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57ABSTRACT
58The sequencing of complete genomes provides us with a global view of all
59the proteins in an organism. Proteomic analysis can be done on a purely
60sequence-based level, with a focus on finding homologues and grouping
61them into families and clusters of orthologs. However, incorporating protein
62structure into this analysis provides valuable simplification; it allows one to
63collect together very distantly related sequences, thus condensing the prote-
64ome into a minimal number of ‘parts.’ We describe issues related to surveying
65proteomes in terms of structural parts, including methods for fold assignment
66and formats for comparisons (eg top-10 lists and whole-genome trees), and
67show how biases in the databases and in sampling can affect these surveys.
68We illustrate our main points through a case study on the unique protein
69properties evident in many thermophile genomes (eg more salt bridges).
70Finally, we discuss metabolic pathways as an even greater simplification of
71genomes. In comparison to folds these allow the organization of many more
72genes into coherent systems, yet can nevertheless be understood in many
73of the same terms. The Pharmacogenomics Journal (2001) �, ���–���.
74
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76INTRODUCTION
77With the advent of new DNA sequencing technology there are as many as 800
78organisms for which genomes have been neither completely sequenced or
79sequencing is in progress. The attention, both public and scientific, has catalyzed
80a tremendous effort to analyze and compare those genomes that are publicly
81available.1–3 This interest is reflected in the large number of genome comparison
82articles over the last decade. The increase in the number of publications compar-
83ing genomes (from 75 in 1990 to 220 ten years later) shows a strong upward
84trend, suggesting much more of this activity in the future (see Figure 1). The
85accumulation of sequence data has resulted in a paradigm shift in the biological
86method; the bottleneck now occurs in data analysis rather than data generation.4

87The analysis of these data will allow researchers to raise, and attempt to answer,
88many complex biological questions that were not possible to address in the pre-
89genomic era. This review attempts to briefly outline some rudimentary compari-
90son methods for genome analysis, as well as present some more novel and
91efficient options for comparing genomes.

92TYPES OF GENOME COMPARISON
93Comparison Based on Single Sequences

94Deciphering a genome is akin to trying to understand a dead language without
95the help of a Rosetta stone. Fortunately, we are not working from a true tabula
96rasa as biologists have imported tools and methods from other data-heavy
97sciences. Tools such as Bayesian networks, Self-organizing maps and Hidden Mar-
98kov Models have allowed for a better understanding of the
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9 Figure 1 Advantages of organizing sequences into folds. Folds can group a large number of sequences into a smaller number of folds.

10 For instance, there are about 30 000 genes in human, and they can be organized into 1000-fold families. Furthermore, folds can group

11 evolutionarily related sequences.
12

99 underlying data. These methods can be used to compare
100 genomes in multiple varied fashions.
101 Initially researchers used straightforward approaches to
102 compare genomes directly in terms of sequence. These
103 methods searched for: (i) homologues, motifs (eg regulatory
104 or DNA binding) and common oligonucleotide and oligo-
105 peptide words;5–8 (ii) orthologs (see for instance the COGS
106 database;9,10 (iii) gene duplications;11–19 and (iv) the occur-
107 rence of conserved families in several different genomes.9,20–24

108 Several semi- and fully-automated methods have also been
109 developed for comparing whole genome sequences against
110 multiple databases.25–33

111 COMPARISON BASED ON GROUPING SEQUENCES
112 INTO FOLDS
113 Why Folds?

114 Efficient genome analysis requires the organization of an
115 enormous number of protein sequences in a systematic and
116 orderly fashion. The most general way of organizing gen-
117 omes involves clustering the sequences into protein families
118 based on sequence similarity. However, in many instances,
119 sequences, although evolutionarily related, diverge so much
120 that no appreciable homology can be found to group them
121 into the same family. In contrast to groupings based purely
122 on sequence similarity, folds provide for greater simplifi-
123 cation in organizing the large amount of genomic data
124 (Figure 2). Furthermore, in many cases, folds define func-
125 tion, and can maintain their function even with mutations
126 in the sequence. Thus, two seemingly divergent sequences,
127 can code for the same fold and, as such, can be grouped
128 together independent of their minimal sequence hom-
129 ology.34,35

130 Genome comparison based on protein structure is
131 important for multiple reasons. First, one can define a struc-
132 tural module precisely, and there is a limited number of
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133motifs as opposed to sequences.13,36–51 Moreover, analysis of
134structure can reveal more about distant evolutionary
135relationships than sequence comparison alone, as structure
136is more conserved than sequence or function.52,53 Further-
137more, the relationship between sequence similarity and
138structural similarity is better defined than the corresponding
139relationship between sequence and function. Finally, an
140emphasis on structure will help further our knowledge in
141drug design and molecular disease. The difficulty in ident-
142ifying drug targets from raw genomic sequence alone is
143reflected in the low (10%) percentage of pharmaceuticals
144that are developed through genomic efforts.54,55 Structural
145proteomics’ computational methods for structure study can
146overcome some of the limitations of other high throughput
147experimental methodologies (ie the difficulty in studying
148proteins due to insolubility or unstable folding.56 As there is
149a large degree of structural, and thus functional, homology
150between completely different sequences, there is obviously
151a large number of unknown homologies that pharmaceut-
152icals can take advantage of by determining structural and
153functional features for previously un-annotated proteins.57

154Structures may also help us interpret Single Nucleotide Poly-
155morphisms (SNPs) in coding regions. In particular, they will
156allow us to make inferences regarding selection, mutation
157and function of SNPs by comparing similar structures with
158a range of underlying sequences.

159Types of Structural Comparison

160Structural comparison can be made on multiple levels. The
161concept of structure extends from alpha helices and sheets
162to complex multi-domain motifs to whole proteins and
163complexes. A more complex structure will be more evol-
164utionarily conserved and will also be more informative in
165terms of function.
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19 Figure 2 Trend in published research articles on structural genomics. (a) Results of PubMed searches for the keywords ‘comparison’,

20 ‘protein structure’, ‘genomes’ and their combinations. Whereas it is obvious that the number of references to the word ‘comparison’

21 (316 824) will be large, the number of publications comparing genomes (2059) or protein structures (11 621) is surprisingly small. The

22 results are illustrated here as subsets. (b) The analysis of the numbers of publications per year regarding comparison of protein structures,

23 genomes and protein structures and genomes reveals that the number is continuously increasing. Especially the number of publications

24 regarding comparisons of genomes has tripled over the past 10 years.
25

166 Fold Libraries

167 A common objective of most of the structural studies is to
168 achieve an understanding of large proteomes in terms of a
169 limited repertoire of structures culled from fold libraries.
170 Manual as well as automatic methods are used for structural
171 alignments as sources for fold databases such as SCOP, FSSP,
172 CATH and HOMALDB.58–62 Pfam, which catalogs multiple
173 sequence alignments of protein domains or conserved pro-
174 tein regions, is another example of a database used for com-
175 parative studies.63 Pfam is especially useful for automatic
176 detection of remote homology by building profiles via Hid-
177 den Markov Models.

178 Fold Recognition: Comparing Folds to Genomes with
179 Templates
180 Currently, the PDB can be clustered into l1360 representative
181 domains. Using structure comparison, one can further clus-
182 ter the data into 564 folds, giving about two sequence famil-
183 ies per fold.64 Sequence templates, authoritative sequences
184 for a given fold, can be extracted from these fold libraries
185 and used to search the genomes. These templates are used
186 specifically as seeds to build up large sequence alignments
187 from the major databases using standard pair-wise searching
188 tools—eg the popular BLAST and FASTA programs on the
189 Swissprot and GenBank databases.65–69 A number of
190 methods of transitive comparisons are expected to improve
191 the sensitivity of these pair-wise searches.65,70,71 Since many
192 of these alignments contain quite a few sequences, they
193 can be fused into a consensus pattern or template using
194 various probabilistic approaches including Hidden Markov
195 Models.72–77

196 PSI-BLAST, in addition to other methods, is used to com-
197 pare these templates directly against the genomes to find
198 other similar folds and to detect remote homologies.45,65,78–82

199 If one finds a close homology, one can obviously use this to
200 model the target protein based on the template infor-
201 mation.83–87
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202Approaches to Large-scale Surveys: Common Folds, Shared
203Folds and Horizontally Transferred Folds
204There are many large-scale surveys and comparisons based
205on folds that have been performed using the above
206methods. These fold comparisons have provided an
207important perspective of a finite ‘parts list’ for different
208organisms.88,89 It is argued that with few exceptions, the ter-
209tiary structures of proteins adopt one of a limited repertoire
210of folds.90–92 As the number of different fold families is con-
211siderably smaller than the number of gene families, categ-
212orising proteins by fold provides a substantial simplification
213of the contents of a genome. One can expect that this
214notion of a finite parts list will become increasingly com-
215mon in the future genomic analyses.
216There are many ways in which genomes have been stud-
217ied and compared in terms of protein folds (eg, in terms of
218the most abundant folds). Such ‘inventory statistics’ can be
219very useful in understanding the individual characteristics
220of genomes, particularly of microbial physiology. Similarly,
221if the results are compared among the organisms, one can
222obtain knowledge regarding shared folds among those gen-
223omes. Similar analyses have been performed to look into
224such distributions in a number of the recently sequenced
225genomes.93,94 As shown in Figure 3, the analysis can be con-
226ceptualized in terms of a Venn diagram, similar to those
227used for studying the occurrence of motifs and sequence
228families.46,95 Out of the known folds (564) about half are
229contained in at least one of the three genomes studied, and
23020093 folds are shared amongst all three genomes. These
231shared folds presumably represent an ancient set of molecu-
232lar parts. Protein folds in the worm genome have also been
233surveyed, revealing that there are about 32 matches per fold
234and involving a quarter of the total worm ORFs.96,97 Com-
235parison with other model organisms also showed that the
236worm is phylogenetically closer to yeast than E. coli.96 Folds
237were also assigned to the proteins encoded by the genome
238of Mycoplasma genitalium.98 Studies have been performed to
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31 Figure 3 Various ways of comparing genomes in terms of struc-

32 tures. (a) Genomic tree based on the overall occurrence of folds in

33 the genomes, generated by a distance-based method. For each of

34 the microbial organisms the presence or absence of folds was

35 marked with 1 or 0, respectively. (b) Distribution of known folds

36 amongst the genomes. This figure is adapted from Gerstein et al.96

37 There are almost �500 known folds, of which almost half of them

38 are shared between all three.
39

239 relate these folds with functions.99 Furthermore, three-
240 dimensional protein folds were also assigned to all ORFs in
241 the recently sequenced genomes hyperthermophilic
242 archaeon and Pyrobaculum aerophilum.100 Efforts have been
243 further made to assign folds for proteins with unknown
244 functions in three microbial genomes Mycoplasma geni-
245 talium, Haemophilus influenzae, and Methanococcus jannas-
246 chii.101 In addition to fold assignment, studies have also
247 addressed the pattern of fold usage across genomes.93 The
248 sharing of folds across many different genomes can be used
249 to group organisms into cluster trees.94 These whole-genome
250 trees have a remarkable amount of similarity to the tra-
251 ditional ribosomal tree, despite being based on completely
252 different metrics of similarity (see Figure 3b).
253 PEDANT and GeneQuiz are two web sites that compile
254 these data automatically.27,102 Such comparison provides a
255 global view of fold abundance across the organisms and
256 their evolution. Moreover, this comparison can tell us if cer-
257 tain genes had been horizontally transferred between two
258 evolutionarily distant organisms.
259 This idea of fold comparison is not limited to ORFs, but
260 can also be extended to pseudogenes, ie those genes that are
261 not expressed. In a recent survey of the estimated pseudo-
262 gene population in the worm genome, the distribution of
263 top protein folds in the proteome and in the predicted
264 pseudogenes showed some notable differences, with a num-
265 ber of folds, in particular that of DNAase I, being much more
266 common in pseudogenes than in expressed genes.103

267 Comparison of Predicted Structure
268 It is obvious that we can’t assign a fold to all expressed
269 sequences in a genome thus limiting any genome compari-
270 son based solely on folds. As such there are efforts being
271 made to predict the structure of unknown proteins.104,105 In
272 addition to homology modeling, there are other prediction
273 methods that have been developed to gain structural infor-
274 mation for the sequences that do not have any similarity
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275with a known fold. Unfortunately though, 3D structure pre-
276diction based on an ‘ab initio’ method has not been very
277successful.106–111

278Structure prediction has been most successful with one-
279dimensional prediction for secondary structure, assigning
280individual residues in the protein sequence to discrete states
281like strand, coil or helix. Methods such as GOR (Garnier–
282Robson–Osguthorpe Secondary Structure Prediction) incor-
283porate multiple sequence information.112–114 The DSC
284method (Discrimination of Secondary structure Class) and
285the method developed by Livingstone and Barton are other
286popular methods, and tend to give more accurate
287results.115,116 Using these predicted secondary structures,
288multiple genomes have been successfully compared. It was
289found that genomes have a similar secondary structure com-
290position even through they have different amino acid com-
291positions.15,88,117

292In addition to predicting helixes and beta sheets, several
293prediction methods have been developed for transmem-
294brane helices. Some of them are based on parameters
295derived from the intrinsic properties of amino acids, usually
296their oil–water transfer energies. A widely used example is
297the GES hydrophobicity scale.118 Other authors using differ-
298ent scales, eg the Kyte–Doolittle or the Eisenberg scales, also
299developed similar prediction methods.119–123

300A Case Study in Structural Genomics Comparisons: Finding
301the Unique Featrues of Proteins in Thermophiles
302To illustrate how genome analyses can be used to under-
303stand the structural properties of proteins, we describe a case
304study comparing the genome sequences of thermophiles to
305those of mesophiles.124 We focus on the question of what
306are the unique properties of proteins that are stable at high
307temperature and use this to illustrate various comparative
308methodologies.
309Thermophiles (archaea and a few eubacteria), thrive in
310high temperatures. It is not well understood how thermo-
311philes stabilize proteins at these elevated temperatures that
312otherwise denature normal-temperature (10–45°C) meso-
313philic proteins. Crystallographic studies, as well as structural
314information obtained through homology modeling,
315revealed a strong correlation between the number of salt
316bridges and protein thermal stability.125–140 There are several
317ways in which salt bridges can stabilize proteins. Ion pair
318networks, helix stabilizing salt bridges, salt bridges buried
319in a hydrophobic core and surface salt bridges between two
320subunits are among the most frequently encountered
321types.126,129,131,135,141,142 Most of these past studies, however,
322were anecdotal in nature in that they focused on one spe-
323cific protein rather than a comprehensive population sam-
324ple. Consequently, it is interesting to see how a comparative
325genomic analysis could bring a global perspective to such
326understanding.
327The purpose of such a comparison is to find an overall
328statistical difference for proteins in thermophile genomes in
329comparison to mesophiles. This global view does not limit
330the researcher to the evaluation of an isolated individual dif-
331ference in a particular protein, but rather focuses on overall
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332 differences over the whole genome. The most obvious para-
333 meters one can look at are the sequence composition and
334 length of all the ORFs in each genome. Figure 4 shows a
335 simple illustrative comparison of five thermophilic genomes
336 with seven mesophilic genomes in terms of amino acid con-
337 tent. On a primary sequence level, we see that thermophile
338 genomes overwhelmingly have more charged residues than
339 mesophiles. This result becomes more striking when we take
340 into account secondary structure considerations, through
341 prediction of the secondary structure for all ORFs in the gen-
342 ome using standard approaches such as the GOR program.
343 It is generally known that charged residues are associated
344 with stabilizing salt bridges. A further investigation into the
345 secondary aspects of these proteins shows that not only are
346 there more charged residues in general, but this trend is also
347 evident in predicted helices and that the spacing of the
348 charged residues in these helices has a preferred 1–4 arrange-
349 ment. This 1–4 arrangement is usually associated with intra-
350 helical salt bridges143,144 (see Figure 5a). To demonstrate the
351 preferred 1–4 arrangement, one can compute a LOD value
352 (ie the odds of having charged residues in a particular spac-
353 ing relative to a random expectation). These LOD values
354 point to the high probability of salt-bridges in thermophiles
355 compared to mesophiles Moreover, the frequency of salt
356 bridges correlates with the physiological temperature of the
357 organisms such that the number of salt bridges increases
358 with the increase in physiological temperature as shown in
359 Figure 5b. Thus the additional information of secondary
360 structure provides us with a clearer view of how primary
361 sequence differences can be explained as functional
362 differences.

42
43

44
45

46 Figure 4 Amino acid composition in helices. Figure is adapted from Das and Gerstein.124 The blackened area in the figure represents

47 the portion of charged residues E, D, K and R in a helix. This area increases from mesophiles to thermophiles.
48
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363Biases and Sampling

364General Issue of Bias in the Databanks
365One imperative concern in all large-scale surveys, such as
366the above protein thermostability example, is that of biases.
367There are many ways in which a bias can arise in a dataset.
368One large source of bias is the consequence of investigator
369preferences, resulting in the over or under representation of
370certain sequences and structure (eg compare human and fly
371globins in the GenBank repository). By focusing only on
372organisms for which complete genomes are known, one can
373attempt to eliminate this form of bias. However, this will
374not remedy the biases resulting from sequence repeats. The
375repetitive charged sequences in the set of thermophilic pro-
376teins from the above example could skew those results.
377Moreover, protein sequences enriched in salt bridges,
378unique to the thermophile, could be duplicated in the
379thermophile genomes forming large paralogous families and
380influencing the results. A similar situation may arise involv-
381ing only the sequences unique to mesophiles.
382In addition to biases in sequence databases, there are also
383biases in the structural databanks. The selection of proteins
384in the PDB is biased by the preferences of individual investi-
385gators and by the physical constraints imposed by crystal-
386lography and NMR spectroscopy. Structures in the PDB are
387also biased towards certain commonly studied organisms.
388Another important issue related to bias in the structure data-
389bank is that the absolute counts found in a given genome
390survey are contingent on the evolving contents of the data-
391bank. Thus, over time, as more structures are added to the
392databank, one should expect the basic inventory statistics
393(eg the most common folds or the number of shared folds)
394to change.
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55 Figure 5 A case study of comparative genome analyses focusing on protein thermostability. Figure is adapted from Das and Gerstein.124

56 (a) Intra-helical as well as tertiary salt bridges stabilize protein structure. (b) LOD values increase with the increase in physiological

57 temperatures shown along the horizontal axis. For mesophiles, they are indicated by a range from 10 to 45°C. The two letter codes

58 represent individual genomes: Pyrococcus horikoshii (OT3), Aquifex aeolicus (AA), Methanococcus janaschii (MJ), Archaeoglobus fulgidus (AF),

59 Methanobacterium thermoautotrophicum (MT), Haemophilus influenzae (HI), Mycoplasma genitalium (MG), Mycoplasma pneumoniae (MP),

60 Helicobacter pylori (HP), Escherichia coli (EC), Synechocystis sp (SS), Saccharomyces cerevisiae (SC). (c) This diagram illustrates the strategy

61 of stratified resampling, a method that can be used to eliminate biases. In this salt-bridge example, 52 orthologous proteins were selected

62 (from an assumed size of �2000) by this method. That is, only those corresponding proteins, which are present in all 12 genomes, were

63 selected, and then only a single representative was actually counted. The dashed lines (—) in the figure show the sequences that are

64 missing for any orthologous group and are thus discarded from calculation. Using this procedure, one can filter out the effect of paralog-

65 ous sequences as well as sequence repeats that may bias results.
66

395 Biases in the Prediction Programs
396 Cobbling together an ‘inventory census’ through the use of
397 a disparate collection of tools and patterns creates another
398 type of bias, that of devising consistent scores and thresh-
399 olds. This is particularly acute in the case of manually
400 derived sequence patterns and motifs, since an expert on a
401 particular fold or motif would expect their pattern to find
402 relatively more homologues than a pattern not constructed
403 by an expert. Applying the same single-sequence procedure
404 to each fold circumvents these problems to some degree.
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405Furthermore, this simplification has the added advantage in
406that it can be performed automatically without manual
407intervention and, consequently, can easily be scaled up to
408deal with much larger datasets.
409In addition to biases discussed above, there are also biases
410integrated into each of the tools used in large-scale analyses.
411Secondary structure prediction using GOR is statistically
412based, so that the prediction for a particular residue to be
413in a given state, say Valine in a helix, is directly based on
414the frequency that this residue occurs in this state in a data-
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415 base of solved structures (taking into account neighbors at
416 �1, �2, and so forth). Therefore, a bias in the sequences in
417 the structure database would be propagated in the structure
418 prediction. The GOR method only uses single sequence
419 information and thus, achieves lower accuracy (65%) than
420 the current ‘state-of-the-art’ methods (71%) that incorporate
421 multiple sequence information.3,59,145,146 Moreover, it is not
422 possible to obtain multiple sequence alignments for most of
423 the proteins in the genomes. Consequently, bulk predic-
424 tions of all the proteins in a genome based on multiple-
425 alignment approaches are skewed, in the same sense as dis-
426 cussed above for multiple-sequence based fold-recognition
427 methods.

428 How to Deal with Biases in Comparative Study?
429 In doing genome-wide surveys, one has to be careful to
430 assess the degree to which one’s calculated statistics could
431 be biased. Results should be tested and significance should
432 not be assigned without statistical controls and alternate
433 procedures.

434 Random Resampling
435 Random sampling procedures can be used to test results to
436 see if they are biased by sequence repeats. By comparing the
437 statistics from randomly selected sequences with the overall
438 results, one can estimate the extent of bias in the database.
439 In the above case study, simulated thermophilic and meso-
440 philic genomes could be made up by randomly drawing pro-
441 tein sequences from two large pools of thermophilic and
442 mesophilic sequences. LOD values obtained from these
443 simulated genomes would reflect the effect of biases. In this
444 specific case no such bias was found.

445 Stratified Resampling
446 The use of stratified sampling procedures is another
447 important way of removing biases in large-scale comparative
448 studies. The idea here can most easily be described in terms
449 of a demographic comparison of a particular characteristic
450 between populations, for example, height in northern vs
451 southern populations. It is possible that the overall popu-
452 lation could be fractionated into further subdivisions on
453 another parameter, potentially linked to height, say age (old
454 vs young). In the above salt-bridge example, LOD statistics
455 are analogous to computing the average height over the
456 entire population regardless of age. However, the possibility
457 that one population has more of a certain age group than
458 another could potentially skew these statistics (eg North-
459 erners are older and taller). To compensate for such bias in
460 the sample one could take a representative sample from
461 every age group and calculate the average height for that
462 stratum. In the above case study, sets of 52 orthologous pro-
463 teins present in each of the genomes were taken as a rep-
464 resentative stratum. The strategy is illustrated in Figure 5c.
465 Comparing results from this set with the genome-wide
466 results supported the overall conclusion of salt-bridge preva-
467 lence in thermophile genomes.
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468Rank Statistics
469Finally, rank statistics can be used to test the results of a
470comparative study. Rank ordering provides a more robust
471perspective of what is most abundant and what is rare.
472Therefore, if the rank of a certain event is consistently high,
473predominance of that event can be considered to be globally
474significant as opposed to just a ‘local’ effect arising out of a
475particular sequence bias. Furthermore, ranks provide a way
476of comparing disparate numerical values in a common
477framework.88 In the above salt-bridge example, LOD values
478showed the prevalence of the 1–4 salt-bridge pair in com-
479parison to other salt-bridge combinations in helices. It could
480be possible that the result was due to a certain group of pro-
481teins rich in salt bridges, and in the rest of the genome there
482were not that many salt bridges. Therefore, to validate the
483conclusion of comparative study, it is necessary to study the
484ranks of LOD values for all the helical pairs and compare
485them. If a pair is at the top of the ordered list of LOD values,
486then one could infer that this pair is among the most over-
487represented in the helices of the proteins for that organism.
488In the case study, ranks of salt-bridges in thermophiles were
489generally higher.

490Comparison Based on Grouping Sequences into

491Pathways, Systems, and Beyond

492In addition to sequenced-based and functional analysis, sev-
493eral genomic studies have analyzed genomes in terms of sys-
494tems, specifically metabolic pathways and phylogenetic
495analysis. Similar to folds, metabolic pathways group
496together protein sequences. Since pathways are ordered clus-
497ters of sequences, their analyses can also reveal information
498about the physiology of the organism. Just as with folds one
499can cluster genomes based on the presence, absence or rank
500of a fold; one can group genomes based on whether or not
501they share a particular metabolic system. Furthermore,
502investigators working on microbial genomes have, through
503these investigations, created comprehensive metabolic
504maps.147 Metabolic pathways can also be compared in terms
505of the properties of the enzymes and elementary
506modes.148,149 Using metabolic networks’ �<aq1>�distances
507in pathways, one can measure and compare genomes based
508on the sequence information of enzymes and substrates in
509the pathway.150 Pathways have also been analyzed by graph
510comparison methods where a pathway is considered as a
511graph with gene products as its nodes. This procedure leads
512to a formation of correlated clusters among the functionally
513related enzymes.151 Any good analyses of metabolic net-
514works based on genomic information requires substantial
515information with regard to networks, reactions and sub-
516strates.
517There are several metabolic databases currently available.
518The KEGG database of metabolic pathways and regulatory
519pathways has a collection of approximately 100 metabolic
520pathways.152 EcoCyc, specific to E. coli, has detailed infor-
521mation about the known metabolic pathways in E. coli.
522Studies of metabolic pathways can potentially help design
523new drugs for diseases caused by microbes and also help to
524understand how present drugs work within those pathways.
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525 Beside metabolic pathways, there are other major areas of
526 study where genomes are compared in terms of systems such
527 as phylogenetic comparison, expression analyses in relation
528 to various cellular functions, localization and events. Several
529 new terms have been coined to describe them, such as prote-
530 omics, transcriptomics, metabolomics and pharmacogen-
531 omics. All these analyses give us a greater global knowledge
532 with regard to the capabilities of systems such as metabolic
533 pathways or transcription processes and their interrelation-
534 ships.

535 CONCLUSION
536 There are many disparate methods that researchers use to
537 compare genomes, from simple sequence comparison to
538 protein structural comparisons to mRNA expression values.
539 Each of these methods provides unique information with
540 regard to genomes and how they compare or contrast. How-
541 ever, genome comparison based on protein structure is
542 particularly advantageous as structures are well conserved
543 between organisms even if the underlying sequence shows
544 minimal homology. Also the relationship between structure
545 and function is well defined. An important element of struc-
546 tural comparison between genomes is protein fold libraries
547 that arrange the proteins into fold families. We discussed
548 how different methods are used to build such libraries and
549 how the concept of a parts list can be used to survey and
550 re-survey the finite list of folds from an expanding number
551 of perspectives. Genome-wide surveys are not limited to
552 empirically defined structure, as structure predictions have
553 proved to be fairly accurate in their predictive abilities.
554 Moreover we discuss methods for, and underline the impor-
555 tance of, controlling for biases within a genome-wide study.
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