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SUMMARY

The rapidly growing volume of data being produced
by next-generation sequencing initiatives is enabling
more in-depth analyses of conservation than previ-
ously possible. Deep sequencing is uncovering dis-
ease loci and regions under selective constraint,
despite the fact that intuitive biophysical reasons
for such constraint are sometimes absent. Allostery
may often provide the missing explanatory link. We
use models of protein conformational change to
identify allosteric residues by finding essential sur-
face pockets and information-flow bottlenecks, and
we develop a software tool that enables users to
perform this analysis on their own proteins of inter-
est. Though fundamentally 3D-structural in nature,
our analysis is computationally fast, thereby allowing
us to run it across the PDB and to evaluate general
properties of predicted allosteric residues. We find
that these tend to be conserved over diverse evolu-
tionary time scales. Finally, we highlight examples
of allosteric residues that help explain poorly under-
stood disease-associated variants.

INTRODUCTION

The ability to sequence large numbers of human genomes is

providing a much deeper view into protein evolution than previ-

ously possible. When trying to understand the evolutionary pres-

sures on a given protein, structural biologists now have at their

disposal an unprecedented breadth of data regarding patterns

of conservation, both across species and among humans. As

such, there are greater opportunities to take an integrated view

of the context in which a protein and its residues function. This
Struc
view necessarily includes structural constraints such as residue

packing, protein-protein interactions, and stability. However,

deep sequencing is unearthing a class of conserved residues

on which no obvious structural constraints appear to be acting.

Themissing link in understanding these regionsmay be provided

by studying the protein’s dynamic behavior through the lens

of the distinct functional and conformational states within an

ensemble.

The underlying energetic landscape responsible for the rela-

tive distributions of alternative conformations is dynamic in na-

ture: allosteric signals or other external changesmay reconfigure

and reshape the landscape, thereby shifting the relative popula-

tions of states within an ensemble (Tsai et al., 1999). Landscape

theory thus provides the conceptual underpinnings necessary to

describe how proteins change behavior and shape under chang-

ing conditions. A primary driving force behind the evolution of

these landscapes is the need to efficiently regulate activity in

response to changing cellular contexts, therebymaking allostery

and conformational change essential components of protein

evolution.

Given the importance of allosteric regulation, as well as its role

in imparting efficient functionality, several methods have been

devised for the identification of likely allosteric residues. Conser-

vation itself has been used, either in the context of conserved

residues (Panjkovich and Daura, 2012), networks of co-evolving

residues (Halabi et al., 2009; Lee et al., 2008; Lockless et al.,

1999; Reynolds et al., 2011; Shulman et al., 2004; Süel

et al., 2003), or local conservation in structure (Panjkovich and

Daura, 2010). In related studies, both conservation and geomet-

ric-based searches for allosteric sites have been successfully

applied to several systems (Capra et al., 2009).

The concept of ‘‘protein quakes’’ has been introduced to

explain local conformational changes that are essential for global

conformation transitions of functional importance (Ansari et al.,

1985; Miyashita et al., 2003). These local changes cause strain

within the protein that is relieved by subsequent relaxations

(which are also termed functionally important motions), which
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Figure 1. Schematic Overviews of Methods for Finding Surface- and

Interior-Critical Residues

(A) A simulated ligand probes the protein surface in a series of Monte Carlo

simulations (top left). The cavities identified may be such that occlusion by

the ligand strongly interferes with conformational change (top right; such a site

is likely to be identified as surface-critical, in red), or they may have little effect

on conformational change, as in the case of shallow pockets (bottom left) or

pockets in which large-scale motions do not drastically affect pocket volume

(bottom right).

(B) Interior-critical residues are identified by weighting residue-residue

contacts (edges) on the basis of correlated motions, and then identifying

communities within the weighted network. Residues involved in the highest-

betweenness interactions between communities (in red) are selected as

interior-critical residues.
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terminate when the protein reaches the second equilibrium

state. Such local perturbations often end with large conforma-

tional changes at the focal points of allosteric regulation, and

these motions may be identified in a number of ways, including

modified normal modes analysis (Miyashita et al., 2003) or

time-resolved X-ray scattering (Arnlund et al., 2014).

In addition to conservation and geometry, protein dynamics

have also been used to predict allosteric residues. Normal

modes analysis has been used to examine the extent to which

bound ligands interfere with low-frequency motions, thereby

identifying potentially important residues at the surface (Ming

and Wall, 2005; Mitternacht and Berezovsky, 2011a; Panjkovich
2 Structure 24, 1–12, May 3, 2016
and Daura, 2012). Normal modes have also been used by the

Bahar group to identify important subunits that act in a coherent

manner for specific proteins (Chennubhotla and Bahar, 2006;

Yang and Bahar, 2005). Rodgers et al. (2013) have applied

normal modes to identify key residues in CRP/FNR transcription

factors.

With the objective of identifying allosteric residues within

the interior, molecular dynamics (MD) simulations and network

analyses have been used to identify residues that may function

as internal allosteric bottlenecks (Csermely et al., 2013; Gasper

et al., 2012; Rousseau and Schymkowitz, 2005; Sethi et al.,

2009; Vanwart et al., 2012). Ghosh and Vishveshwara (2008)

have taken a novel approach of combiningMD and network prin-

ciples to characterize allosterically important communication

between domains in methionyl tRNA synthetase. In conjunction

with nuclear magnetic resonance (NMR), Rivalta et al. (2012)

have usedMD and network analysis to identify important regions

in imidazole glycerol phosphate synthase.

Despite having provided valuable insights, many of these ap-

proaches have been limited in terms of scale (the numbers of

proteins which may feasibly be investigated), computational

demands, or the class of residues to which the method is

tailored (surface or interior). Here, we use models of protein

conformational change to identify both surface and interior res-

idues that may act as essential allosteric hotspots in a compu-

tationally tractable manner, thereby enabling high-throughput

analysis. This framework directly incorporates information

regarding 3D protein structure and dynamics, and can be

applied on a PDB-wide scale to proteins that exhibit confor-

mational change. Throughout the PDB (Berman et al., 2000),

the residues identified tend to be conserved both across spe-

cies and among humans, and they may help to elucidate many

of the otherwise poorly understood regions in proteins. In

a similar vein, several of our identified sites correspond to

human disease loci for which no clear mechanism for patho-

genesis had previously been proposed. Finally, we make the

software associated with this framework, termed STRESS

(STRucturally identified ESSential residues), publicly available

through a tool to enable users to submit their own structures

for analysis.

RESULTS

Identifying Potential Allosteric Residues
Allosteric residues at the surface generally play a regulatory role

that is fundamentally distinct from that of allosteric residues

within the protein interior.While surface residues often constitute

the sources or sinks of allosteric signals, interior residues act

to transmit such signals. We use models of protein conforma-

tional change to identify both classes of residues (Figure 1).

Throughout, we term these potential allosteric residues at the

surface and interior ‘‘surface-critical’’ and ‘‘interior-critical’’ res-

idues, respectively.

To gauge the effectiveness of our approach, we identified and

analyzed critical residues within a set of 12 well-studied canon-

ical systems (see Figure S1, as well as Table S1 for rationale

regarding the set selection). We then apply this protocol on a

large scale across hundreds of proteins for which crystal struc-

tures of alternative conformations are available.



Table 1. Statistics on the Surfaces of apo Structures within the Canonical Set of Proteins

PDB ID Surf (SC Res) Surf (LB Res) SC-LB Overlap

No. of SC

Sites

No. of LB

Sites

No. of Overlapping

Sites

% LB Sites

Identified

3pfk 0.51 0.204 0.255 (0.155) 19 3 3 1

4ake 0.454 0.178 0.274 (0.154) 29 2 2 1

1cd5 0.589 0.1 0.153 (0.096) 24 2 1 0.5

1j3h 0.066 0.08 0.25 (0.041) 2 1 1 1

1bks 0.343 0.097 0.079 (0.079) 24 4 1 0.25

1e5x 0.207 0.093 0.139 (0.077) 17 3 2 0.667

1efk 0.055 0.086 0.03 (0.036) 10 10 0 0

1nr7 0.149 0.175 0.187 (0.102) 45 24 6 0.25

1xtt 0.298 0.196 0.295 (0.154) 31 5 5 1

2hnp 0.739 0.133 0.16 (0.134) 25 2 2 1

3d7s 0.267 0.137 0.054 (0.064) 26 9 0 0

3ju5 0.016 0.039 0 (0.013) 1 2 0 0

Mean 0.308 0.127 0.156 (0.092) 21.083 5.583 1.917 0.556

For each apo structure within the canonical set of proteins, statistics relating surface-critical sites to known ligand-binding sites are reported. The sur-

face of a given structure is defined to be the set of all residues that have a relative solvent accessibility of at least 50%, where relative solvent acces-

sibility is evaluated using all heavy atoms in both the main chain and side chain of a given residue. Mean values are given in the bottom row. NACCESS

is used to calculate relative solvent accessibility (Hubbard and Thornton, 1993). Column 1: protein name and PDB IDs for each structure. Column 2:

among these surface residues, the fraction that constitutes surface-critical residues (SC Res). Column 3: among surface residues, the fraction that

constitutes known ligand-binding residues (LBRes) (known ligand-binding residues are taken to be those within 4.5 Å of the ligand in the holo structure;

Table S1). Column 4: the Jaccard similarity between the sets of residues represented in columns 2 and 3 (i.e., surface-critical and known ligand-binding

residues), where values given in parentheses represent the expected Jaccard similarity, given a null model in which surface-critical and ligand-binding

residues are randomly distributed throughout the surface (for each structure, 10,000 simulations are performed to produce random distributions, and

the expected values reported here constitute the mean Jaccard similarity among the 10,000 simulations for each structure). Column 5: the number of

distinct surface-critical sites identified in each structure. Column 6: the number of known ligand-binding sites in each structure. Column 7: the number

of known ligand-binding sites which are positively identified within the set of surface-critical sites, where a positive match occurs if a majority of the

residues in a surface-critical site coincide with the known ligand-binding site. Column 8: the fraction of ligand-binding sites captured is simply the ratio

of the values in column 7 to those in column 6. See also Figure S1; Tables S1 and S2.
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Identifying Surface-Critical Residues

Allosteric ligands often act by binding to surface pockets/

cavities and modulating protein conformational dynamics. The

surface-critical residues, some of which may act as latent

ligand-binding sites and active sites, are first identified by finding

cavities using Monte Carlo (MC) simulations to probe the surface

with a flexible ligand (Figure 1A, top left). The degree to which

cavity occlusion by the ligand disrupts large-scale conforma-

tional change is used to assign a score to each cavity: sites at

which ligand occlusion strongly interferes with conformational

change earn high scores (Figure 1A, top right), whereas shallow

pockets (Figure 1A, bottom left) or sites at which large-scale mo-

tions are largely unaffected (Figure 1A, bottom right) earn lower

scores. Further details are provided in Supplemental Experi-

mental Procedures section 3.1-a.

This approach is a modified version of the binding leverage

framework introduced by Mitternacht and Berezovsky (2011a).

The main modifications implemented here include the use

of heavy atoms in the protein during the MC search, in addi-

tion to an automated means of thresholding the list of ranked

scores. These modifications were implemented to provide a

more selective set of sites; without them, a very large fraction

of the protein surface would be occupied by critical sites (Fig-

ure S2A). Within our dataset of proteins exhibiting alternative

conformations, we find that this modified approach results in

an average of approximately two distinct sites per domain (Fig-
ure S2A; see Figure S2B for the distribution for distinct sites

within entire complexes).

Within the canonical set of 12 proteins, we positively identify

an average of 55.6% of the sites known to be directly involved

in ligand or substrate binding (see Table 1, Figure S1; Supple-

mental Experimental Procedures section 3.1-a-iv). Some of the

sites identified do not directly overlap with known binding re-

gions, but we often find that these ‘‘false positives’’ nevertheless

exhibit some degree of overlap with binding sites (Table S2). In

addition, those surface-critical sites that do not match known

binding sites may nevertheless correspond to latent allosteric

regions: even if no known biological function is assigned to

such regions, their occlusion may nevertheless disrupt hitherto

unfound large-scale motions.

Dynamical Network Analysis to Identify Interior-Critical

Residues

The binding leverage framework described above is intended

to capture hotspot regions at the protein surface, but the MC

search employed is a priori excluded from the protein interior.

Allosteric residues often act within the protein interior by func-

tioning as essential information-flow ‘‘bottlenecks’’ within the

communication pathways between distant regions.

To identify such bottleneck residues, we first model the

protein as a network, wherein residues represent nodes and

edges represent contacts between residues (in much the same

way that the protein is modeled as a network in constructing
Structure 24, 1–12, May 3, 2016 3



Figure 2. Community Partitioning for Canonical Systems

Different network communities are colored differently, and communities were identified using the dynamical network-based analysis with the GN formalism

discussed in themain text and in Supplemental Experimental Procedures section 3.1-b. Residues shown as spheres are interior-critical residues, and are colored

based on community membership, and black lines connecting pairs of critical residues represent the highest-betweenness edges between the corresponding

communities. See also Table S3.

Please cite this article in press as: Clarke et al., Identifying Allosteric Hotspots with Dynamics: Application to Inter- and Intra-species Conservation,
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anisotropic network models, see below). In this regard, the

problem of identifying interior-critical residues is reduced to a

problem of identifying nodes that participate in network bottle-

necks (see Figure 1B and Supplemental Experimental Proce-

dures section 3.1-b for details). In brief, the network edges are

first weighted by the degree of strength in the correlated motions

of contacting residues: a strong correlation in the motion be-

tween contacting residues implies that knowing how one residue

moves better enables one to predict the motion of the other,

thereby suggesting a strong information flow between the two

residues. The weights are used to assign ‘‘effective distances’’

between connecting nodes, with strong correlations resulting

in shorter effective node-node distances.

Using the motion-weighted network, ‘‘communities’’ of nodes

are identified using the Girvan-Newman formalism (Girvan et al.,

2002). This formalism entails calculating the betweenness of

each edge, where the betweenness of a given edge is defined

as the number of shortest paths between all pairs of residues

that pass through that edge. Each path length is the sum

of that path’s effective node-node distances assigned in the

weighting scheme above. Each community identified is a group

of nodes such that each node within the community is highly in-

ter-connected (in terms of betweenness), but loosely connected

to other nodes outside the community. Communities are thus

densely inter-connected regions within proteins. The community

partitions and the resultant critical residues for the canonical set

are given in Figure 2.

Those residues that are involved in the highest-betweenness

edges between pairs of interacting communities are identified

as the interior-critical residues. These residues are essential for
4 Structure 24, 1–12, May 3, 2016
information flow between communities, as their removal would

result in substantially longer paths between the residues of one

community to those of another.

Software Tool: STRESS

We have made the implementations for finding surface- and

interior-critical residues available through a new software tool,

STRESS, which may be accessed at stress.molmovdb.org (Fig-

ure 3A). Users may submit a PDB file or a PDB ID corresponding

to a structure to be analyzed, and the output provided consti-

tutes the set of identified critical residues.

Running times are minimized by using a scalable server archi-

tecture that runs on the Amazon cloud (Figure 3). A light front-

end server handles incoming user requests, and more powerful

back-end servers, which perform the calculations, are automat-

ically and dynamically scalable, thereby ensuring that they can

handle varying levels of demand both efficiently and economi-

cally. In addition, the algorithmic implementation of our software

is highly efficient, thereby obviating long wait times. Relative to

a naive global MC search implementation, local searches sup-

ported with hashing and additional algorithmic optimizations

for computational efficiency reduce running times considerably

(Figures 3B and 3C). A typical protein of �500 residues takes

only about 30 min on a 2.6-GHz CPU.

High-Throughput Identification of Alternative
Conformations
We use a generalized approach to systematically identify

instances of alternative conformations throughout the PDB.

We first perform multiple structure alignments (MSAs) across

sequence-identical structures that are pre-filtered to ensure

http://stress.molmovdb.org
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Figure 3. STRESS Web Server Front Page, Running Times, and Server Architecture

(A) The server enables users to either provide PDB IDs or to upload their own PDB files for proteins of interest. Users may opt to identify surface-critical residues,

interior-critical residues, or both. A thin front-end server handles incoming user requests, and more powerful back-end servers perform the heavier algorithmic

calculations. The back-end servers are dynamically scalable, making them capable of handling wide fluctuations in user demand. Amazon’s Simple Queue

Service is used to coordinate between user requests at the front-end and the back-end compute nodes: when the front-end server receives a request, it adds the

job to the queue, and back-end servers pull that job from the queue when ready. Source code is available through Github (https://github.com/gersteinlab/

STRESS).

(B) Running times are shown for systems of various sizes. Shown in red are the running times without optimizing for speed, and green shows running times with

algorithmic optimization.

(C) The same data represented as a log-log plot. The slopes of these two approaches demonstrate that our algorithm reduces the computational complexity by an

order of magnitude. Our speed-optimized algorithm scales at O(n1.3), where n is the number of residues.
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structural quality. We then use the resultant pairwise root-mean-

square deviation (RMSD) values to infer distinct conformational

states (Figure S3; see also Supplemental Experimental Proce-

dures section 3.2).

The distributions of the resultant numbers of conformations for

domains and chains are given in Figures S3D and S3E, respec-

tively, and an overview is given in Figure S3F. We note that the

alternative conformations identified arise in an extremely diverse

set of biological contexts, including conformational transitions

that accompany ligand binding, protein-protein or protein-nu-

cleic acid interactions, post-translational modifications, changes

in oxidation or oligomerization states, and so forth. The dataset

of alternative conformations identified is provided as a resource

in Data S1 (see also Figure S3G).

Evaluating Conservation of Critical Residues using
Various Metrics and Sources of Data
The large dataset of dynamic proteins culled throughout the

PDB, coupled with the high algorithmic efficiency of our critical

residue search implementation, provide a means of identi-

fying and evaluating general properties of a large pool of critical

residues. In particular, we use a variety of conservation metrics

and data sources to measure the inter- and intra-species

conservation of the residues within this pool. As discussed

below, we find that both surface-critical (Figures 4A–4D) and

interior-critical (Figures 4E–4H) residues are consistently more
conserved than non-critical residues. We emphasize that the

signatures of conservation identified not only provide a means

of rationalizing many of the otherwise poorly understood regions

of proteins, but also reinforce the functional importance of the

residues predicted to be allosteric.

Conservation across Species

When evaluating conservation across species, we find that both

surface- and interior-critical residues tend to be significantly

more conserved than non-critical residues with the same degree

of burial (Figures 4B and 4F, respectively; note that negative

conservation scores designate stronger conservation—see Sup-

plemental Experimental Procedures section 3.3-a).

Leveraging Next-Generation Sequencing to Measure

Conservation among Humans

In addition to measuring inter-species conservation, we have

also used fully sequencedhumangenomes and exomes to inves-

tigate conservation among human populations, as many con-

straints may be species specific and active in more recent

evolutionary history. Commonly used metrics for quantifying

intra-species conservation include minor allele frequency (MAF)

and derived allele frequency (DAF). Low MAF or DAF values are

interpreted as signatures of deleteriousness, as purifying selec-

tion is prone to reduce the frequencies of harmful variants (see

Supplemental Experimental Procedures section 3.3-b).

Non-synonymous single-nucleotide variants (SNVs) from the

1,000 Genomes dataset (McVean et al., 2012) that intersect
Structure 24, 1–12, May 3, 2016 5
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Figure 4. Multiple Metrics and Datasets

Reveal that Critical Residues Tend to Be

Conserved

(A–H) Surface- and interior-critical residues (red) in

phosphofructokinase (PDB: 3PFK) are given in (A)

and (E), respectively. Distributionsof cross-species

conservation scores, 1,000 Genomes SNV DAF

averages, and ExAC SNV MAF averages for sur-

face- and non-critical residue sets are given in (B),

(C), and (D), respectively. The same distributions

corresponding to interior- and non-critical residue

sets are given in (F), (G), and (H), respectively. In (B),

mean inter-species conservation scores for sur-

face-critical sets are �0.131, whereas non-critical

residue sets with the same degree of burial have a

mean score of +0.059 (p < 2.23 10�16). In (F), mean

inter-species conservation scores for interior-crit-

ical sets are �0.179, whereas non-critical residue

sets with the same degree of burial have a mean

score of�0.102 (p= 3.67310�11). In (C),means for

surface- and non-critical sets are 9.10 3 10�4 and

8.34 3 10�4, respectively (p = 0.309); corre-

spondingmeans in (D) are 4.093 10�04 and 2.263

10�04, respectively (p = 1.493 10�3). In (G), means

for interior- and non-critical sets are 2.82 3 10�4

and 3.12 3 10�3, respectively (p = 1.80 3 10�05);

corresponding means in (H) are 3.08 3 10�05 and

3.27 3 10�04, respectively (p = 7.98 3 10�09). N =

421, 32, 84, 517, 31, and 90 structures for (B), (C),

(D), (F), (G), and (H), respectively. p Values are

based on Wilcoxon rank-sum tests. The whiskers

extend to the most extreme data point which is no

more than 1.5 times the interquartile range from the

box. See Supplemental Experimental Procedures

for further details. See also Figures S2 and S4.
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surface-critical residues tend to occur at lower DAF values than

do SNVs that intersect non-critical residues (Figure 4C).

Although this difference is not observed to be significant, the

significance improves when examining the shift in DAF distribu-

tions, as evaluated with a KS test (p = 0.159, Figure S4A), and we

point out only a limited number of proteins (32) for which these

1,000 Genomes SNVs intersect with surface-critical sites.

Furthermore, the long tail extending to lower DAF values for sur-

face-critical residues may suggest that only a subset of the res-

idues in our prioritized binding sites is essential. In contrast to

surface-critical residues, however, interior-critical residues inter-

sect 1,000 Genomes SNVs with significantly lower DAF values

than do non-critical residues (Figure 4G; see also Figure S4B).

When analyzing human polymorphism data, a variety of sta-

tistical measures relating SNVs to selective constraint may be

calculated, and the results obtained (along with their associated

significance levels) are highly dependent on sample size. 1,000

Genomes datasets are attractive partially because of their status

as a well-established ‘‘blue-chip’’ set of variants in human pop-

ulations. However, given the relatively limited number of proteins

that intersect with 1,000 Genomes SNVs, we also analyzed the

larger dataset provided by the Exome Aggregation Consortium

(ExAC) (Exome Aggregation Consortium et al., 2015). Although

this dataset has been released much more recently (and is

consequently not yet as well established as 1,000 Genomes),

ExAC provides sequence data from more than 60,000 individ-
6 Structure 24, 1–12, May 3, 2016
uals, and samples are sequenced at much higher coverage,

thereby ensuring better data quality. This larger dataset enables

us tomore easily examine trends in the data as they relate to crit-

ical and non-critical residues.

Using MAF as a conservation metric, we performed a similar

analysis using this data. MAF distributions for surface- and

non-critical residues in the same set of proteins are given in Fig-

ure 4D. Although the mean value of the MAF distribution for sur-

face-critical residues is slightly higher than that of non-critical

residues, the median for surface-critical residues is substan-

tially lower than that for non-critical residues, demonstrating

that the majority of proteins are such that MAF values are lower

in surface-critical than in non-critical residues. In addition, the

overall shifts of these distributions also point to a trend of lower

MAF values in surface-critical residues (Figure S4C, KS test p =

9.49 3 10�2).

Interior-critical residues exhibit significantly lower MAF values

than do non-critical residues in the same set of proteins. MAF

distributions for interior- and non-critical residues are given in

Figure 4H (see also Figure S4D).

In addition to analyzing overall allele frequency distributions,

we also evaluate the fraction of rare alleles as a metric for

measuring selective pressure. This fraction is defined as the ratio

of the number of rare (i.e., low-DAF or low-MAF) non-synony-

mous SNVs to the number of all non-synonymous SNVs in a

given protein annotation (such as all surface-critical residues of
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Figure 5. Critical Residues Are Shown to Be More Conserved, as

Measured by the Fraction of Rare Alleles

Protein regions with high fractions of rare variants are believed to be more

sensitive to sequence variants than other regions, thereby explaining why such

variants occur infrequently in the population.

(A and C) Distributions for rare (low-DAF) non-synonymous SNVs (taken from

the 1,000 Genomes dataset) in which the critical residues are defined to be the

surface-critical (A) and interior-critical (C) residues.

(B and D) Distributions for rare (low MAF) non-synonymous SNVs (taken from

the ExAC dataset) in which the critical residues are defined to be the surface-

critical (B) and interior-critical (D) residues. For varying thresholds to define

rarity, there aremore structures in which the fraction of rare variants is higher in

critical residues than in non-critical residues. Cases in which the fraction is

equal in both categories are not shown. We consider all structures such that at

least one critical and at least one non-critical residue intersect a non-synon-

ymous SNV.

(A), (B), (C), and (D) represent data from 31, 90, 32, and 84 structures,

respectively.
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Figure 6. Modeling Protein Conformational Change Through a

Direct Use of Crystal Structures from Alternative Conformations

using Absolute Conformational Transitions

(A) Distributions (155 structures) of the mean conservation scores on surface-

critical (red) and non-critical residues with the same degree of burial (blue).

(B) Distributions (159 structures) of the mean conservation scores for interior-

critical (red) and non-critical residues with the same degree of burial (blue).

Mean values are given in parentheses. Results for single-chain proteins are

shown, and p values were calculated using aWilcoxon rank-sum test. See also

Figure S3.

The whiskers extend to the most extreme data point which is no more than

1.5 times the interquartile range from the box.
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the protein, for example; see Supplemental Experimental Proce-

dures section 3.3-b). A higher fraction is interpreted as a proxy

for greater conservation (Khurana et al., 2013; Sethi et al.,

2015). Using variable DAF (MAF) cutoffs to define rarity for

1,000 Genomes (ExAC) SNVs, both surface- and interior-critical

residues are shown to harbor a higher fraction of rare alleles than

do non-critical residues, further suggesting a greater degree of

evolutionary constraint on critical residues (Figure 5).

Comparisons between Different Models of Protein

Motions

The identification of surface- and interior-critical residues entails

using sets of vectors (on each protein residue) to describe

conformational change. Notably, our framework enables one

to determine these vectors in multiple ways. Conformational

changes may be modeled using vectors connecting residues in

crystal structures from alternative conformations. We term this

approach ACT, for ‘‘absolute conformational transitions’’ (see

Supplemental Experimental Procedures section 3.2-c). The

crystal structures of such paired conformations may be obtained

using the framework discussed above. The protein motions may

also be inferred from anisotropic network models (ANMs) (Atil-
gan et al., 2001). ANMs entail modeling interacting residues as

nodes linked by flexible springs, in a manner similar to elastic

network models (Fuglebakk et al., 2015; Tirion, 1996) or normal

modes analysis (Figure 1B). ANMs are not only simple and

straightforward to apply on a database scale, but unlike using

alternative crystal structures, the motion vectors inferred may

be generated using a single structure.

We find that modeling conformational change using vectors

from either ACTs or ANMs gives the same general trends in

terms of the disparities in conservation between critical and

non-critical residues. Our framework is thus general with respect

to how the motion vectors are obtained (see Figure 6 and Sup-

plemental Experimental Procedures section 3.2-c for further

details).

Critical Residues in the Context of Human Disease

Variants

Directly related to conservation is confidence with which an SNV

is believed to be disease associated. SIFT (Ng and Henikoff,

2001) and PolyPhen (Adzhubei et al., 2010) are two tools for pre-

dicting SNV deleteriousness. ExAC SNVs that intersect critical

residues exhibit significantly higher PolyPhen scores relative to

non-critical residues, suggesting the potentially higher disease
Structure 24, 1–12, May 3, 2016 7
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Figure 7. Potential Allosteric Residues Add a Layer of Annotation to

Structures in the Context of Disease-Associated SNVs

(A) Structure of the fibroblast growth factor receptor (FGFR) in VMD Surf

rendering, with HGMD SNVs shown in orange, bound to FGF2, in ribbon

rendering (PDB: 1IIL).

(B) Linear representation of structural annotation for FGFR. Dotted lines

highlight loci which correspond to HGMD sites that coincide with critical res-

idues, but for which other annotations fail to coincide. Deeply buried residues

are defined to be those that exhibit a relative solvent-exposed surface area of

5% or less, and binding-site residues are defined as those for which at least

one heavy atom falls within 4.5 Å of any heavy atom in the binding partner

(heparin-binding growth factor 2). The loci of post-translational modification

sites were taken from UniProt (UniProt: P21802). See also Figures S5 and S6.
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susceptibility at critical residues (Figure S5). Significant dispar-

ities were not observed in SIFT scores (Figure S6).

UsingHGMD (Stenson et al., 2014) andClinVar (Landrumet al.,

2014),we identify proteinswith critical residues that coincidewith

disease-associated SNVs (Data S2). Several critical residues

coincide with known disease loci for which the mechanism of

pathogenicity is otherwise unclear (Data S3). The fibroblast

growth factor receptor (FGFR) is a case in point (Figure 7A).

SNVs in FGFR have been linked to craniofacial defects. Dotted

lines in Figure 7B highlight poorly understood disease SNVs

that coincide with critical residues. In addition, we identify Y328

as a surface-critical residue, which coincides with a disease-

associated SNV from HGMD, despite the lack of confident

predictions of deleteriousness by several widely used tools for

predicting disease-associated SNVs, including PolyPhen (Adz-

hubei et al., 2010), SIFT (Ng and Henikoff, 2001), and SNPs&GO

(Calabrese et al., 2009). Together, these results suggest that

the incorporation of surface- and interior-critical residues intro-

duces a valuable layer of annotation to the protein sequence,

and may help to explain otherwise poorly understood disease-

associated SNVs.

DISCUSSION

The same principles of energy landscape theory that dictate

protein folding are integral to how proteins explore different con-

formations once they adopt their fully folded states. These land-

scapes are shaped not only by the protein sequence itself but

also by extrinsic conditions. Such external factors often regulate

protein activity by introducing allosteric-induced changes, which

ultimately reflect changes in the shapes and population distribu-

tions of the energetic landscape. In this regard, allostery pro-

vides an ideal platform from which to study protein behavior in

the context of their energetic landscapes. For investigation of
8 Structure 24, 1–12, May 3, 2016
allosteric regulation, and to simultaneously add an extra layer

of annotation to conservation patterns, an integrated framework

to identify potential allosteric residues is essential. We introduce

a framework to select such residues, using knowledge of confor-

mational change.

When applied to many proteins with distinct conformational

changes in the PDB, we investigate the conservation of potential

allosteric residues in both inter-species and intra-human ge-

nomes contexts, and find that these residues tend to exhibit

greater conservation in both cases. In addition, we identify

several disease-associated variants for which plausible mecha-

nisms had been unknown, but for which allosteric mechanisms

provide a reasonable rationale.

Unlike the characterization of many other structural features,

such as secondary structure assignment, residue burial, pro-

tein-protein interaction interfaces, disorder, and even stability,

allostery inherently manifests through dynamic behavior. It is

only by considering protein motions and changes in these mo-

tions that a fuller understanding of allosteric regulation can be

realized. As such, MD and NMR are some of the most common

means of studying allostery and dynamic behavior (Kornev and

Taylor, 2015). However, these methods have limitations when

studying large and diverse protein datasets. MD is computation-

ally expensive and impractical when studying large numbers

of proteins. NMR structure determination is extremely labor

intensive and better suited to certain classes of structures or dy-

namics. In addition, NMR structures constitute a relatively small

fraction of structures currently available.

Despite these limitations in MD and NMR, allosteric mecha-

nisms and signaling pathways may be conserved across many

different but related proteins within the same family, suggest-

ing that such computationally intensive or labor-intensive ap-

proaches for all proteins may not be entirely essential. Flock

et al. (2015) have carefully demonstrated that the allosteric

mechanisms responsible for regulating G proteins through

GPCRs tend to be conserved. Investigations into representative

families have also been enlightening in other contexts. In one of

the early studies employing network analysis, del Sol et al. (2006)

conducted a detailed study of several allosteric protein families

(including GPCRs) to demonstrate that residues important for

maintaining the integrity of short paths within residue contact

networks are essential to enabling signal transmission between

distant sites. Another notable result in the same work is that

these key residues (which match experimental results) may

become redistributed when the protein undergoes conforma-

tional change, thereby changing optimal communication routes

as a means of conferring different regulatory properties.

There are several notable implications of our dynamics-based

analysis across a database of proteins. Relative to sequence

data, allostery and dynamic behavior are far more difficult to

evaluate on a large scale. The framework described here enables

one to evaluate dynamic behavior in a systemized and efficient

way across many proteins while simultaneously capturing resi-

dues on both the surface andwithin the interior. That this pipeline

can be applied in a high-throughput manner enables the investi-

gation of system-wide phenomena, such as the roles of potential

allosteric hotspots in protein-protein interaction networks.

It is only by analyzing a large dataset of proteins that one can

investigate general trends in predicted allosteric residues. In
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addition, the implementation detailed here enables one to match

structural features with the high-throughput data generated

through deep sequencing initiatives, which are providing an un-

precedented window into conservation patterns, many of which

may be human specific.

We anticipate that, within the next decade, deep sequencing

will enable structural biologists to study evolutionary conser-

vation using sequenced human exomes just as routinely as

cross-species alignments. Furthermore, intra-species metrics

for conservation provide added value in that the confounding

factors of cross-species comparisons are removed: different

species evolve in various evolutionary contexts and at different

rates, and it can be difficult to decouple these different effects

from one another. Cross-species metrics of protein conser-

vation entail comparisons between proteins that may be very

different in structure and function. Sequence-variable regions

across species may not be conserved, but nevertheless impart

essential functionality. Intra-species comparisons, however,

can often provide a more direct and sensitive evaluation of

constraint.

In particular, selective constraints within human populations

are particularly relevant to understanding human disease. For-

malisms for analyzing large structural and sequence datasets

will become increasingly important in the context of human

health. We anticipate that the framework and formalisms

detailed here, along with the accompanying web tool we have

introduced, will help to further motivate future studies along

these directions.

EXPERIMENTAL PROCEDURES

Identifying Potential Allosteric Residues

Identifying Surface-Critical Residues

We employ a modified version of the binding leverage method for identifying

likely ligand-binding sites (Figure 1A), as described previously (Mitternacht

and Berezovsky, 2011a). Further details are given below, as well as within

Supplemental Experimental Procedures section 3.1-a.

Monte Carlo Simulations to Identify Candidate Allosteric Sites on the Surface.

Candidate sites on the surface are generated by MC simulations in which a

flexible ligand (comprising of four ‘‘atoms’’ linked by bonds of fixed length

3.8 Å, but variable bond and dihedral angles) explores the protein’s surface.

The number of MC simulations is set to ten times the number of residues in

the structure, and the number of MC steps per simulation in our implementa-

tion is set to 10,000 times the size of the simulation box, as measured in ang-

stroms. The size of this box is set to twice the maximum size of the PDB along

any of the x, y, or z axes. Heavy atoms are used in the protein when evaluating

a ligand’s affinity for each location.

The parameters (for a square well potential function) used to evaluate the

energy of the system at each step is as follows (here, Dlig-prot designates the

distance between a ligand atom and a protein atom, in angstroms):
Widths Depths and Heights

N > Dlig-prot R 4.5: energy = 0

4.5 > Dlig-prot R 3.5: energy = �0.35 (attractive)

3.5 > Dlig-prot R 3.0: energy = +10 (repulsive)

3.0 > Dlig-prot R 0.0: energy = +10,000 (strongly repulsive:

effectively prohibited)
What form does the MC ensemble take, and how exactly is this MC

ensemble turned into a list of candidate sites? Prior to thresholding the

list of ranked sites (see Supplemental Experimental Procedures section
3.1-a-iii), we generally follow the same formalism detailed in Mitternacht and

Berezovsky (2011a). We first detail the output provided by a single MC simu-

lation. ThisMC simulation involves a ligand probing the protein surface through

a large number of steps in which the ligand explores translational, rotational,

and angular degrees of freedom. The potential function usually ‘‘pushes’’ the

ligand to favorably occupy a pocket on the protein surface after all steps of

the MC simulation are completed. The ligand is thus in contact with a number

of residues (typically 10–20) at the end of the simulation. As with the approach

taken by Mitternacht and Berezovsky, this list of residues is ordered by local

closeness (LC). LC is a geometric quantity that provides a measure of the de-

gree of a residue in the residue-residue contact network; see Mitternacht and

Berezovsky (2011b) for further discussion of LC. The ten residueswith greatest

LC are taken as the final ‘‘site’’ occupied by the ligand at the end of this MC

simulation (the remaining residues are not considered to be part of the site).

Thus, the output of this single MC simulation is a list of ten residues on the pro-

tein surface such that these residues form a geometrically favorable site for the

ligand.

Now consider a very large number (typically 5,000–10,000, depending on

the protein’s size) of the MC simulations detailed above. These �10,000 MC

simulations result in many sites, where each of these sites is the list of residues

in contact with the ligand by the end of the MC simulation. This long list of sites

generally contains many sites with a strong degree of overlap. Thus, to remove

redundancy, pairs of sites with extremely high overlap are merged. The resi-

dues of a given merged site are then listed by their LC, and no more than

ten residues for a site are used. This entire process results in a list of sites

on which binding leverage calculations can be performed.

Binding Leverage Calculations. When the ten lowest-frequency normal

modes are produced for each structure, the binding leverage score for a given

site is calculated as

Binding leverage=
X10
m=1

 X
i

X
j

Dd2
ijðmÞ

!
:

The outer sum is taken over the ten modes, and the pair of inner sums are

taken over all pairs of residues (i,j) such that the line connecting the pair lies

within 3.0 Å of any atom within the simulated ligand. The value Ddij(m) for

each residue pair (i,j) represents the change in the distance between residues

i and jwhen this distance is calculated using modem. Further details are given

in Supplemental Experimental Procedures section 3.1-a-ii.

Identifying Interior-Critical Residues

A protein structure is represented as a network of interacting residues,

and the edges between residues are weighted using inferred motions.

Network modules are then identified, and residues that are important for in-

ter-module communication are identified as being interior-critical. Detailed

information is given below and in Supplemental Experimental Procedures

section 3.1-b.

Network Formalism andWeighting Scheme. An edge between residues i and

j is drawn if any heavy atom within residue i is within 4.5 Å of any heavy atom of

residue j, and we exclude the trivial cases of pairs of residues that are adjacent

in sequence, which are not considered to be in contact within the network.

An ‘‘effective distance’’Dij for an edge between interacting residues i and j is

set to Dij = �log(rCijr), where Cij designates the correlated motions between

residue i and j,

Cij =Covij

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��
r2i
��
r2j
��r

;

where

Covij =
�
ri,rj

�
:

Here, ri and rj designate the vectors associated with residues i and j (respec-

tively) under a particular normal mode. The brackets in the term hri,rji indicate
that we are taking the mean value for the dot product ri,rj over the ten lowest-

frequency non-trivial modes.

Once all connections between interacting pairs of residues are appropriately

weighted and the communities are assigned using the Girvan-Newman

(GN) algorithm (Girvan et al., 2002) with these effective distances, a residue

is deemed to be an interior-critical residue if it is involved in the highest-

betweenness edge connecting two distinct communities.
Structure 24, 1–12, May 3, 2016 9
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High-Throughput Identification of Alternative Conformations

Westart by removing structureswith resolution values poorer than2.8, aswell as

any PDB files with Rfree values poorer than 0.28. STAMP (Russell and Barton,

1992) and MultiSeq (Roberts et al., 2006) were used to generate the MSAs. For

each MSA, the final output is a symmetric matrix representing all pairwise

RMSD values, which are then used as input to the K-meansmodule (see below).

Using a modified version of the K-means clustering algorithm, termed

K-means clustering with the gap statistic (Tibshirani et al., 2001), pairwise

RMSD values are used to identify the biologically distinct conformations

represented by an ensemble.

As a first step toward clustering the structure ensemble of N structures, we

use multidimensional scaling (MDS) to convert an N-by-N matrix of pairwise

RMSD values into a set of N distinct points. These matrices are then provided

as input for K-means with the gap statistic; we point the reader to the work by

Tibshirani et al. (2001) for details. Further details are also provided in Supple-

mental Experimental Procedures section 3.2.

Models of Conformational Change via Displacement Vectors from

Alternative Conformations

Inferring Protein Conformational Change using Displacement Vectors from

Alternative Conformations. Given a particular protein, how are these ACT

vectors defined to find critical residues? We discuss a hypothetical example

consisting of a multiple structure alignment of eight sequence-identical struc-

tures. Starting with the protein’s alignment using all eight structures, we deter-

mine the optimal number of clusters represented by the alignment (see above).

Suppose that these eight structures may be grouped into two distinct clusters.

A representative structure is taken from each of these two clusters (structure A

and structure B). We use structure A and structure B to infer information about

the protein’s global conformational shifts by assigning a displacement vector

to each residue, where the displacement vector is simply defined by the

two corresponding residues in the different structures within the structure

alignment.

When using ACT vectors, the binding leverage score for a given site is simply

calculated as

Binding leverage=
X
i

X
j

Dd2
ij :

When identifying interior-critical residues, there is only one ACT vector for

each residue. Thus, the weight parameters are calculated as

Cij =Covij
�
O
�
jri j2 3

		rj		2� ;

where

Covij = ri,rj :

Here, ri denotes the vector that defines the change in position for residue i

when going from one representative conformation to the other.

Evaluating Conservation of Critical Residues using Various Metrics

and Sources of Data

Conservation across Species

All cross-species conservation scores represent the ConSurf scores, as down-

loaded from the ConSurf server (Ashkenazy et al., 2010; Celniker et al., 2013;

Glaser et al., 2003; Landau et al., 2005). Low (i.e., negative) ConSurf scores

represent a stronger degree of conservation. Cross-species conservation

scores were analyzed in those PDBs for which full ConSurf files are available

through the ConSurf server.

Each point within the cross-species conservation plots (e.g., Figures 4B, 4F,

and 6) represents data from one structure: the value of the point for any given

structure represents the mean conservation score for all residues within one of

two classes: the set of N critical residues within a protein structure (surface or

interior) or a randomly selected set of N non-critical residues (with the same

‘‘degree,’’ see below) within the same structure. The randomly selected non-

critical set of residues was chosen in a way such that, for each critical residue

with degree k (k being the number of non-adjacent residueswith which the crit-

ical residue is in contact, see below), a randomly selected non-critical residue

with the same degree kwas included in the set. The distributions of non-critical

residues shown are very much representative of the distributions observed

when rebuilding the random set many times.
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The degree (i.e., k) of residue j is defined as the number of residues which

interact with residue j, where residues adjacent to residue j in sequence are

not considered, and an interaction is defined whenever any heavy atom in

an interacting residue is within 4.5 Å of any heavy atom in the residue j.

Measures of Conservation among Humans from Next-Generation

Sequencing

Only non-synonymous SNVs are analyzed in this study. All 1,000 Genomes

SNVs represent data from the phase 3 release of The 1,000 Genomes Project

(McVean et al., 2012). ExAC SNVswere downloaded from the Broad Institute in

May 2015 from the ExAC Browser (Beta).

When analyzing both 1,000 Genomes and ExAC data, we consider only

those structures in which at least one critical and one non-critical residue

intersect a non-synonymous SNV. Each individual point within the intra-

human conservation plots (e.g., Figures 4C, 4D, 4G, and 4H) represents

data from one structure: the value of the point for any given structure rep-

resents the mean score (DAF or MAF, for 1,000 Genomes or ExAC SNVs,

respectively) for all critical (red bars) or non-critical (blue bars) residues to

intersect SNVs.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, three tables, and three data files and can be found with this article

online at http://dx.doi.org/10.1016/j.str.2016.03.008.
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