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Using a measure of structural variation to define
a core for the globins

M.Gerstein and R.B.AItman1-2

Abstract

As the database of three-dimensional protein structures
expands, it becomes possible to classify related structures
into families. Some of these families, such as the globins,
have enough members to allow statistical analysis of
conserved features. Previously, we have shown that a
probabilistic representation based on means and variances
can be useful for defining structural cores for large families.
These cores contain the subset of atoms that are in
essentially the same relative positions in all members of
the family. In addition to defining a core, our method creates
an ordered list of atoms, ranked by their structural
variation. In applying our core-finding procedure to the
globins, we find that helices A, B,G and Hform a structural
core with low variance. These helices fold early in the folding
pathway, and superimpose well with helices in the helix-
lurn-helix repressor protein family. The non-core helices (F
and the parts of other helices that interact with it) are
associated with the functional differences among the globins,
and are encoded within a separate exon. We have also
compared the variablity measure implicit in our core
structures with measures of sequence variability, using a
procedure for measuring sequence variability that helps
correct for the biased sampling in the databanks. We find,
somewhat surprisingly, that sequence variation does not
appear to correlate with structural variation.

Introduction

The number of three-dimensional protein structures
available in the structural database continues to increase,
but the number of new folds per year is not increasing at
the same rate (Orengo, 1994). As a result, the database is
accumulating structures that are members of the same
structural family (Levitt and Chothia, 1976; Richardson,
1981; Chothia and Finkelstein, 1990). There have been a
number of efforts aimed at automatically identifying these
families (Johnson et ai, 1990; Sander and Schneider, 1991;
Pascarella and Argos, 1992; Holm et ai, 1993; Orengo et
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ai, 1993; Orengo el ai, 1994; Murzin et ai, 1995). One
important opportunity that arises with the accumulation
of large numbers of related structures is the ability to
characterize them statistically. This paper is concerned
with one such characterization, based on the positional
variability of conserved atoms throughout members of the
family. Given an alignment of a family of proteins (which
establishes the correspondences between equivalent resi-
dues in each structure), we define a subset of atoms that
have essentially fixed relative positions in all members of
the family and call these the invariant structural core. The
remaining non-core atoms have more variable relative
positions, which may explain the functional differences
between members of the family.

Protein cores, as we have defined them, are not precisely
the same as the core definitions used in other work. Others
have used measures of sequence conservation (Greer,
1990), conservation of structural and functional properties
(Liebman, 1986), hydrophobic packing (Swindells, 1995),
or density of contacts (Bryant and Lawrence, 1993) to
define cores. Our definition is based purely on the
observation that the relative positions of the core atoms
are essentially fixed. Our cores have a number of potential
uses. First, they can be used as a starting point in model
building exercises. Once a new sequence has been aligned
with any member of the family, then the core positions can
be used to estimate the expected position of a subset of the
residues. These positions provide an accurate scaffolding
upon which the rest of the molecule can be modeled, using
methods for elaborating the structure of loops (Jones and
Thirup, 1986; Levitt, 1992) and for positioning sidechains
given starting alpha-carbon positions (Lee and Levitt,
1991;Desmet<?M/.. 1992; Lee, 1994). Second, average core
structures can be used as part of a library for inverse
folding (or threading) applications, in which sequences are
tested for compatibility with known folds. Many of these
methods are sensitive to small variations in the backbone
positions (Ponder and Richards, 1987; Sippl, 1990; Jones
et ai, 1992; Bryant and Lawrence, 1993; Madej and
Mossing, 1994). By using only those atoms whose
structural variability is low, we can perhaps increase the
sensitivity and specificity of the threading function.
Finally, core structures may be useful in understanding
the evolutionary relationships both within and between
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Table I. Families, structures, and ensembles
A Structures used

PDB Protein Species Reference chains

2HHB
2LHB
1MBD
2HBG
1MBA
1ECD
2LH4

Hemoglobin (« I
Hemoglobin
Myoglobin
Hemoglobin
Myoglobin
Hemoglobin
Lcghemoglobin

i. (3 chains) Human
Sea Lampry
Sperm Whale
Bloodworm
Sea Hare
Chironomous
Plant

Fermi et al., 1984
Honzatko el al., 1985
Philips & Schoenborn, 1981
Arents & Love, 1989
Bolognesi et al., 1989
Steigemann & Weber, 1981
Arutyunyan el al., 1980

All globin structures arc of the deoxy form except for IMBA and

B Listing of structural

Ensembles

Globins
o-carbons
mainchain atoms
all common atoms'

1 ensembles used

Number of
aligned atoms

115
460
516

2LHB. All the structures were taken

Number of
structures

8
8
8

from the protein databank (Bernstein el al..

Average, Min,
in ensemble (A

2 19
2.18
2.17

1977)

and Max RMS between structures
per atom)

1.22
1.22
1.21

3.16
3.13
3.10

'All common atoms' means mainchain atoms for all 115 aligned positions plus the /? and 7 carbons that were conserved in all eight globin structures.

families. For example, shared core structures may be
observed embedded within apparently different structural
families. Others have created fragment libraries for
proteins, but these are not usually at the level of entire
folds (Prestrelski et al., 1992). Core structures may also
help distinguish regions that serve primarily structural
roles from those that serve primarily functional roles.

In this paper, we extend a preliminary report on the
analysis the core regions of eight globin molecules
(Altman and Gerstein, 1994) and apply methods we
previously used in the study of the immunoglobulins
(Gerstein and Altman, 1995). We analyse five hemoglobin
chains, two myoglobin chains and a plant leghemoglobin
(detailed in Table 1). We demonstrate that the core denned
using only alpha carbons is the same as that defined using
all the backbone atoms, or all the backbone atoms plus all
conserved sidechain atoms. We show that the core makes
biological sense. In addition, we have used the spatial
probability distributions for individual atoms to apply a
distance measure between family members that is more
sensitive than the traditional root-mean-square (RMS)
measure. In particular, our 'calibrated' distance metric
compensates for the observed variability that occurs
within the globin family, and highlights differences in
atomic positions that are unusual given the normal
variation in position throughout the family. Finally, we
show that our representations allow a comparison of the
sequential diversity of an aligned set of residues (from a
multiple alignment of protein family members) with their
structural diversity. Using a procedure that helps correct
for biases in the sequence databanks, we find that
sequential diversity is not significantly correlated with

structural diversity and discuss the implications of this
finding.

The representation used in our method for defining core
positions is based on three-dimensional mean and
variance (Gaussian) in atomic positions, reminiscent of
the anisotropic thermal ellipsoids that are sometimes used
to summarize the position of atoms in crystallographic
analyses. We have reported previously an algorithm that
uses this representation for computing structure from
numerous, uncertain data sources using a strategy of
Bayesian combination of evidence (Altman and Jardetzky,
1989; Altman el al., 1993). This algorithm has been
compared with other methods for computing structure
from distance information (Liu et al., 1992), and has been
used to compute a structure for the trp-repressor dimer
(Arrowsmith et al., 1991), the lac-repressor headpiece
(Altman et al., 1993) and cyclosporin (Pachtere/a/., 1991)
using NMR data. We have also described software for
displaying structures represented using these probabilistic
concepts (Altman et al., 1995). The work reported here
demonstrates the utility of this representation for repre-
senting and analysing aligned protein structures.

Systems and methods

The computations described in this paper were performed
with Lucid Common Lisp, Perl, and C programs running
in a unix environment. Much of the code was prototyped
and developed in Macintosh Common Lisp 2.0, and
subsequently recompiled on a Hewlett Packard-720 (HP-
720) for production runs. We are currently coding the
whole method in ANSI C for general distribution.
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Algorithms

The algorithms used in this paper fall into three categories:
finding an average core, using the core to define a better
RMS, and relating structural variation to sequence
variation. Our core-finding algorithm starts with an
ensemble of aligned structures, such as all the globin
structures after they have been structurally aligned (Lesk
and Chothia, 1980; Gerstein et ai, 1994) Such an alignment
often contains some columns that are not completely
populated (they may be the sites of deletions in some family
members), and others for which every member of the family
has an aligned residue. By definition, core positions should
be present in all members of a family. Thus, we first remove
all columns of an alignment that do not have representa-
tives from every family member. The remaining set of
positions is the set of positions which may be part of a
structural core. In general, some of these aligned positions
will have a high structural variation, and are thus not
appropriately considered core atoms. Our technique
identifies conserved atoms with high structural variation
and removes them from the putative core.

Finding an average core

Our algorithm iteratively identifies the atom which is least
likely to be core, and removes it from the list of candidate
core atoms. The 'least likely' core atom is that atom which
has the highest positional variation. We are then left with a
list of the remaining atoms, from which the next noncore
atom can be identified and thrown out. By repeating this
procedure, we produce a rank order of atoms based on
structural variability. The core of the family can then be
defined by deciding the point at which noncore atoms are
all thrown out, and only core atoms remain. We make this
decision retrospectively after sequentially throwing out all
atoms, and then examining the statistics of the core/
noncore distributions that result at each iteration. The
criterion for separating core from noncore atoms may
vary, depending upon the uses to which the core will be
put. The order of atom removal (the 'throw out order'),
however, remains constant. The core-finding procedure is
a generalization to multiple structures of the 'sieve-fit'
procedure, previously developed for analysing protein
motions (Chothia and Lesk, 1986; Gerstein and Chothia,
1991; Gerstein et a/., 1993a, 1993b). There are three key
computations performed in core finding: (i) computing an
unbiased average of a set of structures, (ii) computing the
structural variability for each atom, and (iii) selecting a
dividing point between core and noncore atoms.

/. Computing an unbiased average of an ensemble
A number of methods have been developed for super-
imposing an ensemble, fi, of structures (Gerber and

Miiller, 1987; Kearsley, 1990; Diamond, 1992; Shapiro et
a/., 1992). All these methods require an alignment which
pairs each atom in one structure with an equivalent atom
in the others. The methods then superimpose the centroids
of the ensemble of structures, and determine a rotation for
each structure such that the sum of squares of differences
in coordinates between aligned atoms is minimized:

j<k i=\

where the outer sum is over all pairs j , k of the N structures
in the ensemble ft, the inner sum is over the M aligned
positions in each structure, and RjXjj are the rotated
coordinates of structure j . The previously reported
methods are difficult to program and may not parallelize
well. We have developed a new method which is less
efficient, but which uses only repeated calls to a basic
RMS-fitting routine.

1. Start with an ensemble of N structures
2. For each structure in the ensemble,

A. perform a standard RMS fit of all other (N- l )
structures to it (Arun et at., 1987).

B. Compute the average coordinates of the selected
structure, and the N - l fitted structures.

3. Compare the minimal RMS deviation between the N
average coordinates that result from fitting to each of the
N structures in the ensemble. If the coordinates are all the
same, to within some predefined threshold, then they
constitute an unbiased average. If the coordinates are not
the same, then using the average structures computed in
2B, loop to the top of step 2.

This procedure works because the average structures
computed in step 2B are different from one another, but are
more similar to each other than were members of the
original ensemble. By repeating this procedure of fitting to
each structure (and averaging), we can create a set of
structures that are essentially identical, and are an unbiased
average of the original starting structures. We use a
predefined threshold value of 10~6A as the stopping
condition. The unbiased nature of the method is evident,
since there is no order dependence in the procedure or in the
way in which the list of structures is ordered. The
computational complexity of this approach requires
0(N2) RMS fits (where N is the number of structures),
since each structure is fit to all other structures. In practice,
no more than three iterations are required for convergence.

2. Computing the structural variation for each atom
Given N structures that contain M conserved atoms, we
summarize the structural variation for the conserved
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atoms by fitting them to an unbiased average, and then
calculating a three-dimensional ellipsoid volume that
encloses the atoms. The volume is computed from a
3 x 3 variance/covariance matrix for the coordinates (x, y
and z) of each atom. This matrix contains the variance of
each individual coordinate in its diagonals, and the
covariances between coordinates in its off-diagonals. The
covariance matrix is symmetric, positive definite and can
be diagonalized to give the variances along the principle
axes of the constellation of atoms (Altman et «/., 1995).
Assuming a three-dimensional normal distribution of
atoms, the volume V that contains more than 96% of
the atoms at two standard deviations is:

= -7r(2aJ2(2a,.)2(2<7..)2

Atoms with large spatial variations after alignment of
the N structures will have large volumes, and those with
small spatial variation will have small volumes. The atom
with the highest spatial variation is least likely to be part
of core, and is removed from the list of candidate core
atoms.

3. Selecting a core cutoff
The process of defining the structural variation for each
atom, and removing the atom with the largest variation,
results in a rank ordering of atomic variability from most
variable to least variable. This order is intrinsic to the
family of proteins and specific alignment used. However,
for some purposes, it may be useful to define a threshold
for separating atoms that should be considered core from
those that should be considered noncore. The criterion
used for this threshold may vary, and is somewhat
arbitrary. The simplest criterion is one based only on the
size of the ellipsoid enclosing the positions for an atom.
Thus, we could choose an ellipsoid volume (such as 1.0 A3)
as a threshold and include those atoms whose spatial
variation occurs in this or smaller volumes. This criterion
suffers because it does not recognize more natural
divisions between core and noncore populations. Thus,
we might choose a criterion based on the properties of
atoms that have been discarded. We have previously
suggested that the variance in noncore ellipsoid size would
have a maximum when atoms that are properly considered
'core' are added to the list of noncore atoms (Altman and
Gerstein, 1994). For example, if we assume that core
atoms have small, homogenous ellipsoids of variation,
then adding members of this homogenous population to a
heterogeneous population of highly variable ellipsoids will
reduce the overall variation. We showed that this criterion
yields a reasonable core definition for the globins. A third
criterion for a core cutoff combines elements of the first
two criterion: we seek a threshold that maximizes the

separation between the distribution of the volumes of the
ellipsoids of variation for core and noncore atoms, and
that yields a relatively homogenous population of core
ellipsoids. In the case of the globins, all three of these
criteria yield very similar core/noncore thresholds.

Using the Core to Calculate a 'Better RMS'
Having defined a set of core atoms for a family, we can use
the core atom positions to get a high quality superposition
of the family members—and thus highlight the regions
which differ in detailed structure. If we superpose with all
the conserved atoms (instead of only those conserved
atoms with low structural variability) then our super-
position distributes errors across all the atoms, and can
not distinguish between structurally conserved regions,
and those that are variable. Such a superposition would
not be useful for understanding the detailed ways in which
two members of a family differed. For example, a position
by position analysis of the deviations would be relatively
uninformative because the error that is primarily due to
highly variable regions is distributed over the entire
structure. The standard RMS deviation that would be
reported from such an alignment would reflect the average
deviation of all atoms, without recognizing that some
atoms have very low deviations, and others have much
higher deviations.

An alignment of structures using only core atoms allows
us to identify and examine the structural deviations of
variable regions, and provides a much more useful
position by position analysis. In fact, the measured
deviations between atoms can be calibrated by scaling
the deviation between two atoms at a position by the
statistical variation in the family at that position. For
example, if the vector separating two atoms has a length of
1.0 A in a certain direction, and if the known variance
along that direction is 4 A2, then the calibrated distance
between the two atoms would be 0.5 standard deviations
(1 A x 1 SD/v /4l?)= 0.5 SD, well within the normal var-
iation seen in this family. If, on the other hand, the vector
separating the atoms has a length of 4.0 A, then the
calibrated distance would be 2.0 SD, indicating that this
difference is large, even by the standard of usual variation
within the family. Thus, we can plot a position by position
analysis of the distance in units of standard deviation, and
determine which atoms are farther apart (or closer
together) than is usual within the family. As in the case
of unsealed distances, we can summarize all the standard-
deviation distances between two structures as in terms of a
single number, the RMS of all these SD-distances (i.e. the
SD-RMS). It is interesting to note that the SD-RMS value
between a structure and the average core measures the
degree to which the structure is a typical member of the
protein family.
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Although SD units and the SD-RMS are generally
useful, it may be desirable to also have some measurement
in units of Angstroms that can be related back to
structural units. We have found it particularly useful to
scale all the SD deviations in order to produce a
'calibrated' deviation whose RMS value is the same (in
units and in value) as the standard RMS value used when
summarizing the deviations between two aligned struc-
tures. In particular, the calibrated distance, dra/, between
two corresponding atoms in two structures is given by:

dcal =
DSD

where D R M S is the conventional RMS distance (in
Angstroms) computed over all atoms, DSD is SD-RMS
value computed over all atoms, and dSD is the scaled
distance (in SD units) between the two corresponding
atoms. The calibrated distance reflects more accurately
which atoms should be assigned responsibility for the
overall deviations.

Relating sequence variation to structural variation
The ellipsoid volumes provide a measure of the structural
variability for each aligned position in a protein family.
Analogously, a variety of approaches can be used to
quantify the degree of sequential variability for each
aligned position. Most commonly, these are based on the
concept of an information-theoretic entropy (Schneider et
al., 1986; Schneider and Stephens, 1991; Shenkin et a!.,
1991). The entropy of column i in a multiple sequence
alignment is derived from calculating frequencies f(i,t) of

amino acids of a given type (t) in this column:
20

However, the sequence databanks typically contain a
biased representation of sequences, which adversely affect
the computation of reasonable frequencies. That is, for a
given protein, some species are over-represented and
others are under-represented. There are. for instance,
usually many more human sequences than dog sequences.
Methods have been developed to correct for this 'biased
sampling' within a multiple alignment. We have pre-
viously described one such method (Gerstein et at., 1994)
which is based on weighting each sequence by its position
within an evolutionary tree. (See Vingron and Sibbald,
1993 for a general discussion of weighting schemes.) To
incorporate our weights into calcuation of sequence
variability, we simply take f(i,t) in the above formula to
be the normalized sum of the weights w(j) for sequences
with a residue of type t in position i:

r l . \ j{l Jived an)

where the denominator sum is over all sequences j in the
alignment and the numerator sum is over just those
sequences that have a residue of type t at position i.

Results

As shown in Table 1 A, we chose eight structures from the
globin family for our calculations. This set of structures had
been previously aligned manually (Lesk and Chothia, 1980)

30 40 50 60 70 80 90 100

Core finding Cycle Volume of Residue Variation (1 SD)

Fig. 1. Progress of the core finding procedure in the globins. (A. left) After fitting the noncore atoms to one another, we plot the variance in the volume of
the ellipsoids in order to identify the core for the globins. We perform a 5-residue moving average in order to smooth the curve, and then selected local
maximal. As discussed in the text, the variance of the noncore ellipsoids peaks at the 'core' threshold. For the globin family, we observed maxima at
cycles 42, 64 and 84, corresponding to our cores containing helices A, B, E. G, and H, helices A. B, G and H, and helices A and B, respectively. (B, right)
In order to confirm the choice ofcore cutoffat cycle 42, we plot the distribution of ellipsoid volumes for core atoms and noncore atoms, to evaluate the
degree to which the cutoff separates two populations with distinct volume distnbutions. The average core ellipsoid has a volume of volume ~ 0 8 AJ

while the non-core ellipsoids have an average volume of 3 A' In addition, the noncore volumes are broadly distributed, while the core ellipsoids arc
tightly distributed.
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Fig. 2. Average core structures of the globins The globin core. The view is roughly the same as the schematic drawing shown in Fig. 3. The mean position
of all 115 atoms is shown along with their ellipsoids of variation drawn at two standard deviations (left) Relatively large ellipsoids are shown around the
42 Co atoms classified as not belonging to the globin core (center). Smaller ellipsoids are shown around the 73 atoms that are classified as belonging to
the core (right). The core structure has acceptable stereochemistry The Ca-Cn virtual bond length averages 3.76 A, with a standard deviation of
0.034 A.

using a canonical numbering scheme, and had been subject
to a number of subsequent investigations (Bashford et al.,
1987; Gerstein et al., 1994). We first ran the core finding
algorithm on 115 a-carbons corresponding to the aligned
positions. To test the sensitivity of our method to larger sets
of atoms, we ran our core finding procedure on an ensemble
containing more than just a-carbons. We ran the procedure
on the full set of backbone atoms from the 115 aligned
residues (a total of 460 atoms), as well as on a set that
included all backbone atoms in addition to conserved
sidechain (J3 and 7) carbons (a total of 516 atoms). These
data sets are summarized in Table 1B. After calculating two
new globin cores, we compared them to our original a-
carbon core and found them to be almost identical. In
particular, we performed a Spearman rank correlation
(Press et al., 1992) on the 'throw-out' order of the 115 a-
carbons in both runs and found an almost perfect
correlation (0.99). We also correlated the throw-out order
of different types of atoms (i.e. mainchain C with
mainchain O) in the all-atom run. We found that the
correlation of a-carbon throw-out order with any of the
other atoms in a residue was greater than 0.93, demonstrat-
ing that all the atoms in residue tended to be thrown out as a
unit. This correlation in throw out order, in turn, suggests
that a-carbons are sufficient to define the core structure.

Defining a globin core

Figure 1 demonstrates two lines of evidence indicating a

natural division between core and noncore atoms at cycle
42 of core finding. Figure 1A plots the variance of the
atoms that have been removed (fitting them to their
unbiased average), and shows a peak at cycle 42. In
subsequent cycles (43 and beyond) the variance of the
noncore atoms decreases, suggesting that a population of
homogenous atomic volumes is being added to the list of
noncore atoms. Thus, cycle 42 marks the point at which
the noncore list contains the most variation, and the core
list has a relatively homogenous population of 73
remaining ellipsoids. Figure IB compares the distribution
of ellipsoid volumes for the 73 core atoms and the 42
noncore atoms. The core atoms form a spike with average
ellipsoid volume around 0.8 A3, while the noncore atoms
have much broader distribution with an average volume
around 3 A3. The overlap between these two distributions
is quite small. Thus, there seems to be a reasonable core
threshold at cycle 42.

In Figure 1 A, we also note peaks at cycles 64 and 84, in
addition to the primary core peak at cycle 42. These peaks
suggest that there are two "secondary cores" within the
primary core. That is, there are subpopulations of atoms
which have still smaller spatial variation than the primary
core, and whose variances cluster even more tightly. The
smallest core contains 31 a-carbons from helices A, B and
part of G; the next, intermediate core is a superset of this,
containing only the A, B, G and H helices.

The error ellipsoids for the 73 core and 42 non-core
atoms are shown graphically in Figure 2. The core

Fig. 3. Biological significance of globin core. (A) Cylinders representation of a globin showing standard helix labeling scheme (1MBD). (B) Graphical
depiction of the relevant subsequences of globin family. (The residues of I MBD are shown for reference purposes.) The set of 115 conserved globin
residue positions in the standard alignment of Lesk and Chothia (1980) are labeled (ALIGNED row). The conserved residues encompass all the globin
helices, except the D helix, which is often not present. The boundaries of the helical secondary structures are labeled (2° STRUCTURE row). If the core
cutoff is set at cycle 42, as discussed in the text, then there are 73 core residues for the globins. which are labeled (CORE row). The iteration at which each
of the 115 aligned residues was removed during the corefinding procedure is also labeled (TH ROW OUT row). The 52 positions in the repressor protein
which align well with the globins is shown (REPRESSOR row). Finally, the location of the second exon for myoglobin, which primarily codes for the
noncore segments of the globins, is also labeled (EXON-2 row).
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