of the
dividing planes is unique and is the Voronoi polyhedron
associated with the central atom. Those dividing planes far
from the central atom (indicated by dashed lines) are
excluded. If Voronoi polyhedra are constructed around
atoms in a periodic system, such as in a crystal, all the
volume in the unit cell will be apportioned to the atoms.
However, if some of the neighbors around an atom are
missing, the constructed polyhedron will be too large to be
physically ‘‘reasonable’’ and will allocate ‘‘too much’’ space
to the atom. This is the problem at the protein surface,
where one often does not have enough neighboring water
atoms. Furthermore, when some neighbors are missing,
even if an apparently reasonable polyhedron can be con-
structed, it will often have a very ‘‘pointy’’ or distended
shape. (C) A distorted polyhedron on the surface of trypsin inhibitor in contrast to a well-shaped one in the core. The shape of a polyhedron can
be measured in terms of an asymmetry parameter, the ratio of maximum to minimum distances to the vertices. The asymmetry parameters for
the polyhedra in C are 1.3 for the well-shaped one and 5.8 for the distorted one. Overall, for atoms in the protein core, the asymmetry parameter
ranges from 1 to '2.7. However, for atoms on the surface with ‘‘pointy’’ polyhedra the asymmetry parameter can range up to 5 or more. We find
that 3 is a useful threshold separating noticeably distorted from undistorted polyhedra, and all polyhedra used in the calculations had asymmetry
parameters below this.

FIG. 2. The relationship between the degree of protein–water contact and change in volume. (A) The increase in volume of protein atoms as
they make more contact with water, and (B) the decrease in volume of water molecules as they make more contact with the protein. The increase
in protein atom volume, which is calculated over all atoms, is expressed as the measured volume of the protein atom on the surface divided by
the reference volume of a chemically equivalent buried atom (and multiplied by 100%). Similarly, the decrease in water volume is shown as the
ratio of an observed water molecule volume to that of a molecule in bulk water (29.7 Å3). The degree of contact is expressed as a fraction of either
the protein’s atom surface covered by water or the water molecule’s surface covered by protein. For both A and B, the error bars represent the
standard deviation of values at each amount of contact. Simple line fits give proportionality constants between the percentage change in volume
and the degree of contact: 10.20 for the A and 20.30 for B. Linear correlation coefficients, which give a measure of the spread of the points, can
indicate how useful the line-fits are: they are 0.98 for the A and 0.87 for B.
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The Volume Occupied by Water Near the Protein

The surface area calculations used here show that 160 water
molecules are buried in protein interiors and that 393 water
molecules that contact the protein surface are completely
covered by a second layer of water molecules. This means we
can use the Voronoi procedure to calculate the volumes of
water molecules associated with the protein. The buried water
molecules have a mean volume of 22.9 Å3 (with a relatively
narrow standard deviation of 7%). The 393 water molecules
near the protein surface have a mean volume of 24.5 Å3 with
.90% between 20 and 30Å3. This value is '18% less than the
volume of a molecule in bulk water (29.7 Å3) but still consid-
erably larger than the van der Waals volume of an isolated
water molecule (11.5 Å3, assuming a 1.4 Å radius).

We examined the relationship between the volume of water
molecules and the extent of their contact with the protein using
a procedure similar to that for the protein surface atoms.
Although we have data for only a relatively small number of
water molecules, they do show a clear relationship between
contact area and volume change. For a given contact area,
individual water volumes vary, but the mean values are in-
versely proportional to the extent of the contact (Fig. 2B). The
proportionality constant (20.3) is a little larger in magnitude
than that for protein atoms.

Discussion

The surface water around a given protein has, in different crystal
forms, quite different configurations. Zegers et al. (25) recently
examined the water seen around ribonuclease A in crystals from

Table 4. How the volume increase depends on atom type and location

Total atoms,
no.

Ns V s,
Å3

V r,
Å3

DVyV r,
%

A ,
Å2No. %

In grooves (locally concave regions)
All atoms 5243 3260 62 20.2 19.4 4.2 3.8
Main-chain atoms
N 316 264 84 14.8 14.0 5.1 1.9
Ca 366 256 70 14.2 13.5 5.1 1.8
C 76 50 66 10.0 9.3 5.7 1.1
O 905 690 76 16.6 15.9 4.4 3.6
Ca(G) 122 64 52 24.2 23.4 2.7 5.7

Nonpolar side-chain atoms
{
}
CHO 90 70 78 15.2 14.7 2.2 2.0

OCH2O 1140 655 57 24.5 23.7 3.3 4.0
OCH3 547 262 48 37.6 36.6 2.9 6.1
{
}
CA 190 97 51 10.6 10.1 4.7 2.0

OCHA 364 222 61 21.9 21.0 4.6 3.8
Polar side-chain atoms
Other atoms 208 115 55 18.0 16.7 7.4 4.0

ONH2 254 124 49 24.8 23.4 6.1 6.5
OOH 275 166 60 17.8 17.3 3.3 4.7
AO 124 67 54 18.3 16.8 6.8 4.8
OO (2) 266 158 59 16.7 16.0 3.2 5.1

On ridges (locally convex regions)
All atoms 3998 1072 27 15.9 14.7 7.6 8.0
Main-chain atoms
N 293 197 67 14.9 14.0 7.0 4.7
Ca 542 262 48 14.1 13.5 4.9 5.0
C 313 161 51 9.6 9.3 3.1 1.5
O 424 80 19 18.0 15.9 12.6 15.0

Side-chain atoms (polar
and apolar)
OCH2O 780 111 14 26.0 23.7 10.1 15.3
{
}
CHO 303 69 23 10.9 10.2 5.9 4.5

OCHA 151 33 22 23.4 21.0 6.6 14.4
OO (2) 198 32 16 18.0 16.1 8.0 20.8

Other atoms 994 127 13 32.5 29.6 11.8 25.5

Starting with the one labeled ‘‘Total atoms,’’ from left to right the columns show: the number of atoms on the surface of each protein; the absolute
number Ns and proportion of these surface atoms that are hydrated sufficiently enough so that they are completely buried by crystallographically
resolved waters and thus can be used for volume calculations; the average observed volume Vs for the sufficiently hydrated surface atoms in the
second column; the average volume of these same atoms Vr if the standard reference volumes for buried atoms were substituted for the observed
Voronoi volume; the percentage difference between columns 4 and 5, DVyVr, where DV 5 Vs 2 Vr; and the average surface area A of the
sufficiently hydrated atoms in column 2. Note that the statistical error in the volumetric quantities in the table is very small. Essentially, we are
assessing whether Vs is significantly different from Vr, compared to the null hypothesis that they are the same. For the large number of observations
considered here, we would expect the difference DV to be distributed approximately normally with an estimated standard error SE(DV) 5
=Ss2yNs 1 sr2yNr, where ss is the standard deviation in our sample of surface volumes, and sr and Nr are the number of buried volumes we measured
and their f luctuation in computing the reference volumes in ref. 8, respectively. Since we measured a much larger number of reference volumes
than surface volumes and they had smaller amounts of fluctuation, the standard error reduces to SE(DV)' Ssy=Ns. Evaluating this quantity, for instance,
for the Ca atom in groove regions (which has an observedmean volume of 14.2 Å3 and a standard deviation of 1.12 Å3), we find that SE(DV)5 1.12y=366
' 0.059 Å3, which is;0.4%. The error in mean for the associated buried reference volume (13.5 Å3) is much less. Consequently, the volume increase
(5.1%) is quite large compared to the overall statistical error in the calculation (0.4%), about 13s above the mean (Z score). This has a virtually
nil chance (i.e., P value) of occurring under the null hypothesis.
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five different space groups and found that only 17 water sites are
conserved in all structures. Very similar results have been ob-
tained fromanalyzing different crystal forms of pancreatic trypsin
inhibitor (43) and trypsin (44). Thus, the structural data analyzed
here represents not only different configurations of water mole-
cules around different proteins but also just one (or two) of the
many different configurations that are to be found in solution
around each of them—configurations that are stabilized, in part
at least, by particular crystal forms.
Overall, we have shown that, although the water around

proteins has considerable variations in its local structure, its
average properties have clear regularities. We estimate that
surface atoms on average occupy volumes '7% greater than
those of atoms buried within proteins. These overall results are
consistent with those obtained recently in a molecular dynam-
ics simulation of a small protein (45), where it was found that
the volumes of atoms on the protein surface are, on average,
6% larger than equivalent atoms inside the protein core. We
also obtained consistent results when we carried out our
packing calculations on the protein–water interface in a very
recent structure determination, which used direct experimen-
tal phase information for the protein and solvent (46).
For individual atoms, we find that the volume increase has

little or no relation to chemical character but is roughly
proportional to the extent of exposure to solvent. In detail, we
find that atoms in grooves expand more per unit of exposed
surface than those on ridges. This effect must be due, at least
in large part, to the difficulty water molecules have in fitting
into grooved regions of the protein surface while still main-
taining their tetrahedral hydrogen-bonding. It may, thus, be a
manifestation of ‘‘structural hydrophobicity’’—i.e., a hydro-
phobic effect due to the shape and not the chemical character
of the groups on the protein surface. This phenomena, which
is also called curvature-dependent hydration, has been previ-
ously been argued for on the basis of macroscopic solution-
transfer models (42) and microscopic simulations (47). Thus,
our results are a direct observation in crystal structures of an
effect that, up to now, has only been indirectly substantiated.
Turning attention to the water, we find that water molecules

near the protein surface decrease in volume by an amount that is
proportional to the extent of their contact with the protein. This
means the volume changes in the atoms at the protein–water
interface must cancel, at least in part. Previously, we demon-
strated that protein volumes calculated just from the standard
volumes of buried residues (after making allowance for electro-
striction around charged groups) gave values that on averagewere
only 0.4% larger than those determined experimentally (8). This
suggested that either residues on the surface have the same
volumes as those in the interior or that the volume changes that
occur at the surface tend to cancel. The results reported here
demonstrate that it is the latter explanation that is correct.
The picture of the protein–water interface that emerges

from our results is the following: the close packing of the
protein core produces a structure more tightly packed than
even organic crystals (8), which is incommensurate with the
hydrogen-bonded open structure of water. At the protein–
water interface, these two structures interpenetrate with water
molecules, making mainly one or two hydrogen bonds to polar
groups on the protein and some van der Waals contacts to
nonpolar protein atoms. And as we move across the interface,
we gradually move between the different packing environ-
ments, through a region of intermediate density with more
loosely packed protein and more tightly packed water.
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Kharakoz for useful discussions and comments on the manuscript. We
also thank Fred Richards for conversations in 1974 when these calcula-
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mentary material relevant to this paper (source code for volume calcu-
lating program, tables of standard volumes, and a hyper text tutorial on
the Voronoi construction) is available via the World Wide Web at the
following locator: http://hyper.stanford.edu/;mbg/Surface Volumes.]
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